
Functional Analysis (2006)

Homework assignment 3

All students should solve the following problems:

1. (§4.8: Problem 4.) Show that if the sequence (xn) in a normed space
X is weakly convergent to x0 ∈ X, then lim infn→∞ ||xn|| = ||x0||.
(Hint: You may find Theorem 4.3-3 useful.)

2. Let T1, T2, T3, · · · be the following bounded linear operators `1 → `∞:

T1((ξ1, ξ2, ξ3, · · · )) = (ξ1, ξ1, ξ1, ξ1, ξ1, · · · );

T2((ξ1, ξ2, ξ3, · · · )) = (ξ1, ξ2, ξ2, ξ2, ξ2, · · · );

T3((ξ1, ξ2, ξ3, · · · )) = (ξ1, ξ2, ξ3, ξ3, ξ3, · · · );

etc.

Prove that the sequence (Tn) is strongly operator convergent. Also
prove that (Tn) is not uniformly operator convergent.

3. Define T : `1 → `1 by

T ((ξ1, ξ2, ξ3, ...)) = (ξ2, ξ3, ...).

Determine the four sets ρ(T ), σp(T ), σc(T ), σr(T ).

4. Let T : H → H be a compact and self-adjoint operator on a Hilbert
space H. We say that T is positive if 〈Tx, x〉 = 0 holds for every
x ∈ H. Prove that T is positive if and only if each eigenvalue λ of T
satisfies λ = 0.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5. Let S and T be bounded self-adjoint operators on a Hilbert space
H. Let E = (Eλ) be the spectral family associated with T and
let F = (Fµ) be the spectral family associated with S. Prove that
TS = ST holds if and only if EλFµ = FµEλ for all λ, µ ∈ R.
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6. Let T be a (possibly unbounded) symmetric operator on a Hilbert
space H. Prove that the following three statements are equivalent:
(a) T is self-adjoint.
(b) T is closed and N (T ∗ − i) = N (T ∗ + i) = {0}.
(c) R(T − i) = R(T + i) = H.

[Hints. (Partial score is given for proof of any fact mentioned in
the following hints.) To prove (b)⇒(c) one may first prove that
N (T ∗ − i) = {0} implies R(T − i)⊥ = {0} so that R(T − i) is
dense in H. To prove R(T − i) = H it then suffices to prove that
R(T − i) is closed; to do this it may be useful to note ||(T + i)w||2 =
||Tw||2 + ||w||2, ∀w ∈ D(T ) (proof?), and use the fact ((b)) that T
is closed.
To prove (c)⇒(a) one may first prove that R(T − i) = H implies
N (T ∗ + i) = {0}. One then uses this (plus other observations!) to
prove D(T ∗) ⊂ D(T ), which implies (a).]

Solutions to problems 1-4 should be handed in by Monday,
March 13. Solutions to problems 5-6 should be handed in by
Tuesday, April 18. (Either give the solutions to me directly or put
them in my mailbox, third floor, House 3, Polacksbacken.)
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Functional Analysis

Solutions to homework assignment 3

1. If x0 = 0 then ||x0|| = 0 and the statement is obviously true. Now
assume x0 6= 0. Then by Theorem 4.3-3 there is some f ∈ X ′ such
that ||f || = 1 and f(x0) = ||x0||. Since (xn) is weakly convergent to
x0 we have limn→∞ f(xn) = f(x0) = ||x0||. But f(xn) 5 |f(xn)| 5

||f || · ||xn|| = ||xn||. Hence lim infn→∞ ||xn|| = limn→∞ f(xn) = ||x0||,
Q.E.D.

2. Let T : `1 → `∞ be the bounded linear operator given by

T ((ξ1, ξ2, ξ3, · · · )) = (ξ1, ξ2, ξ3, · · · ).

(T is obviously linear, and it is bounded with norm ||T || 5 1, for if
(ξj) ∈ `1 then

∑

∞

k=1 |ξk| = ||(ξj)||`1 < ∞ and hence |ξk| 5 ||(ξj)||`1
for all k; hence ||(ξj)||`∞ 5 ||(ξj)||`1.) We claim that (Tn) is strongly
operator convergent to T .

Let x = (ξj) be an arbitrary vector in `1. Then

||Tnx − Tx||`∞ =
∥

∥

∥
(0, 0, · · · , 0, ξn − ξn+1, ξn − ξn+2, ξn − ξn+3, · · · )

∥

∥

∥

`∞

= sup
j=1

|ξn − ξn+j|.

But since x = (ξj) ∈ `1 the sum
∑

∞

k=1 |ξk| is convergent. In particular
the individual terms tend to 0, i.e. limk→∞ |ξk| = 0. Hence, given any
ε > 0 there is some K ∈ Z+ such that |ξk| 5 ε for all k = K. Then if
n = K we have for all j = 1: n+ j = K, hence |ξn| 5 ε and |ξn+j| 5 ε,
and thus

|ξn − ξn+j| 5 |ξn| + |ξn+j| 5 ε + ε = 2ε.

This is true for all j = 1. Hence

||Tnx − Tx||`∞ = sup
j=1

|ξn − ξn+j| 5 2ε.

This is true for all n = K. Also, we have shown above that such a K
can be found for any given ε > 0. Hence:

lim
n→∞

||Tnx − Tx||`∞ = 0. (That is, Tnx → Tx in `∞.)

This is true for every vector x ∈ `1. Hence (Tn) is strongly operator

convergent to T .
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It follows from this that if (Tn) would be uniformly operator con-
vergent, then the limit must be equal to T ! Hence to prove that (Tn)
is not uniformly operator convergent, it suffices to prove that (Tn) is
not uniformly operator convergent to T . Now note that Tn − T is the
following operator:

(Tn − T )((ξ1, ξ2, ξ3, · · · )) = (0, 0, · · · , 0, ξn − ξn+1, ξn − ξn+2, ξn − ξn+3, · · · ).

In particular if x = (0, 0, · · · , 0, 1, 0, 0, 0, · · · ) (with the “1” in the nth
position) then

(Tn − T )(x) = (0, 0, · · · , 0, 1, 1, 1, · · · ).

Here ||x||`1 = 1 and ||(0, 0, · · · , 0, 1, 1, 1, · · · )||`∞ = 1. Hence
||Tn − T || = 1. This is true for all n, and hence we do not have
limn→∞ ||Tn − T || = 0. Hence (Tn) is not uniformly operator conver-
gent to T , and hence, by our remarks above, (Tn) is not uniformly

operator convergent.

3. Solution: Note that ||T || = 1, and hence by Theorem 7.3-4 the
spectrum σ(T ) is contained in the disk given by |λ| 5 1. In other
words we now know that every λ ∈ C with |λ| > 1 belongs to the
resolvent set, λ ∈ ρ(T ). Hence it only remains to analyze arbitary
λ ∈ C with |λ| 5 1.

It is easy to determine the point spectrum σp(T ): Suppose that λ ∈ C

is an eigenvalue of T ; then Tx = λx for some vector x = (ξj) ∈ `1, thus

(ξ2, ξ3, ξ4, · · · ) = λ(ξ1, ξ2, ξ3, · · · ).

This implies ξ2 = λξ1, ξ3 = λξ2 = λ2ξ1, etc, thus ξn = λn−1ξ1 for all
n = 2, 3, · · · , i.e.

x = ξ1(1, λ, λ2, λ3, · · · ).

But if |λ| = 1 then (1, λ, λ2, λ3, · · · ) /∈ `1, hence the above equa-
tion forces ξ1 = 0 and x = 0. Hence no λ with |λ| = 1 belongs to
σp(T ). On the other hand, if |λ| < 1 then (1, λ, λ2, λ3, · · · ) /∈ `1, since
∑

∞

j=1 |λ
j| < ∞, and this vector (1, λ, λ2, λ3, · · · ) is an eigenvector of T

with eigenvalue λ. Hence

σp(T ) = {λ ∈ C : |λ| < 1}.

It now remains to analyze the case |λ| = 1. Let us fix an arbitrary
λ ∈ C with |λ| = 1. We then know that T−1

λ exists, since λ /∈ σp(T ).
Note that

Tλ((ξn)) = (ξ2 − λξ1, ξ3 − λξ2, ξ4 − λξ3, ...).
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Hence if (ηn) = Tλ((ξn)) for some (ξn) ∈ `1, (ηn) ∈ `1 then

(∗)







































ξ2 = η1 + λξ1

ξ3 = η2 + λη1 + λ2ξ1

ξ4 = η3 + λη2 + λ2η1 + λ3ξ1

...

ξn =
∑n−1

j=1 λn−1−jηj + λn−1ξ1

...

Here it follows from (ξn) ∈ `1 that limn→∞ ξn = 0, hence also limn→∞ λ1−nξn =
0 (since |λ| = 1). Using the above equations this gives:

lim
n→∞

(

n−1
∑

j=1

λ−jηj + ξ1

)

= 0,

i.e.

ξ1 = − lim
n→∞

n−1
∑

j=1

λ−jηj = −
∞
∑

j=1

λ−jηj.

(Note that this sum is absolutely convergent, since
∑

∞

j=1 |λ
−jηj| =

∑

∞

j=1 |ηj| < ∞.) Using this together with (*) we now see, for each

n = 2:

ξn =

n−1
∑

j=1

λn−1−jηj + λn−1

(

−
∞
∑

j=1

λ−jηj

)

=

n−1
∑

j=1

λn−1−jηj −
∞
∑

j=1

λn−1−jηj

= −
∞
∑

j=n

λn−1−jηj.

(Clearly this is also true for n = 1.) Conversely, let us note that if
(ξn) ∈ `1, (ηn) ∈ `1 and ξn = −

∑

∞

j=n λn−1−jηj holds for all n = 1, then
(ηn) = Tλ((ξn)). [Proof: Under the stated assumptions, the nth entry
in Tλ((ξn)) is: ξn+1 − λξn = −

∑

∞

j=n+1 λn−jηj + λ
∑

∞

j=n λn−1−jηj =

−
∑

∞

j=n+1 λn−jηj +
∑

∞

j=n λn−jηj = ηn.]

Let M be the set of those (ηn) ∈ `1 which have only finitely many
nonzero entries. We then have M ⊂ D(T−1

λ ). Proof: If (ηn) ∈ M then
there is some N ∈ Z+ such that ηn = 0 for all n = N , and then if we
define ξn by ξn = −

∑

∞

j=n λn−1−jηj, we get ξn = 0 for all n = N . Hence

(ξn) ∈ `1, and by assumption (ηn) ∈ M ⊂ `1; hence Tλ((ξn)) = (ηn)
and (ηn) ∈ D(T−1

λ ). This is true for all (ηn) ∈ M , hence we have proved
the claim, M ⊂ D(T−1

λ ).
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But M is dense in `1! (Proof: Given x = (ξj) ∈ `1 we may define the
sequence v1, v2, v3, · · · ∈ M by vn = (ξ1, ξ2, · · · , ξn, 0, 0, 0 · · · ). Then
||vn − x|| =

∑

∞

j=n+1 |ξj| → 0 as n → ∞. Hence x is a limit point of M .

This is true for all x ∈ `1. Hence M = `1, as claimed.) From the facts
M ⊂ D(T−1

λ ) and M dense in `1 it follows that D(T−1
λ ) is dense in `1.

We can now complete the solution using only general principles: We
have seen above that the spectrum σ(T ) contains the set σp(T ) = {λ ∈
C : |λ| < 1}, i.e. the open unit disk. But we know from Theorem 7.3-4
that σ(T ) is compact ; hence σ(T ) must also contain every boundary
point of the unit disk, i.e. every λ with |λ| = 1 belongs to σ(T ). We
have also seen that for these λ we have λ /∈ σp(T ) and λ /∈ σr(T )
(since T−1

λ exists and D(T−1
λ ) is dense in `1). Hence the only remaining

possibility is λ ∈ σc(T ).
Answer: ρ(T ) = {λ ∈ C : |λ| > 1}, σp(T ) = {λ ∈ C : |λ| < 1},

σc(T ) = {λ ∈ C : |λ| = 1}, σr(T ) = ∅.

Alternative proof that every λ with |λ| = 1 belongs to σc(T ).
Fix an arbitrary λ ∈ C with |λ| = 1. We have proved that T−1

λ

exists and that D(T−1
λ ) is dense in `1. Hence it remains to prove

that T−1
λ is unbounded. To do this we let vn = (nλ0, (n − 1)λ1, (n −

2)λ2, · · · , 1 · λn−1, 0, 0, 0, · · · ) ∈ `1, for each n = 1. We then compute
wn = Tλ(vn) = (−λ1,−λ2,−λ3, · · · ,−λn, 0, 0, 0, · · · ). Here ||vn|| =
∑n

j=1 |n + 1 − j||λj−1| =
∑n

j=1(n + 1 − j) =
∑n−1

k=0 k = n(n−1)
2

, and

||wn|| =
∑n

j=1 | − λj| =
∑n

j=1 1 = n. But vn = T−1
λ (wn); hence if

T−1
λ were bounded then we would have ||vn|| 5 ||T−1

λ || · ||wn||, i.e.
n(n−1)

2
5 ||T−1

λ || · n, i.e. ||T−1
λ || = n−1

2
. This would be true for every

n ∈ Z+. This is a contradiction, since no real number can be larger
than n−1

2
for all n ∈ Z

+. Hence T−1
λ is unbounded, Q.E.D.

4. Since T is self-adjoint we know that each eigenvalue λ is real. Sup-
pose there is some negative eigenvalue; Tv = λv with λ < 0, v 6= 0.
Then 〈Tv, v〉 = 〈λv, v〉 = λ||v||2 < 0, i.e. T is not positive.

Conversely, assume that all eigenvalues of T are = 0. Let {λn}
N
n=1

be the nonzero eigenvalues of T , and {en}N
n=1 the corresponding or-

thonormal sequence of eigenvectors, as in Theorem 1 in the text about
compact self-adjoint operators. (Here N ∈ Z+ or N = ∞.) Then
our assumption says that λn > 0 for all n. We will prove that T
is positive. Let x ∈ H be an arbitrary vector. We may then write

x =
(

∑N
n=1 αnen

)

+ z for some αn ∈ C with
∑N

n=1 |αn|2 < ∞ and
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z ∈ N (T ). Now

〈Tx, x〉 = 〈
N
∑

n=1

λnαnen,

N
∑

n=1

αnen + z〉 =

N
∑

n=1

λn|αn|
2 = 0,

since all λn = 0. Hence we have proved 〈Tx, x〉 = 0 for all x ∈ H.
Hence T is positive.

Alternative proof using Theorems from §9.2 in the book.
(Mainly of interest for students taking the 6p course.)

We will use the following fact, which we prove below: If T is an
arbitrary compact self-adjoint operator T with spectral decomposition
as in Theorem 1 in the text about compact self-adjoint operators, then
we have

(∗) σ(T ) = E where E =

{

{λn}N
n=1 if N (T ) = {0}

{0} ∪ {λn}N
n=1 if N (T ) 6= {0}.

(The splitting in two cases is rather natural, for note that N (T ) 6= {0}
holds if and only if 0 is an eigenvalue of T .)

Using (*), we may now solve the given problem using Theorem 9.2-1
and Theorem 9.2-3 in the book. First, if T is positive then m = 0 in
Theorem 9.2-1, and hence that theorem implies that σ(T ) ⊂ [0,∞),
and in particular σp(T ) ⊂ [0,∞), i.e. each eigenvalue of T is = 0.
Conversely, if T is not positive then m < 0 in Theorem 9.2-1, and
Theorem 9.2-3 says that m ∈ σ(T ). Then by (*) there exists some λn

which is < 0, i.e. T has a negative eigenvalue.
Finally, we give a proof of (*) (see Theorem 8.4-4 in the book for an

alternative proof in a more general case): Note that each λ ∈ E is an
eigenvalue of T , i.e. E ⊂ σp(T ). Hence E ⊂ σ(T ), and since σ(T ) is a
closed set (Theorem 7.3-4) it follows that E ⊂ σ(T ).

Conversely, let µ be any complex number which does not belong to
E. Then there is some r > 0 such that |µ − λ| > r for all λ ∈ E.
Recall from the text about compact self-adjoint operators that every

vector v ∈ H can be uniquely written v =
(

∑N
n=1 αnen

)

+ z, where

αn ∈ C,
∑N

n=1 |αn|2 < ∞ and z ∈ N (T ). We now define a linear
operator A : H → H by defining [we here assume N (T ) 6= {0}, and
thus in particular |µ| > r]:

A(v) = A

((

N
∑

n=1

αnen

)

+ z

)

:=

(

N
∑

n=1

(λn − µ)−1αnen

)

− µ−1z.
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This is in fact a bounded linear operator on H, since

||A(v)||2 =

(

N
∑

n=1

|λn − µ|−2|αn|
2

)

+ |µ|−2||z||2

5 r−2

((

N
∑

n=1

|αn|
2

)

+ ||z||2

)

= r−2||v||2.

(Thus ||A|| 5 r−2.) We compute that for all v ∈ H represented as
above we have

ATµ(v) = A

((

N
∑

n=1

(λn − µ)αnen

)

− µz

)

=

(

N
∑

n=1

αnen

)

+ z = v

and

TµA(v) = Tµ

((

N
∑

n=1

(λn − µ)−1αnen

)

− µ−1z

)

=

(

N
∑

n=1

αnen

)

+ z = v.

Hence ATµ = TµA = I, the identity operator, and thus A = T−1
µ .

Hence T−1
µ exists and is defined on all H, and is bounded. This proves

µ ∈ ρ(T ), i.e. µ /∈ σ(T ). [In the case N (T ) = {0} the proof is simply
modified by removing the z-term in all sums above.] This is true for
all µ /∈ E. Hence σ(T ) ⊂ E, and in total we have proved σ(T ) = E,
i.e. (*)!

5. First assume TS = ST . Then by Lemma 9.8-2 (carrying over
Lemma 9.8-1(b)) we have EλS = SEλ for all λ ∈ R. Fixing any
λ ∈ R and again applying Lemma 9.8-2 (carrying over Lemma 9.8-
1(b)), but this time applied to the operator S in place of T , we obtain
EλFµ = FµEλ for all µ ∈ R.

Conversely, assume that EλFµ = FµEλ holds for all λ, µ ∈ R. We
know that T =

∫

∞

−∞
λ dEλ and S =

∫

∞

−∞
µ dFµ, and in fact there is

a number A > 0 such that T =
∫ A

−A
λ dEλ and S =

∫ A

−A
µ dFµ (for

example we may take A = 1 + max(||T ||, ||S||)). This means that T
is obtained as the uniform limit of a sequence of operator sums of the
form (for a given partition −A = t0 < t1 < · · · < tn = A)

T ′ =
n
∑

j=1

tj(Etj − Etj−1
),
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and similarly for S. Hence, given ε > 0 there exists a partition −A =
t0 < t1 < · · · < tn = A such that if

T ′ =
n
∑

j=1

tj(Etj − Etj−1
)

and S ′ =

n
∑

j=1

tj(Ftj − Ftj−1
),

then

||T ′ − T || < ε and ||S ′ − S|| < ε.

The point now is that it follows from our assumption EλFµ = FµEλ,
∀λ, µ ∈ R, that T ′S ′ = S ′T ′! Proof:

T ′S ′ =

(

n
∑

j=1

tj(Etj − Etj−1
)

)(

n
∑

k=1

tk(Ftk − Ftk−1
)

)

=
n
∑

j=1

n
∑

k=1

tj(Etj − Etj−1
)tk(Ftk − Ftk−1

)

=

n
∑

j=1

n
∑

k=1

tk(Ftk − Ftk−1
)tj(Etj − Etj−1

)

=

(

n
∑

k=1

tk(Ftk − Ftk−1
)

)(

n
∑

j=1

tj(Etj − Etj−1
)

)

= S ′T ′.

We also have

||TS − T ′S ′|| 5 ||T (S − S ′)|| + ||(T − T ′)S ′||

5 ||T || · ||S − S ′|| + ||T − T ′|| · ||S ′||

< ||T ||ε + ||S ′||ε 5 ||T ||ε + (||S|| + ||S ′ − S||)ε

< ||T ||ε + ||S||ε + ε2,

and similarly

||S ′T ′ − ST || < ||T ||ε + ||S||ε + ε2.

Hence

||TS − ST || = ||TS − T ′S ′ + S ′T ′ − ST ||

5 ||TS − T ′S ′|| + ||S ′T ′ − ST ||

< 2
(

||T ||ε + ||S||ε + ε2
)

.
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But here ε > 0 is arbitrary, and by taking ε small we can make the
right hand side arbitrarily small. Hence ||TS−ST || = 0, i.e. TS = ST ,
Q.E.D.

6.
(a) =⇒ (b). Assume (a), i.e. that T is self-adjoint. Then T ∗ = T
and T is closed (Theorem 10.3-3). Assume v ∈ N (T ∗ − i). Then
v ∈ D(T ∗) = D(T ) and (T ∗ − i)v = 0, hence (T − i)v = 0, hence
Tv = iv, and this implies:

i〈v, v〉 = 〈iv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 = 〈v, Tv〉 = 〈v, iv〉 = −i〈v, v〉.

Hence 〈v, v〉 = 0, i.e. v = 0. This prove that N (T ∗ − i) = {0}.
Similarly one proves N (T ∗ + i) = {0}. Hence (b) holds.

(b) =⇒ (c). Assume (b), i.e. that T is closed and N (T ∗ − i) =
N (T ∗ + i) = {0}. We first prove R(T + i)⊥ = {0}: Let v be an
arbitrary vector in R(T +i)⊥. Then 〈w, v〉 = 0 for all w ∈ R(T +i), i.e.
〈(T + i)x, v〉 = 0 for all x ∈ D(T ). Hence 〈Tx, v〉 = −〈ix, v〉 = 〈x, iv〉
for all x ∈ D(T ). This implies that v ∈ D(T ∗) and T ∗v = iv, i.e.
(T ∗ − i)v = 0, i.e. v ∈ N (T ∗ − i). By our assumption (b), this implies
v = 0. Hence we have proved R(T + i)⊥ = {0}.

We next prove that R(T + i) is closed in H: Let v1, v2, v3, · · · be an
arbitrary sequence of points in R(T +i) such that v = limn→∞ vn exists
in H. We have to prove v ∈ R(T + i). By definition there are vectors
w1, w2, w3, · · · ∈ D(T ) such that vn = (T + i)wn. Since T is symmetric
we have for every w ∈ D(T ):

||(T + i)w||2 = 〈(T + i)w, (T + i)w〉 = ||Tw||2 + i〈w, Tw〉 − i〈Tw, w〉+ ||iw||2

= ||Tw||2 + i
(

〈T ∗w, w〉 − 〈Tw, w〉
)

+ ||w||2 = ||Tw||2 + ||w||2.

In particular

||vn − vm||
2 = ||(T + i)(wn − wm)||2 = ||T (wn − wm)||2 + ||wn − wm||

2.

Now (vn) is a Cauchy sequence, i.e. ||vn − vm|| → 0 as n, m → ∞,
and the above equality shows ||wn − wm||

2 5 ||vn − vm||
2; hence also

||wn−wm|| → 0 as n, m → ∞, i.e. (wn) is a Cauchy sequence. Since H
is complete it follows that w = limn→∞ wn ∈ H exists. Similarly, the
above equality also shows that u = limn→∞ Twn ∈ H exists. Since T
is closed (by assumption (b)) it follows that w ∈ D(T ) and Tw = u,
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and thus

(T + i)w = u + iw =
(

lim
n→∞

Twn

)

+
(

lim
n→∞

iwn

)

= lim
n→∞

(Twn + iwn)

= lim
n→∞

(T + i)wn = lim
n→∞

vn = v

Hence v ∈ R(T + i). This proves that R(T + i) is closed in H.
Since R(T+i) is both dense and closed in H it follows that R(T+i) =

H. Similarly one proves R(T − i) = H. Hence (c) holds.
(c) =⇒ (a). Assume (c), i.e. that R(T − i) = R(T + i) = H. Let

us first prove N (T ∗ + i) = {0}: Assume v ∈ N (T ∗ + i), i.e. v ∈ D(T ∗)
and (T ∗ + i)v = 0. Then for all w ∈ D(T ) we have

0 = 〈(T ∗ + i)v, w〉 = 〈T ∗v, w〉+ i〈v, w〉 = 〈v, Tw〉 − 〈v, iw〉 = 〈v, (T − i)w〉.

But every vector in H can be expressed as (T−i)w, since R(T−i) = H
(assumption (c)). Hence v is orthogonal to all H, and hence v = 0.
This completes the proof that N (T ∗ + i) = {0}.

Now let v be an arbitrary vector in D(T ∗). Since R(T + i) = H
there exists a vector w ∈ D(T ) such that (T + i)w = (T ∗ + i)v. Now
since T is symmetric we have w ∈ D(T ∗) and T ∗w = Tw. Hence also
v − w ∈ D(T ∗), and

(T ∗ + i)(v − w) = (T ∗ + i)v − (T ∗ + i)w = 0.

Hence v−w ∈ N (T ∗+i). But we have seen above that N (T ∗+i) = {0}.
Hence v − w = 0, i.e. v = w ∈ D(T ). But v was an arbitrary vector in
D(T ∗); hence we have proved D(T ∗) ⊂ D(T ). On the other hand we
have T ⊂ T ∗ since T is symmetric. Hence we actually have T = T ∗,
i.e. T is self-adjoint. Hence (a) holds.


