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1. Let X and Y be normed spaces and fix some elements fi, fo € X’
and yp,y2 € Y. For each x € X we define

T(x) = fi(x) -y + fo(x) - 42

Prove that T is a bounded linear operator from X to Y. (6p)
6p

2. Let Hy and Hs be Hilbert spaces and let T': H; — H, be a bounded
linear operator. Prove that
[T(H)]* = N(T).
(6p)

3. (a). Prove that the set M = {y1,vo,¥s3, ...} is not total in ¢? if

y1:(1,1,000 )
(1,1,1,0,0,0,...)
(1,1,1,1,0,0,0,...)
(1,1,1,1,1,000 L)

(b). Prove that the set M = {x, 19, 23,...} is total in £? if

(1, ~1,0,0,0,...)
=(1,1,-1,0,0,0,...)
(1,1,1, 1,0,0,0,...)
(1,1,1,17 1,0,0,0,...)

(Hint: One may eg. use Theorem 3.6-2.) (4p)
4p
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4. Define T : £* — (> by
T((60, 6 6s0)) = (S0 Tia&is T2a&is TG )

Prove that T is a bounded linear operator T : ¢ — (> and compute
the norm ||7T7)|.
(6p)

5. Let a;,m be complex numbers with |, ,,,| < 1 for all n,m > 1, and
assume that the limit

o, = lim oy, m
n—oo ’

exists for all m > 1. For each n > 1 we let T}, : ¢* — ¢! be the bounded
linear operator given by

To((&1,62,85,...)) = (an 1€, 0 280, 33, ).
)

Prove that the sequence (T5,) is strongly operator convergent. Also give
an example to show that (7)) is not necessarily uniformly operator
convergent.

s (6p)

6. Let X be the normed space given by
X ={(&) & €C, and IN € Z" : Yn > N : £, = 0},

[1(&a)] =

Prove that X is meager in itself.
(6p)
7. Define T': {*° — (> by

T((&b 62) §3a )) = (O, 61, 62, 53, )

Prove that % € o,(T), i.e. prove that A = % belongs to the residual
spectrum of T
(6p)

GOOD LUCK!



Solutions

1. T is linear since for all 1,29 € X and all aq, s € K we have

T(cimy + aoxs) = fi(aqxy + agxs) - y1 + fola1x1 + oxs) - Yo
= (afi(z1) + aafi(z2)) - y1 + (1 fo(z1) + aafo(r2)) - y2

=y (fi(z1) -y + fa(@1) - y2) + az - (fi(z2) - y1 + falz2) - 42)
= T(x1) + T (xg).

T is bounded since for all x € X we have

T @) = [[f1(z) - y1 + fol@) - ol | < |[f1(2) - ]l + [[f2(2) - gl|
= [A@)] -l + [fa(@)] - [lye]]
< AF- Ml Tyl [+ 12T - ] - [yl
= (1A Tl + 112l Tgel]) - Tl

[T(H)F =" {y € Hy | V2 € T(H)) : {y, 2) = 0}
=*{y € Hy|Vo € Hy : (y,Tx) =0}
=% {y € Hy |Vx € Hy : (T*y,z) = 0}
= {y e Hy | T"y =0}
=" N(T).

1. By definition of orthogonal complement.
2. By definition of T'(H1).
3. By definition of T™.
4. By Lemma 3.8-2 and the trivial fact that (0,z) =0 for all x € H;.
5. By definition of N (T™)

3. Note that y,, L (1,—1,0,0,0,...) for all n > 1. Hence by Theorem
3.6-2(a), M = {y1,s, ...} is not total in %



(b). Let & = (&,) € £ be an arbitrary vector which is orthogonal to
M = {x1,2,...}. Then

&) Lo =6 -& =0
(6n) Lz =&+ & — & =0;
(&) Laos=&6+&6&E+E6—-6=0,

(gn i T; = (Z 571) - £j+1 = 07
etc. It follows that
S =&
§3 =& + & = 2&;
§a=8 + &+ 8§ =44
=G+ +86+86 =285

We get by induction: &, = 2"72¢, for n > 2. Hence if & # 0 then

DLl = &l +Zz2<“
n=1

This is impossible since (£,) € (2. Hence & = 0, and thus &, =
272¢, = 0 for all n > 2. Hence there does not exist any nonzero
vector x € (2 which is orthogonal to every element in M. By Theorem
3.6-2(b), this proves that M is total in 2.

4. Note that if (§;) € ¢* then Zj‘;lgj is absolutely convergent, and
hence all series > 7= &; (n=1,2,3,...) are also absolutely convergent.

Hence also 3252, &| < 0%, 1651 < 252, 1651 = 1)1, so that T(&;))
is indeed a well-defined element in ¢*°.
T is linear, for if (£,), (n,) € £* and «, 3 € K then

T((&n) + B(mn)) = (vn),

where
Up = Z(Oéfj + Bn;) = OKZ@‘ +6Z77j7
j=n j=n j=n
and thus

T(a(&n) +B80m)) = (va) = aT((&n)) + BT ((11m))-
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(The manipulations are permitted since all sums involved are absolutely
convergent. )
T is bounded since

Zgj < SUPZKJ‘ = Z|§]‘ = [|(&)I|

>1 =
for all (§,) € ¢'. This also proves ||T]| < 1. Let e; = (1,0,0,0,...)
(vector in ¢! or in £*°). Then T'(e;) = ey, and ||e;|| = 1 both in ¢! and
in ¢>°. Hence ||T|| = 1.

T (&) = sup

5. Let T : {* — ¢! be the bounded linear operator given by

T((&1,82, &3, ) = (1ér, axéa, asés, ...,

We claim that (75,) is strongly operator convergent to T'. Let z = (&)
be an arbitrary vector in . Then

Tz — Ta|| = H (@ = €1)ér, (nz = 02)6, (a3 — as)és, )|

= Z ‘O‘nm - |§m‘

Let € > 0. Then since (§,,) € ¢! there is some M such that 7>\ &0 <
1%. Furthermore, for each m there is some N,, > 1 such that |a, ., —
| < m for all n > N,,, since lim,, o @y m = vy, Hence, for
all n > max(Ny, N2, ..., Nyy) we have:

||Tx—TxH—Z\anm—am|-\£m|+ Y lanm — aml - [l
6 o0
—;10M(1+|gm|> €m] m;ﬂ €m]

This proves that (7,) is strongly operator convergent to 7.
We now give an example to show that (7},) is not necessarily uni-
formly operator convergent to T". Let

1 ifn<m
Oy om = .
’ 0 ifn>m.

Then o, = lim,,_.oc v, = 0 for all m > 1. Hence T' = 0 above. Hence
if (77,) is uniformly operator convergent then the limit must be 7' = 0,
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since (7},) is strongly operator convergent with limit 7= 0. We would
then have ||T,, — 0|| — 0. However,

Tn((gm)) - (07 07 ceey 07 Sna Sn—i-l? €n+27 )a

and in particular, for e, = (0, ...,0,1,0,...) (the “1” in the nth position),
T.(en) = e,, and thus

[T (en)ll

[leal|

This shows that ||7},|| — 0 does not hold! Hence (7},) is not uniformly
operator convergent in this case.

Tl = =1L

6. Let Uv = {(&,) € X | Vn > N : &, = 0}. Then by definition,
X = UX_,Uy. Hence it suffices to prove that each Uy is rare in X.
But Ul is finite dimensional, hence Uy is closed in X (Theorem 2.4-3).
Hence it only remains to prove that Uy has no interior points. Let
x = (&,) € Uy and r > 0. Then the vector

v e (517527 "‘7£N7T/270;O,07 ) eX

has distance r/2 from (&,) (since &, = 0 for all n > N), and thus
v € B(z,r). We also have v ¢ Uy. Hence B(x,r) ¢ Uy. This is true
for every x € Uy and every r > 0. Hence Uy has no interior points.

7. Let A\ = % Note that

Th((&n)) = (=A&1, 61— A&, o — Ay, ) = (561,61 — 382,86 — 565, ...
Hence if (n,) = Th((&,)) for (&,) € £>° then

(51 = —27]1
§o = —2my — 4y
§3 = —2n3 — 41y — 8y

gn - = Z?:l 2j7]n+1—j

L

This proves that Ty is injective, i.e. Ty ' exists. It follows from the
above computation that

() D(T)\_1> - {(nn) SR ) (&) € £ for &, = — Z 2j7]n+1—j} :



(In fact we have
D(T)\_l) = {(Un) SN ‘ (gn) € (> for fn = - Zann-i-l—j} )
j=1

for if (n,) € ¢>° and &, = — Z?:l 2/n,+1—; then one checks T)((&,)) =
(n,), and hence if (&,) € €% then (n,) € D(Ty"'). However, we only
need (*) for our discussion.)

We prove that D(T ') is not dense in £ by proving e; = (1,0,0,...) ¢
D(Ty'). Assume to the contrary that e; = (1,0,0,..) € D(Ty").
Then there is some (na) € D(T} ") such that [[(n,) — e1|| < . Define
& = —Z?zl 291,114 then since (n,) € D(Ty') we have (&,) € (>,
by (*) above. But [ — 1] < 15 and |n,| < 15 for all n > 1 and hence,
for each n > 2,

n n—1
‘§n| = ‘_ Z 2j77n+1—j = 2”771 + Zann+1_j
J=1 j=1
n—1 n—1
> 2| = Y Pl > 2" (01— %) = D2
Jj=1 j=1
=2"(1—55) =15+ (2" —2) > 2"(1—5) >2""".

This proves that (§,) ¢ ¢, a contradiction.

Alternative (inspired by the solution of Patrik Thunstrém):
We prove that D(Ty ') is not dense in ¢* by proving (1,1,1,...) ¢
D(Ty'). Assume to the contrary that (1,1,1,..) € D(Ty"'). Then
there is some (n,) € D(Ty ") such that ||(n,) — (1,1,1,..)]| < 1, i.e.
|7, — 1] < 1 for all n. Then Re 7, > 0 for all n, and hence defining

§n =271 2Npy1-; we have

Re &, = =) 2'Re foy1-; < —2"Re 1.

j=1
Since Re n; > 0 this implies that Re &, — —oo as n — oo. It follows
that (&,) ¢ ¢, a contradiction.
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Alternative approach, also proving that D(7} ') is closed. (In-
spired by the solution of Martin Linder.)
Note that if (n,) = Tx((&,)), then for each k& > 2:

Z 27k = Z 279 (&juh-1 — 3E54n)
=0 =0

= Z 277Ej 1 — Z 27U = &,
=0 =0

(All sums above are clearly absolutely convergent, since (n,) € (>
and (&,) € (. Hence the above manipulations are permitted.) In
particular, using the above for £ = 2 it follows that

o0

(%) m=—36=—3 ZQ_jﬂj+2 = - ZQl_jﬂj-
=0

j=2

Conversely, let (n,) be any vector in ¢ satisfying (*). Then define
(&) through

§p = Z 2_j77j+k+1-
j=0
Then
16l <D 27 nganal < ()1 Y277 =21 ().
j=0 j=0

Hence (&) € €>°. We now look at T)\((&)). The first entry in Th((&x))

is
—561=—3 Z 2740 = — Z 27 =,
=0 =2

because of (*). The n:th entry in Ty((&)) is, for n > 2:

En1— 560 = Z 27 n — %Z 27 tnp1
=0 =0

o0

=Mn + Z 2_j77j+n - Z 2_(]‘Jr1)77(j+1)+n = M-

J=1 J=0
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Hence T)\((&kx)) = (nn), and thus (n,) € R(T)). We have proved that
() € £2° belongs to R(Ty) if and only if (*) holds, i.e.

D(T}) = R(T)) = {om er|m=-3" 21‘%} .

=2
But note that f((n,)) := >.°—, 27", is a bounded linear functional

n=1

f € (£°); and by the above formula,
DTS ) = {(m) € | F((n)) = 0} = N(f).

Hence D(Ty ') is closed in £ (cf. Cor. 2.7-10), and D(T} ') = N(f) #
(>, since (e.g.) f((1,0,0,0,...)) = 1 # 0. Hence D(T} ") is not dense

in ¢°°.



