Uppsala universitet Matematiska institutionen A. Karlsson

Analytisk talteori, 1MA038 Tentamen den 8 januari 2018

Inga hjälpmendel (Just paper and pen. No calculators, books, or notes etc.)

1. Define: a) Euler's partition function p(n), b) Dirichlet convolution. And c) give the statement of the prime number theorem.

2. Formulate and prove the Euler product formula for Riemann's zeta function.

3. Prove that the Dirichlet series with the Möbius function $\mu(n)$ as coefficients equals $1/\zeta(s)$, the reciprocal of the Riemann zeta function.

4. Consider primes on the form 4k + 1 or on the form 4k + 3. In one of these cases prove that there are infinitely many primes on that form using a modification of the proof in Euclid concerning the infinitude of prime numbers.

5. Define and provide a meromorphic continuation to all of \mathbb{C} of the arithmetic function $n \mapsto n!$.

6. Let k > 1 be an integer. Let χ be any non-principal Dirichlet character (mod k). For any positive integers a < b consider

$$A(a,b) = \left| \sum_{n=a}^{b} \chi(n) \right|.$$

Let φ denote Euler's (totient) function. As a warm-up prove that $A(a,b) \leq \varphi(k)$. Could this inequality be improved to $A(a,b) \leq \frac{1}{2}\varphi(k)$? Give a proof or a counterexample.