End of lecture 5 April 2006

These are the things I had planned to say today but didn’t get time
to. [I include some more proofs here than I had planned to do in my
lecture.] Please don’t hesitate to email me if you have any questions
on this material!

The following two facts are the last things I wrote on the board; they
contain the definition 10.3-4 (p.537) in the book, and give some extra
information.

Fact 1. Given T : D(T) — H, there exists a closed linear extension
of T if and only if G(T') is the graph of an operator (i.e., if and only if
VeeH:f{ye H|(x,y) €G(I)} =1).

Fact/def 2. If T': D(T) — H has some closed linear extension,
then there exists a unique minimal® closed linear extension of T'; this
operator is called T : D(T) — H, the closuse of T. Furthermore in

this situation we have G(T) = G(T).

Proof of fact 1. Assume that T has a closed linear extension T7.
Thus T" C 11 and T is closed. It follows that G(T) C G(71) and

that G(77) is closed. Hence G(T') C G(T). But by definition we have
G(Th) = {(z,Thz) | © € D(T1)}, and hence from G(T) C G(T}) it

follows that

Gg(T)={(z,Thz) | z € M}
for some subset M C D(T7). Note that G(T') is a linear subspace of

H x H; thus also G(T) is a linear subspace of H x H (by exercise 6
on p. 70). Hence M must be a linear subspace of D(T1), and (T7)a is

a linear operator with graph G((7T1)m) = {(z,Thx) | x € M} = G(T).

Hence G(T) is the graph of an operator!

Conversely, suppose that G(T') is the graph of an operator, i.e. m =
G(T3) for some operator Ty : D(Ty) — H. Then T3 is closed, since
G(Ty) = G(T) is closed by definition. [Note that T5 is automatically a
linear operator, since G(T») is a linear subset of H x H.] Also T' C T5,
since G(T') C G(T) = G(T3z). Hence T, is a closed linear extension of

T, i.e. T has a closed linear extension.
O

Proof of fact 2. Assume that 7" has some closed linear extension.
Then by our fact 1 above, G(T) is the graph of an operator Ty (we

IThe precise meaning of “T is a minimal closed linear extension of T” is the
following: T'is a closed linear extension of 7', and for every closed linear extension
T, of T we have T C Tj.
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use the same name as above), and as in the last paragraph of the
above proof of fact 1, we see that T5 is actually linear and closed, and
T C T,. We claim that T3 is a minimal closed linear extension of T,
i.e. that T3 is the closure of T'! Indeed, assume that 77 is any closed
linear extension of 7. Then G(T") C G(T1), and since G(17) is closed it
follows that G(T') C G(T1), i.e. G(Ty) C G(T1). This implies Ty, C T7,
and the minimality of T5 is proved!

To prove the uniqueness of the closure, let us assume that 73 is also
a minimal closed linear extension of 7. Then since Ty, C T3 (by the
minimality of T3) and T3 C T, (by the minimality of 73), and this
clearly implies T3 = T5.

Finally, note that the last claim in our fact/def 2, G(T) =
is already contained in our construction, for we constructed T a;
operator T' = Ty with graph G(Ty) = G(T).

O

g(T),
as the

Theorem 10.3-5. Assume that 7": D(T') — H is symmetric (and
thus densely defined). Then the closure T exists.

The proof of this theorem in the book is very detailed, and well worth
studying! We here give an alternative, much shorter proof, using our
Fact 1 and Fact 2 from above!

[Actually, our argument is the same thing as on p.538(a) in the book,
but using a language involving the graph G(7') much more explicitly.]

Proof of Theorem 10.3-5. By our Fact 2 it suffices to prove that
T has some closed linear extension, and by Fact 1 this will follow if we
can show that

(x) VoeeH:${yeH|(z,y) eG(T)} =1

To prove this, let us assume that we have (z,y) € G(T) and (z,7) €
G(T) for some x,y,y € H. We then wish to prove y = g.

Since (z,y) € G(T) there is a sequence (z1, 1), (T2,Y2), (3,93), . .. of
vectors in G(T) with (x,,y,) — (z,y) in H x H. Note that (z,,y,) €
G(T) implies z, € D(T), y, = Tx,, and (z,,y,) — (z,y) implies
(using the definition of the norm in H x H) that x,, — x (in H) and
Tz, =y, — y (in H) as n — oo. Similarly, since (z,7) € G(T)
there is a sequence (Z1,91), (T2, J2), (T3, 73), - . . of vectors in G(T') with
(Zn, ) — (2,7) in H x H, and this implies &, € D(T), §, = T,
T, —x (in H) and T%, = ¢, — ¢ (in H) as n — oo.




Now for every v € D(T') we have
<U> Yy — Zj> = <’U, r}l—{rolo(yn - gn)) - nh_)r{.lo<vv Yn — gn) = lim <U> T(xn - i'n)) =

Use that T' is symmetric and v € D(T)

= lim (Tv,z, — &) = (T, lim (z, — Z,)) = (Tv,z — ) = 0.

Hence y — j € D(T)- = D(T) = H* = {0}, i.e. y — § = 0, Q.E.D.

Fact 3. If T': D(T) — H is a densely defined operator which has a
closed linear extension (so that T exists), then (T)* = T*. 2

Remark: This Fact 3 is a stronger statement than Theorem 10.3-6 in
the book, which says that if 7" is a symmetric operator, then (7')* = T™.
(This follows from Fact 3 for if T" is symmetric then T exists by Theorem

10.3-5 above.)

Proof of Fact 3. Since T C T we have (T)* C T*, by Theorem
10.2-1.
Conversely, take any = € D(T*); we wish to prove that 2 € D((T)*)

and (T)*z = T*z. Note that x € D(T™*) implies, by the definition of
D(T*), that

Vo e D(T) : (Tv,z) = (v, T"x).

Now take an arbitrary w € D(T). Then (w,Tw) € G(T) = G(T)
and thus there is a sequence (wq, u1), (we, uz), (ws, uz), ... in G(T) with
(Wn, Up) — (w, Tw) in H x H. Hence w, € D(T), u,, = Twy, w, — w
in H and Tw,, = u,, — Tw in H. Hence

(Tw,r) = (lim Tw,,z) = lim (Tw,,r) = use x € D(T™)
= lim (w,, T*z) = (lim w,, T"z) = (w, T"x).

We have thus proved that
(Tw,z) = (w, T*z)

holds for every w € D(T), and this means that « € D((T)*) and

(T)*x = T*z. Since this holds for every x € D(T™) we have proved
that 7" C (T)*. Since we have also noted (7')* C T*, it follows that
(T)* = T*, Q.E.D.

O

2Note that (T)* certainly exists, for T is densely defined since T is densely
defined.



As I said in class, a very important and often difficult problem is to
prove that a given symmetric operator 7T is in fact self-adjoint. The
reason is that it is only for self-adjoint operators that we have access
to really good theorems about spectral decomposition (cf. Chapter 9
and also Theorem 10.6-3).

More generally, given a symmetric operator 7T, one often wants to
prove that T has some self-adjoint extension. One of the most im-
portant lessons which we learn from our results above (i.e., the results
of §10.3 in the book) is that when we study this question, we can al-
ways start by replacing 7" with the closed operator T, for we have the
following:

Fact 4. If T is a symmetric operator then T is also symmetric, and
T and T have ezxactly the same self-adjoint extensions!

Proof. Note that T exists by Theorem 10.3-5, and (T)* = T* by
Fact 3 (or Theorem 10.3-6). Since T' is symmetric we have T C T,
i.e. T C (T)*. But (T)* is closed by Theorem 10.3-3, hence T C (T)*.
This means that T is symmetric!

Next, to see that 7" and T have exactly the same self-adjoint exten-
sions, suppose that 77 is a self-adjoint extension of 7'. Then T is closed
(by Theorem 10.3-3), hence T C T, i.e. T} is also an extension of T.

O



