Hints / solution sketches to problems

6.4

(a). We discussed this in class; it is a direct application of Dirichlet’s Theorem 5.9 (in
LN), taking d = —4 in that theorem. Indeed, for d = —4 we can take S; = {z* + y*}; and
we have w = 4; hence Theorem 5.9 gives that for every odd positive integer n,

—4
R(n; z* H =4 (—)
(n;z° 4+ y~) Z -
Using now also the fact that
) 0 if 2|m,
<_>: 1 if m=1 mod 4,
—1 if m=3 mod 4,
we obtain the desired formula,

R(n; 2% + y*) = 4(d1(n) — ds(n)).

b). For any positive integer n, a simple discussion gives
( y p ger n, p g
(1) R(4n; 2* +y*) = R(n; 2* +9?).

[Detailed proof: Note that for any even integer z we have 2> = 0 mod 4, and for every

odd integer x we have 2 = 1 mod 4. Hence for any integers z, v, if 22> + y> = 0 mod 4
then both = and y must be even. It follows that the map (z,y) — (x/2,y/2) maps the set

(%) {(z,y) € Z* : 2> +y* = 4n}

to a subset of Z2. Using this fact, it is easy to verify that this map (z,y) — (x/2,y/2) is
a bijection from the set in (%) onto the set

{(&' y)eZ? : 2%+ =n}.

Hence these two sets have the same cardinality, i.e. () holds.]
Next we note that for any odd positive integer u, we have

(2) R(2u; 2* + %) = R(u; 2% + ).

Proof: Note that 2u = 2 mod 4, hence if x,y € Z satisfy 2% + y? = 2u then both x and y

must be odd, and so both a = %5 and b = x;y are integers. Note also that these a, b satisfy

a’+0? = (22 + y*)/2 = u. Conversely, if a,b are any two integers satisfying a® + 0* = u
then the integers * = a + b and y = b — a satisfy 2% + y* = 2(a® + b?) = 2u. Note also

that the two maps (z,y) — (5%, 2¥) and (a,b) — (a+ b,b — a) are each others’ inverses.

Hence we have exhibited a bijection between the two sets
{z,y) €Z? : 2> +y*=2u} and {{a,b) € Z* : a* +b* = u},
and therefore (2]) holds.




By using both (2) and (Il (repeatedly), one proves that
(3) R(2Fu; 2 + 9?) = R(u; 2 + o)

for every odd positive integer u and every k € Zsq. Also, by part (a), we have R(u; 2%+y?) =
4(dy(u) — ds(u)). But note also that the set of odd positive divisors of u is equal to the set
of odd positive divisors of 2¥u. Hence:

R(2"u; 2 + ) = R(u; 2% + y*) = 4(di(u) — d3(u)) = 4(dr(2"u) — d3(2u)).

Hence we have proved the desired formula for n = 2*u. Since every positive integer n can
be expressed as 2Fu, the proof is complete. O

(.5l T have taken this problem from MNZ, [1l p. 176, Problem 6].

It follows from LN Lemma that every positive definite quadratic form [a, b, ¢| of
discriminant —23 is equivalent to some quadratic form [a, b, ¢| which satisfies |b] < |a| < |¢],
which must of course also be positive definite and have discriminant ? — 4a = —23 (since
our equivalence relation preserves positive definiteness and preserves the discriminant).
Thus let us start by determining all positive definite quadratic forms [a, b, ¢] satisfying
1b] < |a|] <|c| and b* — dac = —23.

Assume that [a, b, ¢] is such a form. Then

4a* < 4lac| = |b* + 23| < 23 +b* < 23+ a?,

and this implies 3a* < 23, viz., |a| < 2. We also have a > 0 since [a, b, c] is positive definite.
Hence a =1 or a = 2.

Case 1: a = 1. Then |b| < |a| =1, and also b* = 4ac—23 =1 mod 4; hence b = +1. Tt
follows that 4c — 23 = 4ac — 23 = b* = 1, i.e. ¢ = 6. Hence: [a,b,c] = [1,1,6] or [1,—1,6].

Case 2: a = 2. The [b] < |a| < 2; also b* = 4ac — 23 = 1 mod 4; hence b = +1. Tt
follows that 8¢ — 23 = 4ac — 23 = b* = 1, i.e. ¢ = 3. Hence: [a,b,c] = [2,1,3] or [2, -1, 3].

Hence we have proved that every positive definite quadratic form of discriminant —23
must be equivalent to one of the forms [1,1,6], [1,—1,6], [2,1,3] or [2,—1,3]. It remains
to sort out which equivalences exist between these four forms.

Recall from LN (I97) that if [a, b, ¢] and [a',V, ¢] are equivalent then there exists some

g= (: ? € SL(2,7Z) such that (among other things) aa? + bary + ¢y* = d/, viz., @’ can

be properlyt represented by [a, b, ¢|]. Thus: If [1,1, 6] and [2, 1, 3] are equivalent, then there
exist x,y € 7Z satisfying ged(z,y) = 1 and 2% + 2y + 6y> = 2. The last relation can be
rewritten as (z + 3y)* 4+ 2y* = 2, and this implies 2y? < 2; thus y = 0; hence 2? = 2,
which is impossible. This proves that [1,1,6] and [2,1, 3] are not equivalent. The same
argument also shows that [1,1,6] and [2,—1,3] are not equivalent. Next, if [2,1,3] and

Indeed, we have ged(a,v) =1, since ad — By = 1.
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2, —1, 3] are equivalent then by LN (I97), there exists g = (3 ?) € SL(2,7Z) satisfying
(1) 2 -1/2)\ _ 20 + ay + 372 (4af + By + ad + 679)/2
-1/2 3 (4af + By + ad + 679) /2 2% + B0 + 36* '

In particular we then have 2 = 20% + ay + 39* = 2(a + 17)* + £4% hence 24? < 2,
which forces v = 0, and thus also (again using 2 = 202 + ay + 37%): a = £1. Now
ad = ad — By = 1 implies that § = a = &1, and next using also 23? + 56 + 362 = 3, viz.,
2% + B = 0, we conclude that 8 = 0. But then (4af + v + ad + 675)/2 = 1/2, so that
the relation () does not hold. Hence [2,1,3] and [2, —1, 3] are not equivalent!

On the other hand, the quadratic forms [1,1, 6] and [1, —1, 6] are equivalent; indeed, the
1
0

the previous paragraph) gives

wf 1 12y (1 0\(1 1/2\ (/1 -1

9 \172 6 )97 =1 1)\1/2 6 )Jlo 1
(1 o\ [1 —1/2\ [ 1 ~-1/2
“\-1 1) \12 1172) " \e12 6 )

To sum up, we have proved that every positive definite quadratic form of discriminant
—23 must be equivalent to one of the forms [1,1, 6], [1,—1,6], [2,1,3] or [2,—1, 3], and we
have also proved that among these, [1,1,6] and [1,—1,6] are equivalent, while the three
forms [1,1,6], [2,1,3] and [2, —1, 3] are pairwise inequivalent. These facts together imply
the statement in the problem formulation. O

Alternative: Using LN Problem (or more precisely: the solution of that problem),

one immediately reaches the set of representatives [1,1,6], [2,1, 3] and [2, —1, 3], without
any need to discuss possible equivalences between these.

matrix g := _11) € SL(2,Z) (which one finds by similar computations as the one in

—23
We now turn to the second half of the problem. Thus let p be a prime satisfying <—> =
p

+1. Then we have p # 23, thus ged(p,23) = 1, and so by LN Theorem applied with
d= —23 and n = p,

- =2((2) + (2)) =1+ ().

Also, by definition of R(p; —23) and using the first part of the present problem, we have

R(p; —23) = R(p; Q1) + R(p; Q2) + R(p; Qs)
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2
Combining these two relations, we conclude that if (—3> = —1then R(p; Q1) = R(p; Q2) =
p

)
R(p; Q3) = 0, while if (—3> — 1 then
p

(5) R(p; Q1) + R(p; Q2) + R(p; Qs) = 4.
Furthermore,
Vie{1,2,3}: R(p;Qj) is even,
since Q;(z,y) = Q;(—z, —y) (Vz,y € R) and Q;(0,0) = 0 # p. We also have
R(p; @2) = R(p; @s),

since Qz(x, —y) = Qs(x,y) (Vo,y € R)E, and Qq(z,0) = 222 # p (Vz € Z). Hence there
exist a, b € Zso (which depend on p) such that R(p; Q1) = 2a and R(p; Q2) = R(p; Q3) = 20.
Using this notation, (&) implies that a + 2b = 2; and the only pairs (a,b) € (Z>()? which

3
satisfy the last relation are (2,0) and (0, 1). Hence we have proved that if (—) =1 then

p
either [R(p; Q1) = 4 and R(p; Q2) = R(p; Qs) = 0] or else [R(p; Q1) = 0 and R(p; Q2) =
R(p; Q3) = 2].

It remains to discuss the prime p = 139. Note that this p satisfies (ITQS) = —(%) =

(%) = (%) = l;ﬁ Hence by what we have just proved, we have either [R(p; Q1) = 4 and

R(p; Q2) = R(p; @Q3) = 0] or else [R(p; Q1) = 0 and R(p; Q2) = R(p; Qs) = 2]. However
by completing the square we see that the equation Qi(z,y) = 139 is equivalent with

(z+1y)?+2y* = 139, and this implies 22y? < 139, which forces |y| < 4, i.e. (using also the

symmetry Q1(—z, —y) = Q1(z,y)) one only needs to test the five cases y = 0,1,2,3,4. One
verifies that none of these cases gives rise to a solution (x,y) € Z?. Hence R(139;Q,) = 0,
and so by what we noted above, we must also have R(139;Qs) = R(139;Q3) = 2. O

2This means that Q, and Q3 are “improperly equivalent”; a concept which is not discussed in LN.

3The first equality holds since 139 = 3 mod 4 implies (%) = —1. The second equality holds by

quadratic reciprocity, using 23 = 139 = 3 mod 4. The third equality holds since 139 =1 mod 23.

4The solutions to the equations Qz(z,y) = 139 and Q3(z,y) = 139 can similarly be found by completing
the square. Indeed, Q2(x,y) = 139 is equivalent with 2(z + %y)2 + %y2 = 139, which implies %y2 <139,
and so |y| < 6, i.e. we need only test the cases y € {0,1,2,3,4,5,6}, and going through these, we find the
single solution (z,y) = (8,1). Hence the set of solutions to Q2 (z,y) = 139 is {(8,1), (-8, —1)}, and the set

of solutions to Qs(z,y) = 139 is {(—8,1),(8,—1)}.



5.6l We will need the following strengthening of LN Lemma [8.13}

Lemma 1. For all (real) X > 1,
1 -1
Y S =log X +v+0(X).
1<nex "t
Proof. Set f(X) :=Y",,<x +—log X; then our task is to prove that f(X) = vy+O(X ") for

all X > 1. We know that f(m) — v when m tends to +o00 through Z, by LN Lemma [R.13
Also for every m € Z>, we have

f(m—1)— f(m) = —log(m — 1) + logm — % = —log(l — %) + % = 0(m™?),

by the Taylor expansion of log(1 + u) for |u| < 1. Hence for all m,k € Z*, we have:

fom) = fm+k)+ > (fG =1 =) = fm+k)+ > 0G™)
(6) = flm+k) +O0(m™),

where the implied constant in both “big—Os_” are absolute. (The last error bound is proved
using a standard integral bound: j=2 < fj]_lzv_z dzx for each j > 2; hence S7HF -2 <

j=m+1J
fnTJrk e 2dx < [ a?de =m™".) Letting k — oo in (@), we conclude that
(7) f(m) =~+0(m™"), Vm e Z7.

Finally, for an arbitrary real X > 1, set m := [ X|. Then

f(X) = f(m) +logm —log X = f(m) 4 log(m/X),

and using here (7)) and max(3,1 — X ) <m/X <1, which implies log(m/X) = O(X ™),
we conclude that

f(X)=9y+0mH+0(X H=7y+0(X1).



We can now solve Problem 5.6t We have, for all X > 1:

dodny= Y 1= > o1+ > > oo

n<X m17m2<2)1_ 1<m <V X 1<ma<X/my 1<me<VX VX <mi1<X/ma
mimax
X X
- 2 = (E]-1v)
mq msy
1<mi<vX 1<ma<VX

¢ 2, [5)- b
=2 > ( ) (VX +0(1))

1<m<v/X

X

— (2 il v

(> > X)-xrowm)
1<m<vX

Using Lemma [I], the above is:

=2X (log(VX) +7) + O(VX) — X + O(VX)
= Xlog X + (27 — 1)X+O(\/Y).



B9l (a). The formula (Bj:{l) says that for all z € C\ Z:

—+ Z <z—m m)zwcot(wz),

meZ\{0}

where the sum in the left hand side is uniformly absolutely convergent (in the sense that
Z‘ Z_lm + %} < 00) for z in any compact subset of C\ Z. Hence for any k& > 2, by repeated
differentiation k — 1 times we have, for all z € C\ Z,

(8) (=)' (k —1)! Z m - (dilz)k_l <7r cot(wz)),

me

where the sum in the left hand side is again uniformly absolutely convergent in any compact
subset of C \ Z. In order to rewrite the derivative in the right hand side, let us note that
when z € H, we have:

B (6m'z + 6—7riz)/2 _ 14 ez o . - 2miaz
7 cot(mz) = Tlemie —emin)/(20) 1 _ezmz 1+2 ; ¢ ’

where the last equality holds (with the sum being absolutely convergent) since |e*™#| < 1
when z € H. In fact the last sum is uniformly absolutely convergent for z in compact
subsets of H; hence we may differentiate term by term, to obtain, for all k£ > 2:

(9) (dii)k_l <7r cot(wz)) = —(2mi)k i gt e?miez (Vz € H).

Combining (&) and (@) we obtain the desired formula. O

(b). For any fixed n > 1, replacing k by 2k and z by nz in the formula in (a), we obtain:

1 1 (271)? 2%-1,2
R Tianz H).
Z (nz +m)? Z (nz — m)% (2k — 1)! Z (v € H)

mMEZL meEZL

2k

Also for any fixed n > 1, using (—nz —m)** = (nz + m)%, we have

1 1 (271)? 2%-1,2
[ p— _ Tianz H).
Z (—nz 4+ m)? Z (—nz —m)2?*  (2k —1)! Z (vz € H)

meZ meZ

Adding the two formulas above, and then adding over all n € Z*, we obtain:

2 00
ZZ nz_l_m 2]{:7?1|ZZG'2]€ 127r7,anz

n#0 meZ n=1 a=1

(We know that the double sum in the left hand side is absolutely convergent, by Problem
3.I3(a); also the double sum in the right hand side is absolutely convergent for all z € H.)
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Here in the right hand side we write m := an; then for each fixed m € Z*, a runs over all
(positive) divisors of m, and we obtain that the above sum equals

27”’ - 2k—1 2wimz 2(27T2)2k - 2mimz
et ,Z@I;a ) = b iy 2 o (me
Finally, we have
1
meZ\{0}

and adding this equality to the equality proved above, we obtain:

1 27TZ = 27rimz
2. e rmE 2R+ o Z 721 ’
(m,n)#(0,0)

i.e. the formula that we wanted to prove. O



9.1 (b).

(I may not write out the solution to this problem. However note that the fact that A is

generated by (1 2) and (? _1) is proved in the remark below following the solution

01 0

to part (c).

O.1. (c). (i). Follows from [2, Lemma 3.5]. (ii). Assume that 77,7, € A are such that
T1(F°) N To(F°) # 0, i.e. there is a point 7" belonging to both T} (F°) and T5(F°). Set
=177 and T := T, 'Ty € A; then 7 € F° and T(7) = Ty *(7') € F°. We will prove
that

(10) VIieA:VreF° . T(r)e F°=T==I

Note that when applying (I0) to our situation, we obtain Ty Ty = T = +1s, viz., Ty = 717,
and this completes the proof of (ii) (namely, we obtain the contrapositive form of (ii)).
Hence it now only remains to prove (I0). Thus assume that 7' € A, 7 € F° and
T(r) € F°. If Im 7 > Im T'(7) then after replacing (7, T) by (T(7),T~') we have T € A,
7€ F°and T(1) € F° and Im 7 < Im T'(7) [J; hence from now on we may assume that
Im 7 <Im T(7), with the earlier assumptions 7' € A, 7 € F° and T'(7) € F° still holding.

Write T = (CCL 2)7 then Im 7'(1) = |clrn41r;\2’ and hence Im 7 < Im T'(7) implies that
ler +d|* < 1. But we have
(11) ler +d|? = A|7|* + 2cdRe (1) + d* > ¢ — 2|ed| + d* = (|c| — |d])? > 1,

where the first inequality holds since 7 € F° implies that |7| > 1 and |Re 7| < 1, and the
last inequality holds since (CCL fi) € A implies that ¢  d mod 2; hence |c¢| # |d|. Now (ITI)

together with |er + d|? < 1 implies that equality holds in both “>" in (). Since |7| > 1
and |Re 7| < 1, this forces ¢ = 0, and then |d| = 1. It then follows that 1 = ad — bc = ad,
so that a = d = +1. Hence T'(7) = 7 + ab, V7 € H; and ab is an even integer, because of
T € A. Now |Re (7)] < 1 and |[ReT(7)| < 1, i.e. |Re (1) + ab| < 1, together force ab = 0,
i.e. b= 0. Hence T'= %15, and (I0) is proved. O

®And it suffices to prove that the new T is 415, since this implies that T, viz. the old T, is also +1I5.
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Remark: By elaborating slightly on the above discussion we also obtain a proof of the

claim that the group A is generated by ((1] ?) and (1) _01

that (I0) can be sharpened by replacing “T'(7) € F°” by “T'(1) € F”:

. Indeed, let us first note

(12) VIieAN:VreF°:T(r)e F=T==I.
[Proof: Assume that 7' € A, 7 € F° and T'(7) € F. Note that F equals the closure of F°;
hence there exists a sequence of points 71, 72, . . . in F° tending to 7(7). Then T!(7;) tends

to 7 as j — 0o, and we have 7 € F°; hence for j sufficiently large we have T-*(7;) € F°.
For any such j, we have both 7; € F° and T7'(7;) € F°; hence by ([I0), T~ = +1; and
hence T' = £1,.]

Now we can argue as follows: Let A’ be the subgroup of SL(2,7Z) generated by (é ?)

and ((1) _01) It is obvious that A’ C A; hence our task is to prove that A C A’. Let
U be an arbitrary element in A, and consider the point U(2¢) in H. Next, note that [2]
Lemma 3.5] actually says that H = Upea/T'(F)! Hence there exists some 7" € A’ such that
U(2i) € T(F). Then T7'U(2i) € F, and T-'U € A; and also 2i € F°. Hence by (12,
T7'U = £1I,, i.e. T = U, i.e. we have proved that either U € A’ or —U € A’. But note

that
2
— 0 -1 /
-1, = (1 0 ) e N
Hence —U € A implies U = (—13)(=U) € A, i.e. we definitely have U € A’. This completes
the proof that A C A, viz., A = A’ O
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