
Hints / solution sketches to problems

5.4.
(a). We discussed this in class; it is a direct application of Dirichlet’s Theorem 5.9 (in

LN), taking d = −4 in that theorem. Indeed, for d = −4 we can take Sd = {x2 + y2}; and
we have w = 4; hence Theorem 5.9 gives that for every odd positive integer n,

R(n; x2 + y2) = 4
∑

m|n

(−4

m

)

.

Using now also the fact that

(−4

m

)

=











0 if 2 | m,

1 if m ≡ 1 mod 4,

−1 if m ≡ 3 mod 4,

we obtain the desired formula,

R(n; x2 + y2) = 4(d1(n)− d3(n)).

�

(b). For any positive integer n, a simple discussion gives

R(4n; x2 + y2) = R(n; x2 + y2).(1)

[Detailed proof: Note that for any even integer x we have x2 ≡ 0 mod 4, and for every
odd integer x we have x2 ≡ 1 mod 4. Hence for any integers x, y, if x2 + y2 ≡ 0 mod 4
then both x and y must be even. It follows that the map 〈x, y〉 7→ 〈x/2, y/2〉 maps the set

(∗) {〈x, y〉 ∈ Z
2 : x2 + y2 = 4n}

to a subset of Z2. Using this fact, it is easy to verify that this map 〈x, y〉 7→ 〈x/2, y/2〉 is
a bijection from the set in (∗) onto the set

{〈x′, y′〉 ∈ Z
2 : x′2 + y′

2
= n}.

Hence these two sets have the same cardinality, i.e. (1) holds.]
Next we note that for any odd positive integer u, we have

R(2u; x2 + y2) = R(u; x2 + y2).(2)

Proof: Note that 2u ≡ 2 mod 4, hence if x, y ∈ Z satisfy x2 + y2 = 2u then both x and y
must be odd, and so both a = x−y

2
and b = x+y

2
are integers. Note also that these a, b satisfy

a2 + b2 = (x2 + y2)/2 = u. Conversely, if a, b are any two integers satisfying a2 + b2 = u
then the integers x = a + b and y = b − a satisfy x2 + y2 = 2(a2 + b2) = 2u. Note also
that the two maps 〈x, y〉 7→ 〈x−y

2
, x+y

2
〉 and 〈a, b〉 7→ 〈a+ b, b− a〉 are each others’ inverses.

Hence we have exhibited a bijection between the two sets

{〈x, y〉 ∈ Z
2 : x2 + y2 = 2u} and {〈a, b〉 ∈ Z

2 : a2 + b2 = u},
and therefore (2) holds.

1
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By using both (2) and (1) (repeatedly), one proves that

R(2ku; x2 + y2) = R(u; x2 + y2)(3)

for every odd positive integer u and every k ∈ Z≥0. Also, by part (a), we have R(u; x2+y2) =
4(d1(u)− d3(u)). But note also that the set of odd positive divisors of u is equal to the set
of odd positive divisors of 2ku. Hence:

R(2ku; x2 + y2) = R(u; x2 + y2) = 4(d1(u)− d3(u)) = 4(d1(2
ku)− d3(2

ku)).

Hence we have proved the desired formula for n = 2ku. Since every positive integer n can
be expressed as 2ku, the proof is complete. �

5.5. I have taken this problem from MNZ, [1, p. 176, Problem 6].
It follows from LN Lemma 5.2 that every positive definite quadratic form [a, b, c] of

discriminant −23 is equivalent to some quadratic form [a, b, c] which satisfies |b| ≤ |a| ≤ |c|,
which must of course also be positive definite and have discriminant b2 − 4a = −23 (since
our equivalence relation preserves positive definiteness and preserves the discriminant).
Thus let us start by determining all positive definite quadratic forms [a, b, c] satisfying
|b| ≤ |a| ≤ |c| and b2 − 4ac = −23.

Assume that [a, b, c] is such a form. Then

4a2 ≤ 4|ac| = |b2 + 23| ≤ 23 + b2 ≤ 23 + a2,

and this implies 3a2 ≤ 23, viz., |a| ≤ 2. We also have a > 0 since [a, b, c] is positive definite.
Hence a = 1 or a = 2.

Case 1: a = 1. Then |b| ≤ |a| = 1, and also b2 = 4ac−23 ≡ 1 mod 4; hence b = ±1. It
follows that 4c− 23 = 4ac− 23 = b2 = 1, i.e. c = 6. Hence: [a, b, c] = [1, 1, 6] or [1,−1, 6].

Case 2: a = 2. The |b| ≤ |a| ≤ 2; also b2 = 4ac − 23 ≡ 1 mod 4; hence b = ±1. It
follows that 8c− 23 = 4ac− 23 = b2 = 1, i.e. c = 3. Hence: [a, b, c] = [2, 1, 3] or [2,−1, 3].

Hence we have proved that every positive definite quadratic form of discriminant −23
must be equivalent to one of the forms [1, 1, 6], [1,−1, 6], [2, 1, 3] or [2,−1, 3]. It remains
to sort out which equivalences exist between these four forms.

Recall from LN (197) that if [a, b, c] and [a′, b′, c′] are equivalent then there exists some

g =

(

α β
γ δ

)

∈ SL(2,Z) such that (among other things) aα2 + bαγ + cγ2 = a′, viz., a′ can

be properly1 represented by [a, b, c]. Thus: If [1, 1, 6] and [2, 1, 3] are equivalent, then there
exist x, y ∈ Z satisfying gcd(x, y) = 1 and x2 + xy + 6y2 = 2. The last relation can be
rewritten as (x + 1

2
y)2 + 23

4
y2 = 2, and this implies 23

4
y2 ≤ 2; thus y = 0; hence x2 = 2,

which is impossible. This proves that [1, 1, 6] and [2, 1, 3] are not equivalent. The same
argument also shows that [1, 1, 6] and [2,−1, 3] are not equivalent. Next, if [2, 1, 3] and

1Indeed, we have gcd(α, γ) = 1, since αδ − βγ = 1.
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[2,−1, 3] are equivalent then by LN (197), there exists g =

(

α β
γ δ

)

∈ SL(2,Z) satisfying

(

2 −1/2
−1/2 3

)

=

(

2α2 + αγ + 3γ2 (4αβ + βγ + αδ + 6γδ)/2
(4αβ + βγ + αδ + 6γδ)/2 2β2 + βδ + 3δ2

)

.(4)

In particular we then have 2 = 2α2 + αγ + 3γ2 = 2(α + 1
4
γ)2 + 23

8
γ2; hence 23

8
γ2 ≤ 2,

which forces γ = 0, and thus also (again using 2 = 2α2 + αγ + 3γ2): α = ±1. Now
αδ = αδ − βγ = 1 implies that δ = α = ±1, and next using also 2β2 + βδ + 3δ2 = 3, viz.,
2β2 ± β = 0, we conclude that β = 0. But then (4αβ + βγ + αδ + 6γδ)/2 = 1/2, so that
the relation (4) does not hold. Hence [2, 1, 3] and [2,−1, 3] are not equivalent!

On the other hand, the quadratic forms [1, 1, 6] and [1,−1, 6] are equivalent; indeed, the

matrix g :=

(

1 −1
0 1

)

∈ SL(2,Z) (which one finds by similar computations as the one in

the previous paragraph) gives

gtr
(

1 1/2
1/2 6

)

g =

(

1 0
−1 1

)(

1 1/2
1/2 6

)(

1 −1
0 1

)

=

(

1 0
−1 1

)(

1 −1/2
1/2 11/2

)

=

(

1 −1/2
−1/2 6

)

.

To sum up, we have proved that every positive definite quadratic form of discriminant
−23 must be equivalent to one of the forms [1, 1, 6], [1,−1, 6], [2, 1, 3] or [2,−1, 3], and we
have also proved that among these, [1, 1, 6] and [1,−1, 6] are equivalent, while the three
forms [1, 1, 6], [2, 1, 3] and [2,−1, 3] are pairwise inequivalent. These facts together imply
the statement in the problem formulation. �

Alternative: Using LN Problem 5.2 (or more precisely: the solution of that problem),
one immediately reaches the set of representatives [1, 1, 6], [2, 1, 3] and [2,−1, 3], without
any need to discuss possible equivalences between these.

We now turn to the second half of the problem. Thus let p be a prime satisfying
(−23

p

)

=

±1. Then we have p 6= 23, thus gcd(p, 23) = 1, and so by LN Theorem 5.9 applied with
d = −23 and n = p,

R(p;−23) = 2
((−23

1

)

+
(−23

p

))

= 2
(

1 +
(−23

p

))

.

Also, by definition of R(p;−23) and using the first part of the present problem, we have

R(p;−23) = R(p;Q1) +R(p;Q2) +R(p;Q3)
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Combining these two relations, we conclude that if
(−23

p

)

= −1 then R(p;Q1) = R(p;Q2) =

R(p;Q3) = 0, while if
(−23

p

)

= 1 then

R(p;Q1) +R(p;Q2) +R(p;Q3) = 4.(5)

Furthermore,

∀j ∈ {1, 2, 3} : R(p;Qj) is even,

since Qj(x, y) = Qj(−x,−y) (∀x, y ∈ R) and Qj(0, 0) = 0 6= p. We also have

R(p;Q2) = R(p;Q3),

since Q2(x,−y) = Q3(x, y) (∀x, y ∈ R)2, and Q2(x, 0) = 2x2 6= p (∀x ∈ Z). Hence there
exist a, b ∈ Z≥0 (which depend on p) such that R(p;Q1) = 2a and R(p;Q2) = R(p;Q3) = 2b.
Using this notation, (5) implies that a + 2b = 2; and the only pairs 〈a, b〉 ∈ (Z≥0)

2 which

satisfy the last relation are 〈2, 0〉 and 〈0, 1〉. Hence we have proved that if
(−23

p

)

= 1 then

either [R(p;Q1) = 4 and R(p;Q2) = R(p;Q3) = 0] or else [R(p;Q1) = 0 and R(p;Q2) =
R(p;Q3) = 2].

It remains to discuss the prime p = 139. Note that this p satisfies
(−23
139

)

= −
(

23
139

)

=
(

139
23

)

=
(

1
23

)

= 1;3 Hence by what we have just proved, we have either [R(p;Q1) = 4 and
R(p;Q2) = R(p;Q3) = 0] or else [R(p;Q1) = 0 and R(p;Q2) = R(p;Q3) = 2]. However
by completing the square we see that the equation Q1(x, y) = 139 is equivalent with
(x+ 1

2
y)2+ 23

4
y2 = 139, and this implies 23

4
y2 ≤ 139, which forces |y| ≤ 4, i.e. (using also the

symmetry Q1(−x,−y) = Q1(x, y)) one only needs to test the five cases y = 0, 1, 2, 3, 4. One
verifies that none of these cases gives rise to a solution 〈x, y〉 ∈ Z2. Hence R(139;Q1) = 0,
and so by what we noted above, we must also have R(139;Q2) = R(139;Q3) = 2. 4

�

2This means that Q2 and Q3 are “improperly equivalent”, a concept which is not discussed in LN.
3The first equality holds since 139 ≡ 3 mod 4 implies

(

−1

139

)

= −1. The second equality holds by

quadratic reciprocity, using 23 ≡ 139 ≡ 3 mod 4. The third equality holds since 139 ≡ 1 mod 23.
4The solutions to the equations Q2(x, y) = 139 and Q3(x, y) = 139 can similarly be found by completing

the square. Indeed, Q2(x, y) = 139 is equivalent with 2(x+ 1

4
y)2 + 23

8
y2 = 139, which implies 23

8
y2 ≤ 139,

and so |y| ≤ 6, i.e. we need only test the cases y ∈ {0, 1, 2, 3, 4, 5, 6}, and going through these, we find the
single solution 〈x, y〉 = 〈8, 1〉. Hence the set of solutions to Q2(x, y) = 139 is {〈8, 1〉, 〈−8,−1〉}, and the set
of solutions to Q3(x, y) = 139 is {〈−8, 1〉, 〈8,−1〉}.



5

5.6. We will need the following strengthening of LN Lemma 8.13:

Lemma 1. For all (real) X ≥ 1,

∑

1≤n≤X

1

n
= logX + γ +O(X−1).

Proof. Set f(X) :=
∑

1≤n≤X
1
n
−logX ; then our task is to prove that f(X) = γ+O(X−1) for

all X ≥ 1. We know that f(m) → γ when m tends to +∞ through Z, by LN Lemma 8.13.
Also for every m ∈ Z≥2 we have

f(m− 1)− f(m) = − log(m− 1) + logm− 1

m
= − log

(

1− 1

m

)

+
1

m
= O(m−2),

by the Taylor expansion of log(1 + u) for |u| < 1. Hence for all m, k ∈ Z+, we have:

f(m) = f(m+ k) +
m+k
∑

j=m+1

(

f(j − 1)− f(j)
)

= f(m+ k) +
m+k
∑

j=m+1

O(j−2)

= f(m+ k) +O(m−1),(6)

where the implied constant in both “big-Os” are absolute. (The last error bound is proved

using a standard integral bound: j−2 ≤
∫ j

j−1
x−2 dx for each j ≥ 2; hence

∑m+k
j=m+1 j

−2 ≤
∫ m+k

m
x−2 dx ≤

∫∞
m

x−2 dx = m−1.) Letting k → ∞ in (6), we conclude that

f(m) = γ +O(m−1), ∀m ∈ Z
+.(7)

Finally, for an arbitrary real X ≥ 1, set m := ⌊X⌋. Then

f(X) = f(m) + logm− logX = f(m) + log(m/X),

and using here (7) and max(1
2
, 1−X−1) ≤ m/X ≤ 1, which implies log(m/X) = O(X−1),

we conclude that

f(X) = γ +O(m−1) +O(X−1) = γ +O(X−1).

�
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We can now solve Problem 5.6: We have, for all X ≥ 1:
∑

n≤X

d(n) =
∑

m1,m2≥1
m1m2≤X

1 =
∑

1≤m1≤
√
X

∑

1≤m2≤X/m1

1 +
∑

1≤m2≤
√
X

∑

√
X<m1≤X/m2

1

=
∑

1≤m1≤
√
X

⌊

X

m1

⌋

+
∑

1≤m2≤
√
X

(⌊

X

m2

⌋

−
⌊√

X
⌋

)

=

(

2
∑

1≤m≤
√
X

⌊

X

m

⌋

)

−
⌊√

X
⌋2

= 2
∑

1≤m≤
√
X

(

X

m
+O(1)

)

−
(
√
X +O(1)

)2

=

(

2
∑

1≤m≤
√
X

X

m

)

−X +O
(
√
X
)

Using Lemma 1, the above is:

= 2X
(

log
(
√
X
)

+ γ
)

+O
(
√
X
)

−X +O
(
√
X
)

= X logX + (2γ − 1)X +O
(
√
X
)

.

�
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8.9. (a). The formula (313) says that for all z ∈ C \ Z:
1

z
+

∑

m∈Z\{0}

( 1

z −m
+

1

m

)

= π cot(πz),

where the sum in the left hand side is uniformly absolutely convergent (in the sense that
∑

∣

∣

1
z−m

+ 1
m

∣

∣ < ∞) for z in any compact subset of C \Z. Hence for any k ≥ 2, by repeated

differentiation k − 1 times we have, for all z ∈ C \ Z,

(−1)k−1(k − 1)!
∑

m∈Z

1

(z −m)k
=
( d

dz

)k−1(

π cot(πz)
)

,(8)

where the sum in the left hand side is again uniformly absolutely convergent in any compact
subset of C \ Z. In order to rewrite the derivative in the right hand side, let us note that
when z ∈ H, we have:

π cot(πz) = π
(eπiz + e−πiz)/2

(eπiz − e−πiz)/(2i)
= −πi

1 + e2πiz

1 − e2πiz
= −πi

(

1 + 2
∞
∑

a=1

e2πiaz
)

,

where the last equality holds (with the sum being absolutely convergent) since |e2πiz| < 1
when z ∈ H. In fact the last sum is uniformly absolutely convergent for z in compact
subsets of H; hence we may differentiate term by term, to obtain, for all k ≥ 2:

( d

dz

)k−1(

π cot(πz)
)

= −(2πi)k
∞
∑

a=1

ak−1e2πiaz (∀z ∈ H).(9)

Combining (8) and (9) we obtain the desired formula. �

(b). For any fixed n ≥ 1, replacing k by 2k and z by nz in the formula in (a), we obtain:

∑

m∈Z

1

(nz +m)2k
=
∑

m∈Z

1

(nz −m)2k
=

(2πi)2k

(2k − 1)!

∞
∑

a=1

a2k−1e2πianz (∀z ∈ H).

Also for any fixed n ≥ 1, using (−nz −m)2k = (nz +m)2k, we have

∑

m∈Z

1

(−nz +m)2k
=
∑

m∈Z

1

(−nz −m)2k
=

(2πi)2k

(2k − 1)!

∞
∑

a=1

a2k−1e2πianz (∀z ∈ H).

Adding the two formulas above, and then adding over all n ∈ Z+, we obtain:

∑

n 6=0

∑

m∈Z

1

(nz +m)2k
=

2(2πi)2k

(2k − 1)!

∞
∑

n=1

∞
∑

a=1

a2k−1e2πianz.

(We know that the double sum in the left hand side is absolutely convergent, by Problem
3.13(a); also the double sum in the right hand side is absolutely convergent for all z ∈ H.)
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Here in the right hand side we write m := an; then for each fixed m ∈ Z+, a runs over all
(positive) divisors of m, and we obtain that the above sum equals

2(2πi)2k

(2k − 1)!

∞
∑

m=1

(

∑

a|m
a2k−1

)

e2πimz =
2(2πi)2k

(2k − 1)!

∞
∑

m=1

σ2k−1(m)e2πimz .

Finally, we have
∑

m∈Z\{0}

1

m2k
= 2ζ(2k),

and adding this equality to the equality proved above, we obtain:

∑

(m,n)6=(0,0)

1

(nz +m)2k
= 2ζ(2k) +

2(2πi)2k

(2k − 1)!

∞
∑

m=1

σ2k−1(m)e2πimz ,

i.e. the formula that we wanted to prove. �
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9.1. (b).
(I may not write out the solution to this problem. However note that the fact that Λ is

generated by

(

1 2
0 1

)

and

(

0 −1
1 0

)

is proved in the remark below following the solution

to part (c).

9.1. (c). (i). Follows from [2, Lemma 3.5]. (ii). Assume that T1, T2 ∈ Λ are such that
T1(F◦) ∩ T2(F◦) 6= ∅, i.e. there is a point τ ′ belonging to both T1(F◦) and T2(F◦). Set
τ := T−1

1 (τ ′) and T := T−1
2 T1 ∈ Λ; then τ ∈ F◦ and T (τ) = T−1

2 (τ ′) ∈ F◦. We will prove
that

∀T ∈ Λ : ∀τ ∈ F◦ : T (τ) ∈ F◦ ⇒ T = ±I2(10)

Note that when applying (10) to our situation, we obtain T−1
2 T1 = T = ±I2, viz., T2 = ±T1,

and this completes the proof of (ii) (namely, we obtain the contrapositive form of (ii)).
Hence it now only remains to prove (10). Thus assume that T ∈ Λ, τ ∈ F◦ and

T (τ) ∈ F◦. If Im τ > Im T (τ) then after replacing 〈τ, T 〉 by 〈T (τ), T−1〉 we have T ∈ Λ,
τ ∈ F◦ and T (τ) ∈ F◦ and Im τ ≤ Im T (τ) 5; hence from now on we may assume that
Im τ ≤ Im T (τ), with the earlier assumptions T ∈ Λ, τ ∈ F◦ and T (τ) ∈ F◦ still holding.

Write T =

(

a b
c d

)

; then Im T (τ) = Im τ
|cτ+d|2 , and hence Im τ ≤ Im T (τ) implies that

|cτ + d|2 ≤ 1. But we have

|cτ + d|2 = c2|τ |2 + 2cdRe (τ) + d2 ≥ c2 − 2|cd|+ d2 = (|c| − |d|)2 ≥ 1,(11)

where the first inequality holds since τ ∈ F◦ implies that |τ | > 1 and |Re τ | < 1, and the

last inequality holds since

(

a b
c d

)

∈ Λ implies that c 6≡ d mod 2; hence |c| 6= |d|. Now (11)

together with |cτ + d|2 ≤ 1 implies that equality holds in both “≥” in (11). Since |τ | > 1
and |Re τ | < 1, this forces c = 0, and then |d| = 1. It then follows that 1 = ad− bc = ad,
so that a = d = ±1. Hence T (τ) = τ + ab, ∀τ ∈ H; and ab is an even integer, because of
T ∈ Λ. Now |Re (τ)| < 1 and |Re T (τ)| < 1, i.e. |Re (τ) + ab| < 1, together force ab = 0,
i.e. b = 0. Hence T = ±I2, and (10) is proved. �

5And it suffices to prove that the new T is ±I2, since this implies that T−1, viz. the old T , is also ±I2.
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Remark: By elaborating slightly on the above discussion we also obtain a proof of the

claim that the group Λ is generated by

(

1 2
0 1

)

and

(

0 −1
1 0

)

. Indeed, let us first note

that (10) can be sharpened by replacing “T (τ) ∈ F◦” by “T (τ) ∈ F”:

∀T ∈ Λ : ∀τ ∈ F◦ : T (τ) ∈ F ⇒ T = ±I2.(12)

[Proof: Assume that T ∈ Λ, τ ∈ F◦ and T (τ) ∈ F . Note that F equals the closure of F◦;
hence there exists a sequence of points τ1, τ2, . . . in F◦ tending to T (τ). Then T−1(τj) tends
to τ as j → ∞, and we have τ ∈ F◦; hence for j sufficiently large we have T−1(τj) ∈ F◦.
For any such j, we have both τj ∈ F◦ and T−1(τj) ∈ F◦; hence by (10), T−1 = ±I2; and
hence T = ±I2.]

Now we can argue as follows: Let Λ′ be the subgroup of SL(2,Z) generated by

(

1 2
0 1

)

and

(

0 −1
1 0

)

. It is obvious that Λ′ ⊂ Λ; hence our task is to prove that Λ ⊂ Λ′. Let

U be an arbitrary element in Λ, and consider the point U(2i) in H. Next, note that [2,
Lemma 3.5] actually says that H = ∪T∈Λ′T (F)! Hence there exists some T ∈ Λ′ such that
U(2i) ∈ T (F). Then T−1U(2i) ∈ F , and T−1U ∈ Λ; and also 2i ∈ F◦. Hence by (12),
T−1U = ±I2, i.e. T = ±U , i.e. we have proved that either U ∈ Λ′ or −U ∈ Λ′. But note
that

−I2 =

(

0 −1
1 0

)2

∈ Λ′.

Hence −U ∈ Λ′ implies U = (−I2)(−U) ∈ Λ′, i.e. we definitely have U ∈ Λ′. This completes
the proof that Λ ⊂ Λ′, viz., Λ = Λ′. �
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