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2.2. It follows from the formula φ(n) = n
∏

p|n

(

1 − 1
p

)

that φ(n) is a multiplicative

function. Hence also the function f(n) = φ(n)n−s is multiplicative for any fixed s. Next
note that if σ > 2 then the series

∑∞
n=1 f(n) is absolutely convergent, since

∞
∑

n=1

|f(n)| =

∞
∑

n=1

φ(n)n−σ ≤

∞
∑

n=1

n1−σ < ∞.(1)

Hence Proposition 2.7 applies when σ > 2 and we get
∞
∑

n=1

φ(n)n−s =
∏

p

(

1 + φ(p)p−s + φ(p2)p−2s + . . .
)

=
∏

p

(

1 +

∞
∑

k=1

(

1−
1

p

)

pk · p−ks
)

=
∏

p

(

1 +
(

1−
1

p

)

∞
∑

k=1

pk(1−s)
)

=
∏

p

(

1 +
p− 1

p
·

p1−s

1− p1−s

)

=
∏

p

p(1− p1−s) + (p− 1)p1−s

p(1− p1−s)

=
∏

p

1− p−s

1− p1−s

=
ζ(s− 1)

ζ(s)
.
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3.4 (final part of a solution).
I discussed this problem in class, but only gave a first part of a solution. I noted that we

may assume that N(r) < ∞ for all r > 0 (since otherwise τ = A = ∞ and the problem is
solved). I proved that under this assumption, the following equivalence relation holds for
every α > 0:

∞
∑

j=1

(1 + |ρj |)
−α < ∞ ⇔

[

lim sup
r→∞

N(r)

(1 + r)α
< ∞ and

∫ ∞

0

N(r)

(1 + r)α+1
dr < ∞

]

.(2)

Now the solution can be completed as follows:

(a). For every α > A we can argue as follows: Choose a number A1 in the interval
A < A1 < α. Then by the definition of A (and the definition of “lim sup”), we have
logN(r)

log r
< A1 for all sufficiently large r. Equivalently: N(r) < rA1 for all sufficiently large

r. In precise terms, this means that there exists some R0 > 0 such that

∀r ≥ R0 : N(r) < rA1.

It follows that for all r ≥ R0 we have
N(r)

(1 + r)α
<

rA1

(1 + r)α
< rA1−α, and since A1 − α < 0

this implies that lim
r→∞

N(r)

(1 + r)α
= 0, and in particular lim sup

r→∞

N(r)

(1 + r)α
< ∞. It also follows

that
∫ ∞

0

N(r)

(1 + r)α+1
dr ≤

∫ R0

0

RA1

0

(1 + r)α
dr+

∫ ∞

R0

rA1

(1 + r)α+1
dr

≤

∫ R0

0

RA1

0 dr +

∫ ∞

R0

rA1−α−1 dr < ∞,

where we used the fact that A1 − α− 1 < −1. Hence, using the equivalence in (2) (in the

“⇐” direction), we conclude that
∞
∑

j=1

(1 + |ρj|)
−α < ∞. By the definition of τ , this implies

τ ≤ α.
To sum up, we have prove that [∀α > A : τ ≤ α]. This implies that τ ≤ A. �

(b). For every α > 0 such that

∞
∑

j=1

(1 + |ρj|)
−α < ∞, we have by (2): lim sup

r→∞

N(r)

(1 + r)α
< ∞,

and this implies that there exist constants C > 0 and R0 > 0 such that for all r ≥ R0 we

have
N(r)

(1 + r)α
< C, i.e., N(r) < C(1 + r)α. This implies that for all r ≥ R0 we have

logN(r)

log r
≤

log(C(1 + r)α)

log r
.
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Hence

A = lim sup
r→∞

logN(r)

log r
≤ lim sup

r→∞

log(C(1 + r)α)

log r
= lim sup

r→∞

logC + α log(1 + r)

log r
= α.

To sum up, we have proved that for every α > 0 satisfying
∞
∑

j=1

(1 + |ρj|)
−α < ∞, we have

A ≤ α. In view of the definition of τ , this implies that A ≤ τ . �
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3.5. Set A(x) =
∑

1≤n≤x an; then the assumption says that A(x) ∼ x2 as x → ∞, and
hence for any given ε > 0 there is some X > 1 such that

∣

∣A(x)− x2
∣

∣ < εx2, ∀x ≥ X.(3)

Now for each N ∈ Z
+ we have

N
∑

n=1

an(N − n)2 =

∫ N

0

(N − x)2 dA(x) = 0 + 2

∫ N

0

(N − x)A(x) dx

If A(x) ≡ x2 then the last expression equals

2

∫ N

0

(N − x)x2 dx = 2
[N

3
x3 −

1

4
x4
]x=N

x=0
=

1

6
N4.

Hence for our general A(x) =
∑

1≤n≤x an we have, for each integer N > X :

∣

∣

∣

N
∑

n=1

an(N − n)2 −
1

6
N4

∣

∣

∣
=

∣

∣

∣
2

∫ N

1

(N − x)A(x) dx− 2

∫ N

0

(N − x)x2 dx
∣

∣

∣

≤ 2

∫ N

0

(N − x)
∣

∣A(x)− x2
∣

∣ dx

≤ 2

∫ X

0

N
∣

∣A(x)− x2
∣

∣ dx+ 2

∫ N

X

(N − x)εx2 dx

≤ 2N

∫ X

0

∣

∣A(x)− x2
∣

∣ dx+ 2ε

∫ N

X

N3 dx

≤ 2N

∫ X

0

∣

∣A(x)− x2
∣

∣ dx+ 2εN4.

Here the number
∫ X

0

∣

∣A(x) − x2
∣

∣ dx is independent of N ; hence for all sufficiently large N

the above is < 3εN4, i.e. we have proved that for all sufficiently large N we have

∣

∣

∣

N
∑

n=1

an(N − n)2 −
1

6
N4

∣

∣

∣
< 3εN4,

or equivalently
∣

∣

∣

∑N

n=1 an(N − n)2

N4
−

1

6

∣

∣

∣
< 3ε.

Since ε was arbitrarily small, this implies that

lim
N→∞

∑N

n=1 an(N − n)2

N4
=

1

6
,

or equivalently:
N
∑

n=1

an(N − n)2 ∼
1

6
N4 as N → ∞.

�


