Hints / short solution sketches to problems

2.1l (b). By Proposition 2.7]
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By Proposition 2.7,
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(a) For example one may take any real numbers ay, as, ... > 1, satis-

fying a, — 1 as n — oo, and then set uy, ; = a, —1 and uy, = a,; ' —1
forn=1,2,.... Then

H(1+un)={1 if 2N,

n=1 a(N+1)/2 if 2 T N7
and hence [[°7 (1 + u,) converges. On the other hand

2N N N (ay — 1)2
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and hence if we take, for example, a, := 1+ n~Y3 then Y °° wu,
diverges. O
(b) For example one may take any positive numbers a, as, . .. with
a, — 0 as n — oo, and set us,_1 = ia, and us, = —ia, for n =
1,2,3,.... Then
al 0 if 2| N,
D=L
— uy if 21N,

and hence the sum ) 7 w, converges. On the other hand we have
TN, (1 +u,) =TI, (1 +a2) > 32N a2, and hence if we let, e.g.,
an = n~/3 for all n, then Y a2 — +oo as N — oo, and hence

n=1""n
1Y, (1 +u,) = +o00as N — oo, i.e. [[°%,(1+u,) does not converge.
U
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[2.8. We have

g <1+ (?/%)n> = g((l—i— \/%) (1 - \/%))

_ﬁ<1+ 11 1 )
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and here (e.g. by the Mean Value Theorem) 0 < ﬁ — \/2];1 < 2(%1)3/2;

hence if we set
1 1 1

— + + :
V2k  V2k+1  \/2k(2k + 1)

then for all sufficiently large k& we have 1 > u; > k~'. Hence by

Proposition 2.6} for all sufficiently large K we have [ [~ (1 —ug) = 0.

Hence the same also holds for K = 1, i.e. [[,—,(1 —ug) = 0, and it
(="

follows that the product []°7, (1 + 7) also converges to zero.  [J

U —




3

B4l (a). Let A; be an arbitrary number > A. Then there is some
R > 0 such that 22N — A, for all r > R, hence by exponentiating:

logr
N(r) < r# for all r > R. Tt follows that
(1) N(r) < (1+7)1, Vr > 0.
Now note that for every a > 0:
@ S+l = [ aenave
j=1 -

R

= lim ((1 + R)™N(R) +a/ (1+7)" "IN () dr).
— 00 0

Using here (), it follows that » 72 (1+|p;]) ™ converges for all v > A;.

We have proved this for every a > A; and every A; > A; hence

> i1 (1+p;|)~* converges for every a > A, and thus by the definition

of 7 we have 7 < A. O

(b). Assume that o > 7. Then » 7%, (1 + |p;|)~* converges, and since
> (T4 1pi))™ > N(R) - (1+ R)~ for all R > 0, it follows that there
is a constant C' > 0 such that N(R) - (1 + R)~* < C for all R. Hence
(by taking the logarithm)
log N(R) <logC + alog(1l + R), VR >0,
and dividing by log R (assuming R > 1) and then letting R — +oo0, it
follows that
, log N(R)

3 limsup ———=
@) PP log R
i.e. A < . Since this is true for all &« > 7 we conclude that A < 7. O

<0+ a,



Set A(x) = >, Gn; then the assumption says that A(x) ~
, <n<

x® as x — 00, and hence for any given £ > 0 there is some X > 1 such
that
(4) |A(z) — 2?| < ea?, Ve > X.

NOW for each N € Z* we have
N N
Zan —n)? / (N — z)2dA(z) = 0+2/ (N — z)A(z) dx
1— 1

If A(z) = z? then the last expression equals

N N 1 ,qe=N 1 2 1
2 | (N—2)22d :2[—3——4} _IN*_ZN4 -
/1 (W —wja”de =2|=a" = q07] | =3 373

Hence for our general A(z) = >, .. a, we have, for each integer
N> X: -

‘Zan —n) —%N‘l

N ) 2 1
<2 (N—:C)}A(x)—x‘d%’#—g]\f—i-i
1

2/ (N—x)A(x)dx—2/ (N—SL’)LL’2dLL’—§N+§
1 1

1
<2/ N‘A —xz}d:c—i-Q/ N -ex? dx+3N+§

2 1
<2N/ —xz}dx—l—Q&t/ N?’dx+3N+§

1
< 2N+ (2/ A(x) _x2\dx+3)zv+—
1

2

The expression inside the last parenthesis does not depend on N, and
hence for all sufficiently large N the above is < 3sN?, i.e. we have
proved that for all sufficiently large N we have

al 1
‘Z an(N —n)* — —N*
n=1 6

Since € was arbitrarily small this implies that

< 3eN*.

1
Zan —n) N6N4 as N — oo.



[3.13L
(a). Writing z = = + iy (with z € R and y € R.(), we have

|m +nz* = (m + nz)? + (ny)*.
Now let us note that
(5) (m + nx)* + (ny)> > c- (m* +n?), Y(m,n) € R?,

where

(6) ¢=c(r,y) =

2

y
———5—— >0.
r?+y?+1

One way to prove (@) is to note that the quadratic form in the left hand side of

@), which has the matrix <glc >, has the two eigenvaluesﬂ

T
:v2+y2

1
s+ 1 V@ F 1),

and since both these eigenvalues are positive, the inequality in (B) holds with ¢
being equal to the smallest eigenvalue, viz., with

1
c:5(172—1-3;2—!—1—\/(x2+y2+1)2—4y2)

2
(") - 2 (>0).
22+ 2+ 14 /(a2 +y2 +1)2 — 42
Hence (@) is also valid for any smaller value of ¢; in particular (B) is valid for ¢ as
in (@).
A more elementary (but essentially equivalent) treatment: We wish to find some
constant ¢ > 0 such that (@) holds. viz.,

(1 —c)m? + 2zmn + (2% +y* — e)n? >0, Y(m,n) € R?.

Completing the square, this is equivalent with
(1 —c)m? + 2zmn + (2 +y* — c)n? >0, Y(m,n) € R?.
Clearly for this to hold we must have 1 — ¢ > 0. Assuming 1 — ¢ > 0, we can

complete the square to see that the above is equivalent with
2

T 2 9 9 T
(1 c)(m—l—l_cn) —i—(:v +y°—c 1

)n2 >0, V(m,n) € R?,

and this is clearly true if and only if 22 +y? —c— 1%20 > 0. Solving for ¢l we reach
again the conclusion that the above is true for ¢ as in (@), or any smaller c-value.

21Thes26 eigenvalues are real, since (22 + y? + 1)% — 4y? > (y2 +1)2 — 42 =
(y*—1)* =0.

ZEncountering again the characteristic polynomial of the matrix (i 22 _T_ y2>'



Using (B) we have
1
(m 4 nz)k
and hence in order to prove the uniform absolute convergence required
in the problem, it suffices to prove that the series
1
DY

C -

m? + n?)k

(m,n)#(0,0) ( )

is uniformly absolutely convergent for z = z+iy in any compact subset
of H. But when z = x + iy ranges over a given compact subset of H,
the number ¢ = ¢(z,y) (see (@) is bounded from below by a positive
number; hence ¢~* is bounded from above by a finite number. Hence
it now suffices to prove that the series

1
2. TEr R

(m,n)#(0,0)

< C—k X (m2 + n2)—k’

converges!
This can be done e.g. using dyadic decomposition: Let

A(R) = {(m,n) € Z*\ {(0,0)} : m* +n® < R}.

Then, A(1) = ) for R < 1, and for R > 1 we have (as a quite crude
bound):

#A(R) < #{(m,n) € Z* : |m| < VR and |n| < VR}
< (1+2VR)* < (3VR)* <9R.
Hence (using A(1) = 0, i.e. m* +n? > 1 for all (m,n) € Z*\ {(0,0)}):

Z (m2+n2k—z Z

(m,n)#(0,0) =0 (m,n)eA(29+1)\ A(27)

)2t

1
(27)*

o0
< Z9-2j+1~2—jk < o0,
§=0

where in the last step we used the assumption that k& > 2. O



(b). First note that ZZZIS € H for every z € H; indeed,

- (az + b) _1 ((az +b)(cz + d)) _ Im (adz +bcz)  (ad — bc)Im z
cz+d/) lcz + d|? ez +d)E ez +dJ?
Im 2

= — ">
lcz 4 d|?

Now we compute (using the absolute convergence proved in (a)):

az+b 1
B (cz+d) B Z )(m+nw)2k

(mvn)#(ovo cz+d

cz + d)?*
oy (cz +d)

2%
i Z00) (m(cz+d) + n(az + b))

cz + d)*
¥ (e +d)

2% "
i Zl00) ((md + nb) + (mc + na)z)

Now note that the map

(m,n) — (md + nb,me + na) = (m,n) (Cbl 2)

is a permutation of Z* \ {(0,0)}, with inverse
(m/,n') — (m/,n) (_ab ‘C) .

Hence we get

az+b\ ok

qed. O

0.



