
Assignment 2: Some answers, comments and references

Problem 1. This is Excercise 9.5 in Rudin’s “Real and Complex Anal-
ysis” (but using Folland’s notation.)

Problem 2. This is Folland’s Exercise 8.39 (corrected).

Problem 3. Here is a solution covering the more general situation of
an arbitrary k > 1

2
:

Case 1: |a| ≤ 10. In this case we have 1 + |x− a| ≍ 1 + |x| for all
x ∈ R, and hence

∫ ∞

−∞

dx

(1 + |x− a|)k(1 + |x|)k ≍k

∫ ∞

−∞

dx

(1 + |x|)2k ≍k 1.

Case 2: |a| ≥ 10. Note that the integral is symmetric under a 7→
−a; hence in this Case 2 we may in fact assume a ≥ 10. Then we have
(1 + |x− a|)−k ≥ (1 + |(−x)− a|)−k for all x ≥ 0, and so

∫ ∞

−∞

dx

(1 + |x− a|)k(1 + |x|)k ≍
∫ ∞

0

dx

(1 + |x− a|)k(1 + |x|)k .

Next we note that if 0 ≤ x ≤ a/2 then 1 + |x − a| ≍ 1 + a ≍ a; if
a/2 ≤ x ≤ 3a/2 then 1 + |x| ≍ a, and if 3a/2 ≤ x then 1 + |x − a| ≍
1 + x ≍ x. Hence the above integral is

≍k

∫ a/2

0

dx

ak(1 + x)k
+

∫ 3a/2

a/2

dx

(1 + |x− a|)kak +

∫ ∞

3a/2

dx

x2k
.

Here each term is easy to compute explicitly. (In particular, regarding
the middle term, note that the integrand there is symmetric about the
point a; using this and the substitution x = a + y we see that the

middle term equals 2a−k
∫ a/2

0
(1 + y)−k dy.) We obtain that the above

expression is (still assuming a ≥ 10):





If k > 1: ≍k a−k + a−k + a1−2k ≍ a−k;

If k = 1: ≍ a−1 log a+ a−1 log a+ a−1 ≍ a−1 log a;

If 1
2
< k < 1: ≍k a−k+1−k + a−k+1−k + a1−2k ≍ a1−2k.

Combining the above Cases 1 and 2 we obtain the estimate(s) stated
in the problem formulation – and when 1

2
< k < 1 we obtain

∫ ∞

−∞

dx

(1 + |x− a|)k(1 + |x|)k ≍k (1 + |a|)1−2k (∀a ∈ R).

�
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Addendum to Problem 3: Let us here also determine a more
precise asymptotic formula for the given integral as a → +∞.
For this task, it is helpful to first use the fact that the integrand is

symmetric about the point x = a
2
, i.e. invariant under x 7→ a−x. This

implies that∫ ∞

−∞

dx

(1 + |x− a|)k(1 + |x|)k = 2

∫ ∞

a/2

dx

(1 + |x− a|)k(1 + x)k
.

We are studying the limit a → +∞; hence we may assume throughout
that a ≥ 10. Hence we can approximate the integrand using (1+x)−k ≈
x−k. Namely, by Taylor expansion we have (1+x)−k = x−k(1+x−1)−k =
x−k(1 + Ok(x

−1)) = x−k(1 + Ok(a
−1)) for all x ≥ a/2 ≥ 5, and hence

the above expression equals

2
(
1 +Ok(a

−1)
) ∫ ∞

a/2

1

(1 + |x− a|)kxk
dx.(1)

Next we examine whether we can also get rid of the “1” in “1+ |x−a|”
– or how we should otherwise handle that term. Of course this depends
on whether the main contribution comes from the part of the integral
where x is near a, or from the part where x is far from a. To study this,
it is convenient to move the point a to 0, i.e. we substitute x = a − y
(for x < a) and x = a + y (for x > a), to get:

∫ ∞

a/2

1

(1 + |x− a|)kxk
dx =

∫ a/2

0

dy

(1 + y)k(a− y)k
+

∫ ∞

0

dy

(1 + y)k(a+ y)k
.

(2)

Then the question is whether the main contribution in the last two
integrals comes from y (fairly) near 0, or from y far from 0. For the

first integral,
∫ a/2

0
dy

(1+y)k(a−y)k
, this is easily answered: Indeed, we have

(a−y) ≍ a throughout the range of integration, and hence the question

is simply whether
∫ a/2

0
dy

(1+y)k
(for a very large) has its main contribution

for “y small” or “y large”? Answer: If k < 1 then the main contribution
is for “y large”, while if k > 1 then the main contribution is for y small
(or: ’not so large’) – basically because

∫∞
0

dy
(1+y)k

diverges for k < 1 but

not for k > 1. In both cases it makes sense to split
∫ a/2

0
as

∫ √
a

0
+
∫ a/2√

a
.

(Note that a ≥ 10 ensures that
√
a < a/2.)
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Case 1: k > 1. Then the main contribution comes from 0 < y <
√
a.

In this interval we have “a− y ≈ a”, namely: a− y = a(1+O(y/a)) =
a(1 +O(a−1/2)), and so (a− y)−k = a−k(1 +Ok(a

−1/2)). Hence:
∫ a/2

0

dy

(1 + y)k(a− y)k
=

∫ √
a

0

dy

(1 + y)k(a− y)k
+

∫ a/2

√
a

dy

(1 + y)k(a− y)k

=
(
1 +Ok(a

−1/2)
) ∫

√
a

0

dy

(1 + y)kak
+Ok

(∫ a/2

√
a

dy

(1 + y)kak

)

=
(
1 +Ok(a

−1/2)
)
· a−k · 1

k − 1
·
(
1− (1 +

√
a)1−k

)
+Ok

(
a

1

2
(1−k)−k

)

=
a−k

k − 1
·
(
1 +Ok

(
a−

1

2 + a
1

2
(1−k)

))
.

Note that both the exponents inside the last “Ok(· · · )” are negative, so
that the error term tends to zero. The second integral in (2) is handled
in a completely similar way, giving:
∫ ∞

0

dy

(1 + y)k(a+ y)k
=

∫ √
a

0

dy

(1 + y)k(a+ y)k
+

∫ ∞

√
a

dy

(1 + y)k(a+ y)k

=
a−k

k − 1
·
(
1 +Ok

(
a−

1

2 + a
1

2
(1−k)

))
.

Adding these two, and inserting in (1), we finally conclude:
∫ ∞

−∞

dx

(1 + |x− a|)k(1 + |x|)k =
4a−k

k − 1

(
1 +Ok

(
a−

1

2 + a
1

2
(1−k)

))
,(3)

which in particular implies that
∫ ∞

−∞

dx

(1 + |x− a|)k(1 + |x|)k ∼ 4a−k

k − 1
as a → ∞.(4)

(Note that (3) is a strictly stronger statement than (4).)
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Case 2: 1
2

< k < 1. Then the main contribution comes from√
a < y < a/2. In this interval we have “1 + y ≈ y”, namely 1 + y =

y(1+O(y−1)) = y(1+O(a−1/2)), and so (1+y)−k = y−k(1+Ok(a
−1/2)).

Hence:

∫ a/2

0

dy

(1 + y)k(a− y)k
=

∫ √
a

0

dy

(1 + y)k(a− y)k
+

∫ a/2

√
a

dy

(1 + y)k(a− y)k

= Ok

(
a−k

∫ √
a

0

dy

(1 + y)k

)
+
(
1 +Ok(a

−1/2)
) ∫ a/2

√
a

dy

yk(a− y)k

= Ok

(
a−k+ 1

2
(1−k)

)
+
(
1 +Ok(a

−1/2)
)(∫ a/2

0

dy

yk(a− y)k
−Ok

(∫ √
a

0

dy

ykak

))

= Ok

(
a

1

2
− 3

2
k
)
+
(
1 +Ok(a

−1/2)
) ∫ a/2

0

dy

yk(a− y)k
.

(The point of the last steps of the above computation was to make the

integral “
∫ a/2√

a
dy

yk(a−y)k
” cleaner, by replacing the end-point

√
a by 0 and

showing that this causes a total error Ok(a
1

2
− 3

2
k), i.e. exactly the same

error as we got from the integral
∫ √

a

0
dy

(1+y)k(a−y)k
in the step before.)

Substituting y = at in the last integral we get:

= Ok

(
a

1

2
− 3

2
k
)
+
(
1 +Ok(a

−1/2)
)
· a1−2k ·

∫ 1/2

0

dt

tk(1− t)k

=

(∫ 1/2

0

dt

tk(1− t)k

)
· a1−2k ·

(
1 +Ok(a

− 1

2
(1−k)

))
.

The second integral in (2) is handled in a completely similar way, giving:

∫ ∞

0

dy

(1 + y)k(a+ y)k
=

(∫ ∞

0

dt

tk(1 + t)k

)
· a1−2k ·

(
1 +Ok(a

− 1

2
(1−k)

))
.

Adding these two, and inserting in (1), we conclude:

∫ ∞

−∞

dx

(1 + |x− a|)k(1 + |x|)k ∼ Ck · a1−2k as a → +∞,(5)

where Ck is the constant Ck = 2
(∫ 1/2

0
dt

tk(1−t)k
+
∫∞
0

dt
tk(1+t)k

)
=

∫∞
−∞

dt
|t−1|k|t|k .

Remark 1: A brief way to describe what happens in the computa-
tion in Case 2 (1

2
< k < 1) is that it turns out that in this case, both

the terms “1” can be removed without changing the leading asymptotic
behaviour of the integral:

∫∞
−∞

dx
(1+|x−a|)k(1+|x|)k ∼

∫∞
−∞

dx
|x−a|k|x|k . Substi-

tuting x = at in the last integral gives
(∫∞

−∞
dt

|t−1|k|t|k
)
·a1−2k = Cka

1−2k.
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Remark 2: A closed formula for the constant Ck can be obtained
as follows. We have
∫ 1/2

0

dt

tk(1− t)k
=

1

2

∫ 1

0

dt

tk(1− t)k
=

Γ(1− k)2

2Γ(2− 2k)
=

22k−2
√
πΓ(1− k)

Γ(3
2
− k)

= −22k−2

√
π

Γ(k − 1
2
)Γ(1− k) cos(πk),

where we used (7.7) and then (7.6) and (7.5) from the lecture notes.
For the other integral, the substituting t = s−1 − 1 leads to:

∫ ∞

0

dt

tk(1 + t)k
=

∫ 1

0

s2k−2(1− s)−k ds =
Γ(2k − 1)Γ(1− k)

Γ(k)

=
22k−2

√
π

Γ(k − 1
2
)Γ(1− k),

where we used (7.7) and then (7.6) from the lecture notes. Adding
these two, we conclude:

Ck =
22k−1

√
π

Γ(k − 1
2
)Γ(1− k)

(
1− cos(πk)

)
.

Remark 3: I encourage you to also sort out the case k = 1! In
particular, I think that an interesting challenge would be to seek an
asymptotic formula which is valid uniformly for all k in a neighborhood
of 1.
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Problem 4. We have∫ ∞

1

e−bxxab dx =

∫ ∞

1

e−b(x−a log x) dx,

and for any a ∈ [0, 1) the function

x 7→ x− a log x

is strictly increasing for x ≥ 1 (since its derivative is 1− a
x
≥ 1−a > 0).

Hence for b large, the main contribution to the integral will come from
x near 1, and we may hope to get an adequate estimate by using the
Taylor expansion of log x at the point x = 1. In fact we can obtain
quite simple and precise bounds from above and below by making use
of the following inequality, which is inspired by the aforementioned
Taylor expansion:

(∗) x− 1− 1
2
(x− 1)2 ≤ log x ≤ x− 1, ∀x ≥ 1.

(To verify the first inequality, note that the derivative of the function
log x−(x−1)+ 1

2
(x−1)2 equals x−1+x−2, which is ≥ 0 for all x ≥ 1.)

Using the second inequality in (*), we get:
∫ ∞

1

e−bxxab dx ≤
∫ ∞

1

e−bx+ab(x−1) dx =
e−b

(1− a)b
.

Using the first inequality in (*), we get:
∫ ∞

1

e−bxxab dx ≥
∫ ∞

0

e−b(u+1)+abu− 1

2
abu2

du,

and since e−y ≥ 1− y for all y ≥ 0, the above is

≥ e−b

∫ ∞

0

e−(1−a)bu
(
1− 1

2
abu2

)
du ≥ e−b

(1− a)b

(
1− a

(1− a)2b

)
.

In conclusion, we have proved:

e−b

(1− a)b

(
1− a

(1− a)2b

)
≤

∫ ∞

1

e−bxxab dx ≤ e−b

(1− a)b
.

This easily implies the claim in the problem formulation, and in fact
gives the stronger information that the required asymptotic relation∫∞
1

e−bxxab dx ∼ e−b

(1−a)b
holds uniformly over all a ∈ [0, a0(b)), where a0

is any function R≥0 → [0, 1) such that (1− a0(b)) · b1/2 → ∞.
(That is, a is allowed to approach 1 as b → ∞, but not too quickly.)

�
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Problem 6. Outline of a solution: Set

fx(t) = x1t+ x2t
2 + · · ·+ xnt

n,

for x = (x1, . . . , xn) ∈ R
n and t ∈ R. We wish to show that if x 6= 0

then supt∈[0,1] | d
k

dtk
fx(t)| ≫ |x| for some k ∈ {1, . . . , n}, and then use

this together with Stein’s Prop. 2 (Ch. 8.1).
One way to prove such a lower bound is to partition the unit sphere

in a clever way such that the desired bound can be proved with a
specific k for all x belonging to any given part of the partition. Three
students have nicely carried out such a solution (please ask me if you
are interested in seeing details on how this can be done). Here, for fun,
we give instead a less concrete argument, using compactness. Set

g(x) = max
k∈{1,...,n}

inf
t∈[0,1]

∣∣∣∣
dk

dtk
fx(t)

∣∣∣∣ (x ∈ R
n).

Note for all x, k, the infimum over t ∈ [0, 1] is attained for some t, since
dk

dtk
fx(t) is a continuous function of t and [0, 1] is a compact interval;

one also proves that for each k this infimum depends continuously on x;
hence also g(x) is a continuous function of x. Let us now consider the
infimum of g(x) over the unit sphere Sn−1 = {x ∈ R

n : |x| = 1}. Since
Sn−1 is compact, this infimum is attained, say at the point x′ ∈ Sn−1.
Clearly g(x′) ≥ 0. Assume g(x′) = 0. This means that

(∗) inf
t∈[0,1]

∣∣∣∣
dk

dtk
fx′(t)

∣∣∣∣ = 0, ∀k ∈ {1, . . . , n}.

But note that dn

dtn
fx′(t) = x′

n · n! (∀t); hence (*) for k = n implies

that x′
n = 0. Using x′

n = 0 we have dn−1

dtn−1 fx′(t) = x′
n−1 · (n − 1)! (∀t),

and hence (*) for k = n − 1 implies that x′
n−1 = 0. Repeating this

argument for k = n − 2, n − 3, . . . , 1 (in this order), we conclude that
x′
n = x′

n−1 = · · · = x′
1 = 0. This is a contradiction against x′ ∈ Sn−1!

Hence we conclude that

c := inf
x∈Sn−1

g(x) > 0.

Using this constant c (which only depends on n), we may now argue as
follows, for any non-zero point x ∈ R

n: Set x̃ = |x|−1x ∈ Sn−1. Then

g(x̃) ≥ c, i.e. there is some k ∈ {1, . . . , n} such that
∣∣ dk

dtk
fx̃(t)

∣∣ ≥ c
for all t ∈ [0, 1]. Note that fx(t) = |x| · fx̃(t); hence it follows that∣∣ dk

dtk
fx(t)

∣∣ ≥ c|x| for all t ∈ [0, 1]. If k ≥ 2 then this immediately gives,
via Stein’s Prop. 2, that

∫ 1

0

e(fx(t)) dt ≪k (c|x|)−1/k.
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If k = 1 then we have to also satisfy the monotonicity assumption in
Stein’s Prop. 2; however note that d2

dt2
fx(t) is a polynomial of degree

≤ n − 2; hence it can have at most n − 2 zeros in the interval [0, 1];1

and so we can partition [0, 1] into at most n− 1 subintervals such that
d
dt
fx(t) is monotonic on each of these subintervals. Applying Stein’s

Prop. 2 (with k = 1) to the integral over each such subinterval, and
adding up, we obtain:

∫ 1

0

e(fx(t)) dt ≪ (n− 1) · (c|x|)−1.

The fact that at least one of the above inequalities must hold implies
that if |x| ≥ 1 then we have

∫ 1

0

e(fx(t)) dt ≪n max(|x|−1, |x|−1/2, . . . , |x|−1/n) = |x|−1/n.

But we also have, trivially,
∫ 1

0

e(fx(t)) dt ≤ 1, (∀x ∈ R
n).

Hence we conclude that, for all x ∈ R
n: we have

∫ 1

0

e(fx(t)) dt ≪ min(1, |x|−1/n) ≍ (1 + |x|)−1/n.

Hence we have proved that the bound in the problem formulation
holds with α = 1/n. To see that this is the best possible exponent,
it suffices to consider points of the form x = (0, . . . , 0, xn), with xn →
+∞. We don’t give the details here.

Answer: α = 1/n. �

1Or it may be the zero polynomial; but then we are done, since this implies that
d

dt
fx(t) is (constant and hence) monotonic as a function of t over the whole real

axis.
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Problem 7. It should be noted that the integrand is not periodic
with period 2π, unless λ is an integer. Hence there is in general a
“non-negligible”2 contribution from the end-points. It is part of the
problem to prove that this contribution is O(λ−1).

2By this I mean: Not as small as “O(λ−N ) with arbitrarily large N”, but instead
quite a bit larger!


