
Assignment 1: Some answers, comments and references

Problem 1. One obtains this formula by applying the Euler-MacLaurin
summation formula (Theorem 1.19 in the course notes) with fpxq “
logpx`zq, h “ 2 and A “ 0, B “ N . One must note, however, that the
left hand side in Theorem 1.19 is “

ř
AănďB fpnq”, so that the above

choices give “
řN

n“1
logpn ` zq”; therefore one has to add “logpzq” to

both sides in order to obtain the formula in the problem formulation.
(Alternatively one may apply the Euler-MacLaurin summation formula
with A ă 0 close to 0, and then let A Ñ 0´.)

Problem 2. Writing Npxq :“ #tωn ď xu, and letting T0 be a fixed
number in the interval 1 ă T0 ă ω1, one has

log
ź

ωnăT

p1 ´ ω´1

n q “

ż T´0

T0

logp1 ´ x´1q dNpxq

(where the “T ´ 0” indicates that the right hand side should be under-

stood to mean limT 1ÑT´

şT 1

T0

logp1 ´ x´1q dNpxq). After integrating by

parts, the contribution which is most difficult(?) to handle is

´

ż T

T0

Npxq

xpx ´ 1q
dx.(1)

This can be written as ´
şT
T0

cx`Opx1{2q
xpx´1q

dx, and here the contribution

from the error term is:
şT
T0

Opx1{2q
xpx´1q

dx “ Op1q; note that this is the best

possible bound on
şT
T0

Opx1{2q
xpx´1q

dx as T Ñ 8! However, it is possible to

obtain a sharper asymptotic formula for (1) by rewriting
şT
T0

as
ş8

T0

´
ş8

T
1; namely:

´

ż T

T0

Npxq

xpx ´ 1q
dx “ ´

ż T

T0

cx

xpx ´ 1q
dx ´

ż T

T0

Npxq ´ cx

xpx ´ 1q
dx

“ ´

ż T

T0

c

x ´ 1
dx ´

ż 8

T0

Npxq ´ cx

xpx ´ 1q
dx `

ż 8

T

Npxq ´ cx

xpx ´ 1q
dx.

1This method was also used on the last slide of lecture #1.
1
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The above is justified by the fact that the integral
ş8

T0

Npxq´cx

xpx´1q
dx is

absolutely convergent, since |Npxq ´ cx| ! x1{2. Now one can contine:

“ ´c log
´ T ´ 1

T0 ´ 1

¯
´

ż 8

T0

Npxq ´ cx

xpx ´ 1q
dx `

ż 8

T

Opx1{2q

xpx ´ 1q
dx.

“ ´c log T ` OpT´1q ` c logpT0 ´ 1q ´

ż 8

T0

Npxq ´ cx

xpx ´ 1q
dx ` OpT´1{2q.

Combining this with the other term from the integration by parts, we
conclude:

log
ź

ωnăT

p1 ´ ω´1

n q “ ´c log T ` β ` OpT´1{2q,(2)

where

β :“ ´c ` c logpT0 ´ 1q ´

ż 8

T0

Npxq ´ cx

xpx ´ 1q
dx.(3)

Hence, exponentiating (using exppOpT´1{2qq “ 1 ` OpT´1{2q for T

large), we obtain:

Answer:
ź

ωnăT

p1 ´ ω´1

n q “ eβ ¨ T´c ` OpT´c´ 1

2 q as T Ñ 8.

Remark 1: If one works on using the less precise “Op1q” bound
discussed below (1), one obtains instead of (2) the less precise estimate
“log

ś
ωnăT p1 ´ ω´1

n q “ ´c log T ` Op1q”, which after exponentiating
gives the following less precise final answer:

“
ś

ωnăT p1 ´ ω´1

n q — T´c as T Ñ 8”.

Remark 2: Of course the right hand side of (3) is independent of
the choice of the number T0 P p1, ω1q; this is clear from the proof but
also easy to verify aposteriori, using the fact that Npxq “ 0 for x ă ω1.

Problem 3. This problem is Folland, Exc. 2.28, mildly modified.

Problem 4. This problem is Folland, Exc. 2.36.
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Problem 5. I took this problem from Folland, Exc. 6.15. It is a Cauchy
version of the Vitali Convergence Theorem.

Problem 6. Part (a) and (b) are borrowed from Folland, Exc. 7.24.
I admit that I had missed that giving (a) and (b) together was per-

haps a bit “boring”, since the sequence µn “ δ´n (the Dirac measure
at the point ´n) works in both (a) and (b)! In hindsight, I would have
preferred to instead give the following version of part (a): “Find an
example of a sequence pµnq in Mpr0, 1sq such that µn Ñ 0 vaguely, but
}µn} ­Ñ 0.” (See the following footnote for an example: 2)

Problem 7. (a) cα,β “ p´1q|α|
śn

j“1

`
βjpβj ` 1q ¨ ¨ ¨ pβj ` αj ´ 1q

˘
.

Problem 8. (a)
ş
R

|fn| dx “
ş
R
fn dx “ 1.

(b) supppfnq “ r0, a1 ` a2 ` ¨ ¨ ¨ ` ans.
(c) One may compute f2 explicitly and then verify that f2 P CpRq.
From this, one may prove fn P Cn´2pRq by induction, where the key
step is to note (using fn “ fn´1 ˚ gan) that

@n ě 3 : @x P R : f 1
npxq “

1

an

`
fn´1pxq ´ fn´1px ´ anq

˘
.

On the other hand, by induction one may also prove that

@n ě 2 : @x P r0,minpa1, . . . , anqs : fnpxq “
xn´1

pn ´ 1q!
śn

j“1
aj
,

while fnpxq “ 0 for x ă 0, and from this it is easy to verify that

the pn ´ 1qst derivative f
pn´1q
n pxq does not exist at x “ 0; hence fn R

Cn´1pRq.
(d) By (b) we have fnpxq “ 0 for x ď 0 and for x ě

řn

j“1
aj . One

may also verify that fn is symmetric about the point 1

2
sn where sn :“řn

j“1
aj , i.e. fnpsn ´ xq ” fnpxq; also the function fnpxq is increasing

for x P r0, 1
2
sns and (hence) decreasing for x P r1

2
sn, sns. Now for any

fixed point x1 ą 0, for every n so large that x1 ă 1

2
sn, we have

1 “

ż sn

0

fnpxq dx ě

ż 1

2
sn

x1

fnpxq dx ě
`
1

2
sn ´ x1

˘
fnpx1q.

But as n Ñ 8 we have 1

2
sn ´x1 Ñ `8 and hence the above inequality

(together with the fact that fnpx1q ě 0) implies that fnpx1q Ñ 0.

2One may e.g. take µn “ δ0 ´ δ1{n.

https://en.wikipedia.org/wiki/Vitali_convergence_theorem


4

Problem 8 – the “even more challenging tasks”: For the caseř8
n“1

an ă 8, cf., e.g., Theorem 1.3.5 in Hörmander, “The Analysis of
Linear Partial Differential Operators I” (1990).

We now turn to the question about uniform convergence to 0. We
will outline a proof that

fn tends uniformly to 0 if and only if
8ÿ

n“1

a2n “ 8.(4)

(Note that
ř8

n“1
a2n “ 8 ñ

ř8
n“1

an “ 8, but the converse is not
true.)
In the first few paragraphs we consider arbitrary positive numbers

a1, a2, . . .. Let us start by centering the functions fn: Write sn “ a1 `
¨ ¨ ¨`an and set Fn :“ τ´sn{2fn; then from the properties of fn mentioned
in part (d) above, it follows that for each n, Fn is even, and Fn is
increasing on p´8, 0s and (thus) decreasing on r0,`8q. In particular
Fn attains a global maximum at x “ 0, and since Fn is nonnegative it
follows that fn tends uniformly to 0 if and only if limnÑ8 Fnp0q “ 0.
Note that

Fn “ τ´sn{2fn “ τ´sn{2pga1 ˚ ¨ ¨ ¨ ˚ ganq “ Ga1 ˚ ¨ ¨ ¨ ˚ Gan ,

where we have defined

Ga :“ τ´a{2ga “ a´1 ¨ χ´pa{2,a{2q.

We obviously have Ga P L1pRq, and its Fourier transform is:

pGapξq “ a´1

ż a{2

´a{2

e´2πiξx dx “
eπiaξ ´ e´πiaξ

2πiaξ
“

sinpπaξq

πaξ
“ sincpπaξq.

(Recall that the sinc function, sincpzq, is given by sincpzq “ sin z
z

for
all z P Czt0u and sincp0q “ 1. It is an entire function. The above

computation is only valid for ξ ‰ 0, but one also verifies that pGap0q “

1 “ sincp0q; hence the final formula, pGapξq “ sincpπaξq, is valid for all
ξ P R.)
It follows that for every n P Z` we have Fn P L1pRq and

pFnpξq “
nź

j“1

pGaj pξq “
nź

j“1

sincpπajξq.(5)

Using | sincpzq| ď minp1, |z|´1q (@z P R) we see that if n ě 2 then

| pFnpξq| ď minp1, π´2pa1a2q´1|ξ|´2q, which implies that pFn P L1pRq.
Hence for every n ě 2, the Fourier Inversion formula applies to Fn, i.e.

https://en.wikipedia.org/wiki/Sinc_function
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we have

Fnpxq “

ż

R

pFnpξqe2πixξ dξ, @x P R, n ě 2.(6)

Next, it is an easy consequence of (5) and ´1

6
ă sincpzq ď 1 (@z P R)

that the following pointwise limit exists for every ξ P R:

Hpξq :“ lim
nÑ8

pFnpξq. 3(7)

Hence by (6) and the Dominated Convergence Theorem (using the
majorant function ξ ÞÑ minp1, π´2pa1a2q

´1|ξ|´2q), we have H P L1pRq
and for each fixed x P R:

lim
nÑ8

Fnpxq “ lim
nÑ8

ż

R

pFnpξqe2πixξ dξ “

ż

R

lim
nÑ8

pFnpξqe2πixξ dξ(8)

“

ż

R

Hpξqe2πixξ dξ “ qHpxq.

Hence: fn tends uniformly to zero iff H “ 0 a.e. (Indeed, if H “ 0

a.e. then limnÑ8 Fnp0q “ qHp0q “ 0 which as we noted above implies
that fn tends uniformly to zero; conversely if fn tends uniformly to

zero then qHpxq “ limnÑ8 Fnpxq “ 0 for all x and hence H “ 0 a.e., cf.
Folland’s Cor. 8.27.)
Finally, we now prove in two steps that H “ 0 a.e. (in fact Hpξq “ 0

for all ξ P Rzt0u) holds iff
ř8

n“1
a2n “ 8:

Step 1: If an ­Ñ 0 as n Ñ 8 then Hpξq “ 0 for all ξ P Rzt0u.

[Proof: Assume an ­Ñ 0 as n Ñ 8; this means that there exist δ ą 0
and an infinite sequence 1 ď n1 ă n2 ă ¨ ¨ ¨ such that ank

ě δ for all k.
Now let ξ P Rzt0u be given. Then η :“ sup|x|ěπδ|ξ| | sincpxq| is a number

strictly between 0 and 1, and we have | pGank
pξq| “ | sincpπank

ξq| ď η for

all k, and also | pGanpξq| ď 1 for all n. Hence for every k P Z` and every

n ě nk, by (5) we have | pFnpξq| ď ηk. Hence Hpξq “ limnÑ8
pFnpξq “ 0.]

Step 2: If an Ñ 0 as n Ñ 8 then
“
Hpξq “ 0 for all ξ P Rzt0u

‰
ô

[H “ 0 a.e.] ô
“ř8

n“1
a2n “ 8

‰
.

[Proof: Assume that an Ñ 0 as n Ñ 8. By Taylor’s formula,

logpsincpxqq “ log
´
1 ´

x2

6
` Opx4q

¯
“ ´

x2

6
` Opx4q as x Ñ 0;

3Indeed, using only | sincpzq| ď 1 it follows that | pF1pξq| ě | pF2pξq| ě ¨ ¨ ¨ and

hence limnÑ8 | pFnpξq| exists; and if this limit is non-zero, then using sincpzq ą ´ 1

6

one shows that pFnpξq has constant sign for n large, so that (7) exists.
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hence there exists a constant δ ą 0 such that

sincpxq ą 0 and ´
x2

5
ď logpsincpxqq ď ´

x2

7
@x P r´δ, δs.

Now let ξ0 ą 0 be given. Then there exists N P Z` such that |πanξ| ă δ

for all n ě N and all ξ P r´ξ0, ξ0s. It follows that for all M ě N and
all ξ P r´ξ0, ξ0s we have

´
1

5
pπξq2

Mÿ

n“N

a2n ď log

ˆ Mź

n“N

sincpπanξq

˙
ď ´

1

7
pπξq2

Mÿ

n“N

a2n.(9)

Now if
ř8

n“1
a2n “ `8 then for every ξ P r´ξ0, ξ0szt0u we have, by

the right inequality in (9): limMÑ8 log
`śM

n“N sincpπanξq
˘

“ ´8, and

hence Hpξq “ limMÑ8

śM

n“1
sincpπanξq “ 0.

On the other hand, if
ř8

n“1
a2n ă `8, then for every ξ P r´ξ0, ξ0szt0u

it follows by using the left inequality in (9) and the fact that logpsincpπanξqq ă

0 (@n ě N), that the limit limMÑ8

śM

n“N sincpπanξq exists and is
a number strictly between 0 and 1. Hence also the limit Hpξq “

limMÑ8

śM

n“1
sincpπanξq exists for every ξ P r´ξ0, ξ0s, and is zero only

at those finitely many ξ P r´ξ0, ξ0s where
śN´1

n“1
sincpπanξq “ 0.

In both cases, since ξ0 ą 0 was arbitrary, we obtain the statement of
Step 2.]

�

Remark: One can alternatively obtain the result in (4) as a con-
sequence of fairly standard results in probability theory, namely ap-
propriate versions of the Central Limit Theorem (CLT).4 Indeed, let
X1, X2, . . . be independent real-valued random variables, with Xk hav-
ing a uniform distribution between ´ak

2
and ak

2
; then the probability

density function of Xk is the function Gak discussed above, and the
probability density function of X1 ` ¨ ¨ ¨ ` Xn is Fn “ Ga1 ˚ ¨ ¨ ¨ ˚ Gan .

Note that VarpXkq “
a2
k

12
. Now if

ř8
k“1

a2k “ 8 then the Lindeberg CLT

implies that the distribution of the normalized sum
`řn

k“1

a2
k

12

˘´1

pX1 `
¨ ¨ ¨ ` Xnq tends, as n Ñ 8, to a normal distribution with zero expec-
tation and unit variance. Indeed, this is exactly the case discussed in
Feller, “An Introduction to Probability Theory and Its Applications,
Vol. II”, Ch. VIII.4, Ex. (d) (but with ak in place of ak{2). Applying

this fact instead to
`řn

k“2

a2
k

12

˘´1

pX2`¨ ¨ ¨`Xnq, one fairly easily deduces

4This is perhaps not an “alternative proof”, but rather an “alternative view-
point” – since one way to prove the CLT is by working via the Fourier transform,
just as we did above.

http://file://T:feller/feller1971.djvu:278
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that Fnp0q Ñ 0 as n Ñ 8,5 meaning that fn tends uniformly to zero.
Alternatively, one may prove Fnp0q Ñ 0 by applying an appropriate
CLT for densities6; cf. e.g. Exc. XV.9.287 in the same book by Feller.

On the other hand, if
ř8

k“1
a2k ă 8, then by Ch. VIII.5 in the same

book, the distribution of the unnormalized sum X1 ` ¨ ¨ ¨ ` Xn tends,
as n Ñ 8, to a probability distribution with zero expectation and
variance 1

12

ř8
k“1

a2k.
8 This implies that fn does not tend uniformly to

zero. (Indeed, assume the opposite, i.e. that fn Ñ 0 uniformly. Then
also Fn Ñ 0 uniformly, and this implies that

ş8

´8
Fnpxqφpxq dx Ñ 0 for

any φ P C0pXq, meaning that the distribution of X1 ` ¨ ¨ ¨ ` Xn tends
vaguely to the zero measure on R, i.e. we have “escape of mass”, and
the distribution of X1 ` ¨ ¨ ¨ ` Xn does not tend to the distribution of
some random variable on R.)

5This argument was pointed out to me by Benjamin Meco. To give some details,
set Vn :“ 1

12

řn

k“2
a2
k
. The probability density function of X2 ` ¨ ¨ ¨`Xn (for n ě 2)

is rGn :“ Ga2
˚ ¨ ¨ ¨ ˚ Gan

, and we have Fn “ Ga1
˚ rGn; therefore

Fnp0q “ a´1

1

ż
a1{2

´a1{2

rGnpxq dx “ a´1

1
Prob

“
|X2 ` ¨ ¨ ¨ ` Xn| ď a1{2

‰

“ a´1

1
Prob

“
|V ´1

n
pX2 ` ¨ ¨ ¨ ` Xnq| ď a1{p2Vnq

‰
. p˚q

But the application of the Lindeberg CLT gives that the distribution of V ´1
n pX2 `

¨ ¨ ¨`Xnq tends to a standard normal Np0, 1q distribution, and this implies that the
probability in p˚q tends to zero as n Ñ 8, essentially since a1{p2Vnq Ñ 0, and so, if
Z is anNp0, 1q-distributed random variable then limnÑ8 Probr|Z| ď a1{p2Vnqs “ 0.

6also called a local limit theorem.
7To apply this result, one has to group together the terms appropriately, e.g. as

pX1 ` X2 ` X3q ` pX4 ` X5 ` X6q ` ¨ ¨ ¨ , so that the probability densities of the
individual terms satisfy the required bounds.

8An alternative to Feller’s proof of this fact is to note that

E
“
pXn ` Xn`1 ` ¨ ¨ ¨ ` Xmq2

‰
Ñ 0 as n,m Ñ 8 pn ď mq,

meaning that “Cauchy’s criterion for mean square convergence” applies and gives
the result.

https://encyclopediaofmath.org/wiki/Local_limit_theorems

