Functional Analysis (2006)

Homework assignment 3

All students should solve the following problems:

1. (§4.8: Problem 4.) Show that if the sequence (x,) in a normed space

X is weakly convergent to zy € X, then liminf, .. ||z,|| = ||zo-
(Hint: You may find Theorem 4.3-3 useful.)

. Let T}, Ty, T3, - - - be the following bounded linear operators ¢! — ¢°:

Ty((61,62,83, ) = (61,61, 61,61, 60,0 );
T2((€l7€27€37 T )) = (51)527627527627 o )7
T3((61,62,83, ) = (£1,62,€3,63, 835+ );

etc.

Prove that the sequence (T,,) is strongly operator convergent. Also
prove that (7;,) is not uniformly operator convergent.

. Define T : ¢t — (' by
T((gh 527 537 )) = (527 537 )
Determine the four sets p(T'), 0,(T), 0.(T), 0.(T).

. Let T: H — H be a compact and self-adjoint operator on a Hilbert
space H. We say that T is positive if (T'z,z) = 0 holds for every
x € H. Prove that T is positive if and only if each eigenvalue A of T’
satisfies A = 0.

Students taking Functional Analysis as a 6 point course should also
solve the following problems:

5. Let S and T be bounded self-adjoint operators on a Hilbert space

H. Let & = (E)) be the spectral family associated with 7" and
let F = (F),) be the spectral family associated with S. Prove that
TS = ST holds if and only if E\F), = F,E) for all \, u € R.
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6. Let T be a (possibly unbounded) symmetric operator on a Hilbert
space H. Prove that the following three statements are equivalent:
(a) T is self-adjoint.

(b) T is closed and N (T* — i) = N(T* + i) = {0}.
(¢c) R(T —i) =R(T +1i) = H.

[Hints. (Partial score is given for proof of any fact mentioned in
the following hints.) To prove (b)=-(c) one may first prove that
N(T* — i) = {0} implies R(T — i)* = {0} so that R(T — 1) is
dense in H. To prove R(T — i) = H it then suffices to prove that
R(T —1) is closed; to do this it may be useful to note ||(T +i)w||* =
|| Tw|* + ||w]|?, Yw € D(T) (proof?), and use the fact ((b)) that T
is closed.

To prove (c)=-(a) one may first prove that R(T" — i) = H implies
N(T* 4 i) = {0}. One then uses this (plus other observations!) to
prove D(T*) C D(T), which implies (a).]

Solutions to problems 1-4 should be handed in by Monday,
March 13. Solutions to problems 5-6 should be handed in by
Tuesday, April 18. (Either give the solutions to me directly or put
them in my mailbox, third floor, House 3, Polacksbacken.)



Functional Analysis

Solutions to homework assignment 3

1. If zy = 0 then ||zo|| = 0 and the statement is obviously true. Now
assume xg # 0. Then by Theorem 4.3-3 there is some f € X' such
that ||f|| = 1 and f(zo) = ||xo||. Since (z,) is weakly convergent to
xo we have lim,, o f(z,) = f(xo) = ||zo||. But f(z,) £ |f(z,)| =
1711 llll = [[al]- Hence liminf, oo |zl = limy o £(z2) = [[20]]
Q.E.D.

2. Let T : ¢ — (> be the bounded linear operator given by
T((£17§27§37 o )) = (517 527 537 e )

(T is obviously linear, and it is bounded with norm ||T|| £ 1, for if

(&) € €' then 357, €] = [|(§)|ln < oo and hence [§x| = [[(&;)]]er
for all k; hence |[(&)]]ee = |[(&)||er.) We claim that (7),) is strongly

operator convergent to 7'.
Let 2 = (§;) be an arbitrary vector in ¢*. Then

1Tz = Talle = [|(0,0,+ 0,60 = ns1, 60 = Enras b = nsa )|

= sup |, — gn—l-j"
j21

S
S

But since z = (§;) € ¢! the sum Y ;- [&| is convergent. In particular
the individual terms tend to 0, i.e. limy . |{x| = 0. Hence, given any
e > 0 there is some K € Z* such that |{| < ¢ for all £ =2 K. Then if
n 2 K we have for all j 2 1: n+j = K, hence |§,| < € and |£,4;] S &,
and thus

|&n — §n+j‘ < &l + |§n+j‘ Se+te=2e.
This is true for all j = 1. Hence

||Tnx - Tx”éo" = Slip ‘Sn - €n+j| § 2e.
J

This is true for all n = K. Also, we have shown above that such a K
can be found for any given £ > 0. Hence:

lim ||T,x — Tx||pe = 0. (That is, T,x — Tx in (*°.)

This is true for every vector z € ¢'. Hence (T,,) is strongly operator
convergent to T.



It follows from this that if (7;,) would be uniformly operator con-
vergent, then the limit must be equal to 7! Hence to prove that (7},)
is not uniformly operator convergent, it suffices to prove that (7,) is
not uniformly operator convergent to 7. Now note that T, — T is the
following operator:

(Tn - T)((§17§27§37 o )) = (0707 T 707§n - £n+17£n - §n+27§n - £n+37 to

In particular if = (0,0,---,0,1,0,0,0,---) (with the “1” in the nth
position) then

(T, = T)(z) = (0,0,---,0,1,1,1,---).

Here ||z||[px = 1 and [[(0,0,---,0,1,1,1,---)|[e= = 1. Hence
|7, — T|| =2 1. This is true for all n, and hence we do not have
lim, o ||Tn — T|| = 0. Hence (7},) is not uniformly operator conver-
gent to T, and hence, by our remarks above, (T},) is not uniformly
operator convergent.

3. Solution: Note that ||T'|| = 1, and hence by Theorem 7.3-4 the
spectrum o(7T') is contained in the disk given by [A| < 1. In other
words we now know that every A € C with |[A| > 1 belongs to the
resolvent set, A € p(T'). Hence it only remains to analyze arbitary
A€ C with |A] = 1.

It is easy to determine the point spectrum o,(7"): Suppose that A € C
is an eigenvalue of T’; then Tz = Az for some vector x = (£;) € ¢!, thus

(627637647 e ) = )\(517627637 o )

This implies & = A\&p, & = A& = M2, ete, thus &, = A" 71§ for all
n=23 - ic

=& (1L, NN ),
But if |[A] = 1 then (1,\, A% A3,---) & ', hence the above equa-

tion forces & = 0 and 2 = 0. Hence no A with |A| =2 1 belongs to
0,(T). On the other hand, if |A\| < 1 then (1, A\, A%, A3 ---) ¢ ¢!, since
> 721 [N < oo, and this vector (1,A, A% A%, -+ ) is an eigenvector of T

with eigenvalue A. Hence
o,(T)={AeC : |\ <1}

It now remains to analyze the case |A\| = 1. Let us fix an arbitrary
A € C with |A\| = 1. We then know that T} ' exists, since A ¢ o,(T).
Note that

Th((&n)) = (§2 — A1, 83 — Ao, &4 — A3, .0).



Hence if (1,) = T\((£,)) for some (&,) € £, (n,) € ¢! then

(52 =m + A&
&=+ A+ A%G
Ea=n3+ A+ NP+ N3G

o =D 0] AV + Al

L

Here it follows from (&,,) € ¢! that lim,, ., &, = 0, hence also lim,, ., A'7"¢, =
0 (since |[A| = 1). Using the above equations this gives:

1}13010<ZA it &) =0,

i.e.
n—1 0
&1 = _JLTEOZ)\_]W ==Y A\n.
j=1 j=1

(Note that this sum is absolutely convergent, since » %, A, =
2;11 Injl < oo.) Using this together with (*) we now see, for each
n 2= 2:

n—1 . 1 .
§n = Z )\"—l_jnj + Pt <_ Z )\_jnj> — Z )\n—l—jnj _ Z )\n—l—jnj
=1 =1 o =

j=n

(Clearly this is also true for n = 1.) Conversely, let us note that if
(&) €04, () € (1 and &, = — 3772 A" 17In; holds for all n > 1, then
(7] ) = T,\((gn)). [Proof: Under the stated assumptions, the nth entry
in T)\((gn)) gn-l—l - Afn = - Z;in-H )\”_jﬁj + )‘Z]oin )\"_l_jﬁj =
- Z]o'in-g-l )‘n_]nj + Z]oin )‘n_]nj = nn']

Let M be the set of those (n,) € ¢! which have only finitely many
nonzero entries. We then have M C D(Ty '). Proof: If (n,) € M then
there is some N € Z* such that 7, = 0 for all n = N, and then if we
define &, by §, = — 372 A" In;, we get §, = 0 for alln = N. Hence
(&,) € £', and by assumption (n,) € M C ¢*; hence T)\((&,)) = (n,)
and (n,) € D(Ty"). This is true for all (1,) € M, hence we have proved
the claim, M C D(Ty ).



But M is dense in £!! (Proof: Given x = (£;) € ¢* we may define the
sequence vy, vg,vs3,- -+ € M by v, = (&1,&, -+ ,&,,0,0,0--+). Then
o, — || = 3272, 41 [§5] — 0 as n — co. Hence x is a limit point of M.
This is true for all x € ¢*. Hence M = (!, as claimed.) From the facts
M C D(Ty') and M dense in ¢! it follows that D(T} ') is dense in /.

We can now complete the solution using only general principles: We
have seen above that the spectrum o(7") contains the set 0,(7') = {\ €
C : |\ < 1}, i.e. the open unit disk. But we know from Theorem 7.3-4
that o(7T) is compact; hence o(T) must also contain every boundary
point of the unit disk, i.e. every A with |A\] = 1 belongs to o(7"). We
have also seen that for these A we have A ¢ 0,(T) and A\ ¢ o,(T)
(since Ty ! exists and D(T ') is dense in ¢'). Hence the only remaining
possibility is A € o.(T).

Answer: p(T) ={ e C : [N > 1}, 0,(T) ={A € C : |A] < 1},
o.(T)={ e C : |\ =1}, 0.(T) = 0.

Alternative proof that every \ with |A\| = 1 belongs to o.(T).
Fix an arbitrary A € C with |\| = 1. We have proved that T} '
exists and that D(Ty ') is dense in ¢*. Hence it remains to prove
that 7} ' is unbounded. To do this we let v, = (A%, (n — )AL, (n —
2N - 1271 0,0,0,---) € ¢4, for each n = 1. We then compute

wy, = Ta(v,) = (AL =A%, =23 ... —=X"0,0,0,---). Here ||v,|| =
Z;L:1 n+1— I[N = Z;L:I(n +1-j) = Z;ék = n(n2—1)’ and
wnl| = 35| =N =371 =n Butw, = Ty ' (w,); hence if
Ty' were bounded then we would have |[v,|| < ||TY] - |Jwall, ie.

ne ) < )TY| -y deee [|T0Y] 2 252 This would be true for every
n € Z*. This is a contradiction, since no real number can be larger
than 2L for all n € Z*. Hence T} ' is unbounded, Q.E.D.

4. Since T is self-adjoint we know that each eigenvalue A is real. Sup-
pose there is some negative eigenvalue; Tv = Av with A < 0, v # 0.
Then (Tv,v) = (A, v) = A||[v||*> <0, i.e. T is not positive.

Conversely, assume that all eigenvalues of T are = 0. Let {\,}_,
be the nonzero eigenvalues of T', and {e,}"_, the corresponding or-
thonormal sequence of eigenvectors, as in Theorem 1 in the text about
compact self-adjoint operators. (Here N € Z* or N = 00.) Then
our assumption says that A\, > 0 for all n. We will prove that T
is positive. Let x € H be an arbitrary vector. We may then write

r = <ZnN=1 anen> + z for some «, € C with Zivzl |, |? < oo and



z € N(T). Now

N N N
(Tz,z) = (Z A, Zanen +2z) = Z Anlan|? 20,
n=1 n=1 n=1

since all A, 2 0. Hence we have proved (T'z,z) = 0 for all z € H.
Hence T' is positive.

Alternative proof using Theorems from §9.2 in the book.
(Mainly of interest for students taking the 6p course.)

We will use the following fact, which we prove below: If T is an
arbitrary compact self-adjoint operator 1" with spectral decomposition
as in Theorem 1 in the text about compact self-adjoint operators, then
we have

{0 u{rdny HEN(T) # {0}

(The splitting in two cases is rather natural, for note that N (T") # {0}
holds if and only if 0 is an eigenvalue of T'.)

Using (*), we may now solve the given problem using Theorem 9.2-1
and Theorem 9.2-3 in the book. First, if T is positive then m = 0 in
Theorem 9.2-1, and hence that theorem implies that o(7") C [0, c0),
and in particular o,(T") C [0,00), i.e. each eigenvalue of 7" is = 0.
Conversely, if T' is not positive then m < 0 in Theorem 9.2-1, and
Theorem 9.2-3 says that m € o(T'). Then by (*) there exists some A,
which is < 0, i.e. T has a negative eigenvalue.

Finally, we give a proof of (*) (see Theorem 8.4-4 in the book for an
alternative proof in a more general case): Note that each A € E is an
eigenvalue of T', i.e. E C 0,(T). Hence E C o(T), and since o(T) is a
closed set (Theorem 7.3-4) it follows that £ C o(T).

Conversely, let © be any complex number which does not belong to
E. Then there is some r > 0 such that [g — A > r for all A\ € E.
Recall from the text about compact self-adjoint operators that every

(*) o(T)=E where E = {{)\”}gzl it M(T) = {0}

vector v € H can be uniquely written v = (Zivzl anen> + 2z, where

a, € C, 3N Ja,? < 0o and z € N(T). We now define a linear
operator A : H — H by defining [we here assume N (T') # {0}, and
thus in particular |p| > 7]:

Alv)=A ((Z oznen) + z) = (Z(An — ,u)_loznen> —u e

n=1
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This is in fact a bounded linear operator on H, since

1A@W)II* = (ZIA —# 2lan\2>+\u| “II211*

s <<Z Ian\2> + HZ||2) = r~2[[v] %
n=1

(Thus ||A]] £ r72.) We compute that for all v € H represented as
above we have

ar, ((Z ) _,M) - (Z ) t2m

and

T,A(v) =T, ((Z(An — ,u)_loznen> — ,u_1z> = (Z oznen> +z=w.

n=1

Hence AT, = T,A = I, the identity operator, and thus A = T,
Hence T, ! exists and is defined on all H, and is bounded. This proves
€ p(T), ie. pé o(T). [In the case N(T') = {0} the proof is simply
modified by removing the z-term in all sums above.] This is true for
all p ¢ E. Hence o(T) C E, and in total we have proved o(T) = E,
ie. (%)

5. First assume T'S = ST. Then by Lemma 9.8-2 (carrying over
Lemma 9.8-1(b)) we have E,S = SE, for all A € R. Fixing any
A € R and again applying Lemma 9.8-2 (carrying over Lemma 9.8-
1(b)), but this time applied to the operator S in place of T, we obtain
E\F, = F,E), for all p € R.

Conversely, assume that F\F, = F,Ey holds for all A\,u € R. We
know that 7" = [ AdE, and S = [7_pdF,, and in fact there is

a number A > 0 such that T = ffA)\dEA and S = ffAudFu (for
example we may take A = 1+ max(||T|[,[|S]|)). This means that T’
is obtained as the uniform limit of a sequence of operator sums of the
form (for a given partition —A =ty <t; <---<t, = A)

T = th(Etj - Etj—l)?
j=1
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and similarly for S. Hence, given ¢ > 0 there exists a partition —A =
to <ty <---<t, =Asuch that if

T = th(Etj - Etj—l)
j=1

and S, = Zt](th — th71)7
j=1

then
|T'—T|| <e and ||S'—=5]| <e.

The point now is that it follows from our assumption E\F, = F,E},
VA, 1 € R, that T'S" = S'T'! Proof:

T's" = <zn: tj(Et]- - Etj—l)) (Zn: tk(ﬂk - Ftk—1)>

= Z Z tj(Etj - Etj—l)tk(Ftk - Ek—l)

j=1 k=1

= Z Ztk(Ftk - Ftkfl)tj(Etj - Etjfl)

j=1 k=1

= (i ti(Fy, — Ft“)> <zn: ti(Ey, — Etj1)> =S'T.

We also have
TS =TSl = [|T(S = )|+ (T = T")5"|
S TS =S+ 1T =T 157
<|T(le + [19lle = [ITlle + (I[SII + 15" = Sl)e
<|ITlle +[Slle +€?,
and similarly
1S'T" — ST|| < ||T||e + ||S||e + €°.
Hence
|| TS —ST|| =||TS—T'S"+ S"T" — ST||
S| TS —=T'S'|| 4+ ||S'T" — ST
<2(|T|le + [|S|le + €%).
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But here € > 0 is arbitrary, and by taking £ small we can make the
right hand side arbitrarily small. Hence ||T'S—ST|| =0, i.e. T'S = ST,
Q.E.D.

6.
(a) = (b). Assume (a), i.e. that 7' is self-adjoint. Then T* = T
and T is closed (Theorem 10.3-3). Assume v € N(T* —i). Then
v € D(T*) = D(T) and (T* —i)v = 0, hence (T — i)v = 0, hence
Tv =iv, and this implies:

i(v,v) = (iv,v) = (Tv,v) = (v, T*v) = (v, Tv) = (v,iv) = —i(v,v).

Hence (v,v) = 0, i.e. v = 0. This prove that N(T* — i) = {0}.
Similarly one proves N (T* + i) = {0}. Hence (b) holds.

(b) = (c). Assume (b), i.e. that T is closed and N (T* — i) =
N(T* +1i) = {0}. We first prove R(T + i)t = {0}: Let v be an
arbitrary vector in R(T+i)*. Then (w,v) = 0 for all w € R(T +1i), i.e.
(T4 i)z,v) =0 for all z € D(T). Hence (T'z,v) = —(iz,v) = (x,iv)
for all z € D(T). This implies that v € D(T*) and T*v = iv, i.e.
(T* —i)v =0, i.e. v € N(T* —i). By our assumption (b), this implies
v = 0. Hence we have proved R(T + i)+ = {0}.

We next prove that R(T +1) is closed in H: Let vy, v, v3,- - be an
arbitrary sequence of points in R(7"+1i) such that v = lim,, ., v, exists
in H. We have to prove v € R(T + 7). By definition there are vectors
wy, Wy, w3, - - - € D(T') such that v, = (T" + i)w,. Since T is symmetric
we have for every w € D(T):

T+ Dyl = (T + iy, (T + iyw) = [|[Twl|? + i(w, Tw) — i{Tw, w) + |iw] [
= || Twll? + i (T w,w) — (Tw,w)) + fl* = [Tl + |Juw]

In particular
[lvn = vl = (T + ) (wy — wi)|1* = ||T(wn — wia)[]” + [, — wn|[*.

Now (v,) is a Cauchy sequence, i.e. ||v, — vy|| — 0 as n,m — oo,
and the above equality shows ||w,, — wp||* £ ||v, — V|| hence also
||wy, — w,|| — 0 as n,m — oo, i.e. (w,) is a Cauchy sequence. Since H
is complete it follows that w = lim,, .., w, € H exists. Similarly, the
above equality also shows that u = lim,, .., Tw, € H exists. Since T
is closed (by assumption (b)) it follows that w € D(T) and Tw = u,
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and thus
(T+iw=u+iw= ( lim Twn> + ( lim iwn> = lim (Tw,, + iw,,)

= lim (T + i)w, = lim v, =v

Hence v € R(T + i). This proves that R(T + i) is closed in H.

Since R(T+1) is both dense and closed in H it follows that R(T+i) =
H. Similarly one proves R(T" — i) = H. Hence (c) holds.

(c) = (a). Assume (c), i.e. that R(T —i) = R(T' +1i) = H. Let
us first prove N (T* + i) = {0}: Assume v € N(T* +1), i.e. v € D(T*)
and (T + 7)v = 0. Then for all w € D(T') we have

0= {(T"+1i)v,w) = (T"v,w) + i(v,w) = (v,Tw) — (v,iw) = (v, (T —i)w).

But every vector in H can be expressed as (T'—i)w, since R(T'—i) = H
(assumption (c)). Hence v is orthogonal to all H, and hence v = 0.
This completes the proof that N(T* + i) = {0}.

Now let v be an arbitrary vector in D(T™). Since R(T + i) = H
there exists a vector w € D(T') such that (T' + ¢)w = (T* + i)v. Now
since T' is symmetric we have w € D(T*) and T*w = Tw. Hence also
v—w € D(T*), and

(T*+i)(v—w)=(T"+i)v— (T" +i)w = 0.
Hence v—w € N (T*+i). But we have seen above that N (T*+i) = {0}.
Hence v —w =0, i.e. v =w € D(T"). But v was an arbitrary vector in
D(T™); hence we have proved D(T*) C D(T). On the other hand we

have T' C T™ since T' is symmetric. Hence we actually have T" = T,
i.e. T is self-adjoint. Hence (a) holds.



