Functional Analysis (2006)

Homework assignment 1

All students should solve the following problems:

1. (Part of Problem 6, §1.4.) Let (x,) and (y,) be Cauchy sequences in
a metric space (X, d), and let a,, = d(x,, y,). Show that the sequence
(a,) converges.

2. Let a < b and let C|a, b] be the metric space of real valued continuous
functions from [a, b] to R, with metric d(x,y) = maxc(qy |2(t) —y(1)|
(as in §1.1-7 in the book). Let

D = {z € Cla,b] | z is increasing}.
(We say that = € Cla,b] is increasing if and only if xz(t,) = z(ts)
holds for all ¢; < t5 in [a,b].) Prove that D is closed but not open.

3. Let X be the vector space of all sequences of complex numbers with
only finitely many nonzero terms. Consider the following two norms

|| -1l and [| - ||z on X:
NED =D 1&g HE =
j=1
Prove that || - ||y and || - ||2 are not equivalent.

4. Let B(0;1) = {z € /* | ||z|| £ 1} be the closed unit ball in ¢, and
let M be the subset

M ={(&) € B(0;1) | |&] £ 5" forall j =1,2,3,...}.

Prove that M is not compact.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5. Let X be a normed space and let r be any number r» > 1. Assume
that it is possible to cover the open ball B(0;r) by a finite number of
translates of the open unit ball B(0;1). (By a translate of a subset
M C X we mean any set of the form v+ M :={v+w | w e M} for

some v € X.) Prove that X is finite dimensional.
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6. Let t; =0, t5 = 1 and let t3,14,... be any pairwise distinct points in
the open interval (0,1) such that the set {¢,ts, 3,14, ...} is dense in
[0,1]. Let z; € C]0,1] be the constant function z;(t) = 1, and for
J 2 2 let z; € C[0, 1] be the piecewise linear function which satisfies
,Ij(tl) = (L’j(lfg) = ... = xj(tj—l) =0 and Sl,’j(tj) =1 (and is linear at
all points ¢ ¢ {t1,1s,...,t;}). Prove that 1, z,,z3,... is a Schauder
basis for C|0, 1]!

Solutions should be handed in by Friday, February 10. (Either
give the solutions to me directly or put them in my mailbox, third
floor, House 3, Polacksbacken.)



Functional Analysis F3/F4/NVP

Solutions to homework assignment 1

1. We first prove that (a,) is a Cauchy sequence on the real line (with
respect to its usual metric “|x — y|”). Let € > 0 be given. Then since
(z,) is Cauchy there is some integer Ny such that d(z,,,z,) < § for all
m,n > Nj. Also, since (y,) is Cauchy there is some integer Ny such
that d(ym,yn) < § for all m,n > N,. Let N = max(Ny, Ny).
Now let m,n be any integers with m,n > N. Then both m,n > N;
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and m,n > N, and hence d(zp,, z,) < § and d(Ym,yn) < 5. Hence by

the generalized triangle inequality, see p.4(1):

A yn) Z (i, 70) + Ay o) + G Y) < 5 + Ay ) + 5 = A, ) + 2

and also
ATy Ym) = d(Tm, Tn) + d( @, Yn) + d(Yns Ym) < % + d(2p, yn) + % = d(xn, Yn) + €.
In other words we have proved
ap < @y +¢ and a,, <a,+ec.
Together these two inequalities imply —e < a,, — a,, < €, i.e.
la, —an| < e.

In conclusion, we have proved that for all m,n > N we have |a,, — a,,| < €.

The above argument works for any € > 0; hence for any € > 0 there
exists an integer N such that m,n > N implies |a, — a,,| < €. Hence
(a,) is a Cauchy sequence of real numbers! Hence by Theorem 1.4-4,
the sequence (a,) is convergent, Q.E.D.

2. We first prove that D is closed, i.e. (by def 1.3-2) that D¢ is open.
Let x € D. Then x is not increasing, i.e. there exist some numbers
t1 < ty (with t1,t2 € [a,b]) such that x(t;) > z(t2). Let r = M
(Of course, r > 0.) We then claim that D contains the ball B(x;r),
i.e. B(z;r) C DY To prove this, let y be an arbitrary element in
B(xz;r). Then d(x,y) < r, and in particular |z(t;) — y(t1)| < r and
|z(ta) —y(t2)| < r. It follows that y(t;) > x(t1)—r and y(t2) < z(ta)+7.
But by our definition of r we have x(t;) = x(t2) + 3r. Using all these
facts we obtain:

y(t1) > x(ty) —r = x(ta) + 2r > z(ta) + 1 > y(ta).
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But remember here t; < t; hence y is not an increasing function.
Hence y € DC. This is true for every y € B(z;r); hence we have
proved B(x;r) C DY But z € DY was arbitrary; hence for every
x € D there is some r > 0 such that B(x;r) C D¢. This proves that
D€ is open. Hence D is closed, Q.E.D.

Next we prove that D is not open. Let us choose x as the constant
function x(t) = 0 for all ¢t € [a,b]. Clearly x is an increasing continuous
function, i.e. x € D. Let r > 0 be arbitrary and consider the ball
B(x; 7). Clearly there is a continuous function y € B(z;r) which is not
increasing, for example we may take y(t) = % - 2=%. (This is the linear
function with y(a) = %, y(b) = 0.) Hence, we have found a function
y € B(z;r) with y ¢ D. It follows that B(x;r) is not contained in D.
The above argument works for each r > 0, hence D does not contain

any ball about the point © € D. Hence D is not open, Q.E.D.

3. Assume that || -||; and ||-||2 are equivalent (this will be shown to
lead to a contradiction). Then there are some numbers a,b > 0 such
that al|z||; < ||x|]2 < b|x||; for all z € X.

We then let n be any integer which is greater than a=2, and let
x € X be the sequence whose first n entries equal n~! and all the other
entries equal 0. In other words, z = (§1,&2,&3,- -+ ) where & =n~! for
j=1,2,--- . nand & =0 for all 7 > n. We now compute:

and

[|z]]2 =

Hence since we are assuming a||z||; < ||z|]z it follows that a < n~z,
i.e. n < a2 This contradicts our original choice of n, where we took
n so that n > a™2.

Hence we have seen that the assumption that || - ||y and || - ||o are
equivalent leads to a contradiction. Hence || - ||; and || - ||2 are not
equivalent.
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Remark: However, the other inequality, ||z||o < b||z|]; is actually
true, with constant b = 1! Proof: For every z = (§;) € X we have

o 2 o
(&)l = <Z\£j|) = 1&1 =1
j=1 J=1
4. For each n = 1,2,3,--- we define z, as the sequence z, =

(27, 27" .-+ /27"0,0,---), where the entries 27" start at position 1
and end at position 2”. In other words:
7070707"');
1 )
71717070707'”)7
] _a%7%7%7%7%7%7070707“');
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The ¢ norm of z, is ||z,|| = 2" - 27" = 1, hence z,, € B(0;1). We also
see that x,, € M, for if we write x,, = (5](-”)) then we have for all j < 2™:
€W =127 =2 < 51 and for all j > 2 |¢/”] =0 < j~'. Hence
(21, 9,3, ) is a sequence of points in M.

However, the distance between any two points in the sequence (x1, z3, 3, - )
is 2 1. [Proof: For any 1 £ n < m we have

2n 2m [e%)
|tn =zl =) 27" =27+ > j0=2""+ > [0-0]
j=1 j=2n41 j=2m41

=2"2T" =27 4 (2" =227 4+ 0
=1-2"" 12" =2(1=-2"") 22 (1-21)=1,
since 2" < 2 because n < m.]
Since any two points in the sequence (x1,xs,z3, -+ ) have distance
2 1, it follows that no subsequence of (z1,x2,z3,---) can be Cauchy;
hence our sequence does not contain any convergent subsequence! Hence

we have seen that there is a sequence in M which does not have any
convergent subsequence; this means that M s not compact.

5. Assume that B(0;r) is covered by the translates
vy + B(0;1), va + B(0;1), --- ,v, + B(0; 1),

for some vectors vy, -+, v, € X. Let Y = Span{wy,--- ,v,}. Note that
Y is a closed subset of X, by Theorem 2.4-3 on p. 74.



Let us assume that Y is a proper subset of X, ie. Y # X. Let
0 and r; be any numbers with 1 < 67! < r; < r. Then by Riesz’
Lemma (2.5-4 on p. 78), applied with Z = X | there is a vector x € X
with [|z]] = 1 and ||z — y|| = @ for all y € Y. Multiplying by

we then obtain ||mz|| = r1 < r, i.e. riz € B(0;7). We also obtain
[riz—ryy|| = 7160 > 1forally € Y. In particular, takingy = r; 'v; € Y
we see that ||rz — v;|| > 1 for each j = 1,2,---,n. This means that

rx ¢ v;+B(0;1), for each j = 1,2,--- ,n. Hence the sets v; + B(0; 1),
v + B(0;1), -+ ,v, + B(0;1) do not cover B(0;r), a contradiction to
our assumption above.

Hence the assumption Y # X must be false; thus ¥ = X! In
other words, X = Span{vy,---,v,}, and this proves that X is finite
dimensional, dim X < n.

6. Let y € C]0, 1] and assume that there are numbers aq, ag,--- € R
such that

lly — (1xq + -+ - + apxy)|| — 0 as n — 0Q.

Fix some j € {1,2,---}. Note that z;(t;) = 1 and z4(t;) = 0 for
all & > j, hence for all n = j we have (a1 + -+ + apx,)(t;) =
aj 4+ 32171 apar(t;). Now by the definition of the norm || - || in C[0, 1],
|y — (a121 + - - + axy)|| — O implies that

Jim Jy(t) = (@ - anan) (1)) = 0,

ie. lim, o ’y(tj) — <ozj + Zi;ll akxk(tj)>‘ = 0. Since the expression

here does not depend on n, this implies a; = y(t;) — S21_1 cr(t)).
This is true for each j =1,2,---,i.e.:

(a1 =y(h);
az = y(t2) — arz1(t2);
) ag = y(ts) — arry(ts) — apwa(ts);
Oéj = y(t]) — Oéll'l(tj) — OéQI‘Q(tj) — s — Oéj—lxj—l(tj);

This proves that for any y € C[0,1] there is at most one choice of
scalars g, ag, - - - € R such that lim,, . ||y — (121 + - - -+ a,z,)|| = 0.

We now prove that the choice of scalars in (*) above really works,
i.e. that if we choose aj,as,--- € R as in (*) then we indeed have
lim, oo ||y — (121 + - - - + apx,)|| = 0.
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Fix any n 2 3, and let S,, = aqyxy + -+ + apz,, € C[0,1]. Then
Sp(t1)) =a1-14+0+---+0=0ay =y(t;) and S, (t2) = ayx1(t2) + s +
0+---+0=uy(tz), and for all 3 < k < n:

k—1
Sy (t Za]x] (ty) +a - 140+---+0
7j=1
k=1
= a;x(ty) + <y(tk) — a1 (tg) — aaxa(ty) — - — O‘k—lxk—l(tk)> = y(tx).
=1

In conclusion, we have S,(t;x) = y(tx) for all £ € {1,2,--- n}. Fur-
thermore, since each function xy, s, -+, z, is linear at all points ¢ ¢
{t1, -+ ,tn}, so is the function S,(t). Hence: S,(t) is in fact the
piecewise linear function which satisfies S,(tx) = y(tx) for all k €
{1,2,---,n} and which is linear at all points t & {t1,--- ,t,}.

From this, we can now prove that lim,,_, ||y —S,|| = 0: Since y(t) is
continuous and [0, 1] is compact, y(t) is actually uniformly continuous
over [0,1]. Hence, given £ > 0 there is some integer M € Z* such that
for all ¢,¢' € [0,1] with |t —¢| < M~" we have |y(t) — y(¢')| < e. Since
the set {t1,ta, -} is dense in [0, 1] there is some number N € Z* such
that each of the intervals

contains some point in {t1, s, ..., tx5 }.

Let n be any number n 2 N. Then for any ¢ € [0, 1], if we let ¢; be
the point in {t1, s, ...,t,} which lies closest below t, and let ¢; be the
point in {1, %, ...,t,} which lies closest above t, we have t; < t < 1,

and |t — t;] < M~'. [Proof: ¢ belongs to some interval [3‘}\/[, o,
a€{0,1,---,3M — 1} and we know that both [¢t}, ¢2] and [471, 5%]
contain some points from {t1,--- ,¢,} (exceptional cases: If a = 0 use
t; = 0. If a = 3M — 1, use t, = 1.); hence we certainly have $37 < t

and t, < S thus 0 Sty — t; < < M™1]

It follows that |y(t) — y(t;)] e and |y(t) — y(tx)] < e. Now
Sn(tj) = y(t;) and S, (tx) = y(tk) and the function S, is linear in the
interval [t],tk] since by construction there are no other points from
{tl,tg, ,tn} in [t],tk] Thus:

T Age D

te —t t—t,
b S.(t) + J
th—t; th—t;

Su(t) = Sp(tr).
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Hence:
5.(0) = WO = | £ (Su(t) ~ y(0) + {1 (Su) - y<t>>'
- ::;@uﬂ—y®%+;:%@uw_y@4
<tk—t‘ t—t; .

Sttt
The above argument works for any ¢ € [0,1]. Hence |S,(t) —y(t)| = ¢
for any ¢ € [0, 1]. Hence ||S,, — y|| < €. This is true for any n = N.
We have proved that for any € > 0 there is some N € Z* such that
1S, — y|| < e for all n 2 N. Hence lim, . ||y — S,|| = 0. In other

words: lim,, . ||y — (121 + -+ + anx,)|| = 0.
Hence we have proved that for every y € C|0, 1] there is a unique
choice of scalars aq, as, - - - € R such that

lim |ly — (121 4+ -+ - + apx,)|| = 0.

n—oo

This proves that xq,xs, 3, - - is a Schauder basis for C[0, 1].



