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1. Sums and integrals

1.1. Introductory examples. Integration and summation are very
closely related. Indeed, integrals are defined using sums. Furthermore,
the general integral (cf., e.g., Folland Ch. 2) is a generalization of the
concept of a sum; the latter is obtained from the former when the
measure of integration is taken to be a counting measure. However in
this first lecture I’d like to focus on some explicit connections between
sums and the “elementary, first-year-calculus integral

∫
f(x) dx”. Our

focus will be on using integrals to estimate sums, since integrals are
often easier to work with.

A well-known explicit connection between sums and integrals is the
following:

Example 1.1. Let M < N be integers and let f be any increasing
function [M − 1, N + 1] → R. Then

∫ N

M−1

f(x) dx ≤
N∑

n=M

f(n) ≤
∫ N+1

M

f(x) dx.

Indeed, “draw a picture”! A similar example: Suppose that f is any
convex function [M − 1

2
, N + 1

2
] → R. Then

N∑

n=M

f(n) ≤
∫ N+ 1

2

M− 1
2

f(x) dx.

Indeed, again “draw a picture”!

Another familiar way in which integrals can sometimes be used to
estimate sums is if the sum can be recognized as a Riemann sum (we
will recall the definition of a Riemann integral using Riemann sums
below; see Section 1.2). For example this method can be applied to the
following question:

Example 1.2. Given a fixed number α > −1, what is the asymptotic
behavior of the sum

∑N
n=1 n

α as N → ∞?

One solution is to rewrite the sum as
N∑

n=1

nα = Nα+1

N∑

n=1

( n
N

)α 1

N
.

Here the right hand side can be recognized as a Riemann sum for the
integral

∫ 1

0
xα dx, and from this we conclude that the sum tends to the

value of
∫ 1

0
xα dx as N → ∞. Hence:

N−α−1
N∑

n=1

nα →
∫ 1

0

xα dx =
1

α+ 1
, as N → ∞.
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The answer can be expressed:
N∑

n=1

nα ∼ Nα+1

α + 1
as N → ∞.(1.1)

Here we used the relation “∼”, which is defined as follows:

Definition 1.1. We write “f(x) ∼ g(x) as x → a” to denote that

limx→a
f(x)
g(x)

= 1. Here a can be any real number, or ±∞. Note that

this notation can only be used when g(x) 6= 0 for all x sufficiently near
a.

Note that the same answer (1.1) could also be obtained, actually in
a more precise form, using the technique of Example 1.1. Namely, let’s
assume α ≥ 0 so that the function f(x) = xα is increasing (the other
case −1 < α < 0 can be treated similarly). Then

∫ N

0

xα dx ≤
N∑

n=1

nα ≤
∫ N+1

1

xα dx,

that is:

Nα+1

α + 1
≤

N∑

n=1

nα ≤ (N + 1)α+1 − 1

α + 1
(∀N ∈ N).(1.2)

This is clearly a more precise result than (1.1). We can deduce from

(1.2) that
∑N

n=1 n
α equals Nα+1

α+1
plus a “lower order error”, namely:

N∑

n=1

nα =
Nα+1

α+ 1
+O(Nα), ∀N ∈ N (for fixed α ≥ 0).(1.3)

Here the symbol “O(· · · )” (“Big O”) is defined as follows:

Definition 1.2. If a is a non-negative number, the symbol “O(a)”
is used to denote any number b for which |b| ≤ Ca, where C is a
positive “constant”, called the implied constant. We write “constant”
within quotation marks since C is often allowed to depend on certain
parameters.

We will discuss the “Big O” symbol and the implied constant more
thoroughly in later lectures; for now we just give an exercise:

Exercise 1.1. Deduce (1.3) from (1.2).

(Note that we have to allow the implied constant in (1.3) to depend on α. But of

course the implied constant is independent of N — this is the whole point of the

statement (1.3)!)
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We turn to a slightly different example:

Example 1.3. Assume that we are given an increasing sequence of
positive numbers, 0 < ω1 ≤ ω2 ≤ · · · , which satisfy

#{n ∈ N : ωn ≤ T} ∼ cT 2 as T → ∞,(1.4)

where c > 0 is some constant. Then for which real numbers α do the
series

∑∞
n=1 ω

−α
n converge? When convergence holds, can we estimate∑

ωn>T ω
−α
n as a function of T as T → ∞?

(Notation: “
∑

ωn>T” means that we add over all n which satisfy the
condition ωn > T .)

(To motivate the example, let us point out that the ωn’s may e.g. be
the square roots of the non-zero eigenvalues of the Dirichlet problem for
some bounded domain Ω ⊂ R2 — in other words the eigenfrequencies
of vibration of a given idealized “drum” in the plane. Then (1.4) is
known to hold, with c = (4π)−1, by the famous Weyl’s law. In the
study of such systems, sums like

∑∞
n=1 ω

−α
n are often of interest.)

Note that the sum
∑∞

n=1 ω
−α
n is a positive sum; each term is positive.

If we only care about “order of magnitude”, viz. if we are willing to
sacrifice a numerical constant in our bounds, then questions about the
asymptotic size of positive sums can often be answered using dyadic
decomposition. We illustrate this for the first question in Example 1.3:

Clearly
∑∞

n=1 ω
−α
n diverges if α ≤ 0; hence from now on we may

assume α > 0. Our sum can be decomposed as:

∞∑

n=1

ω−α
n =

∑

ωn≤1

ω−α
n +

∞∑

m=0

( ∑

2m<ωn≤2m+1

ω−α
n

)
.(1.5)

(This is a dyadic decomposition.) Using α > 0 we see that (1.5) is

≥
∞∑

m=0

#{2m < ωn ≤ 2m+1} · 2−(m+1)α

and1

≤
∑

ωn≤1

ω−α
n +

∞∑

m=0

#{2m < ωn ≤ 2m+1} · 2−mα.

The cardinalities appearing in these two bounds are precisely the
cardinalities which (1.4) gives us information about! Namely, if we set

A(T ) = #{ωn ≤ T} for T > 0,

1We here use the shorthand notation “{a < ωn ≤ b}” for “{n ∈ N : a < ωn ≤ b}”.
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then the bounds which we pointed out above read:

∞∑

m=0

(
A(2m+1)−A(2m)

)
· 2−(m+1)α ≤

∞∑

n=1

ω−α
n

≤
∑

ωn≤1

ω−α
n +

∞∑

m=0

(
A(2m+1)−A(2m)

)
· 2−mα,(1.6)

and (1.4) says that A(T ) ∼ cT 2 as T → ∞.

Let us note that apart from the sum
∑

ωn≤1 ω
−α
n (which is finite since

A(1) is finite, by (1.4)), the lower and the upper bound in (1.6) only
differ by the constant factor 2−α. This is the central point of dyadic
decomposition: In favorable situations the total contribution from each
individual “dyadic interval” can be estimated from above and below
by some simple expressions which only differ up to a multiplicative
constant! (We could get rid of the sum

∑
ωn≤1 ω

−α
n by applying dyadic

decomposition also to the interval 0 < λ ≤ 1, i.e. writing the sum in
(1.5) as

∑∞
m=−∞

∑
2m<ωn≤2m+1 ω−α

n ; however we won’t need this in the
present discussion.)

Continuing, we note that A(2m+1)−A(2m) ≥ 0 for each m ≥ 0, and
from (1.4) it follows that

#
(
A(2m+1)− A(2m)

)
∼ 3c · 22m as m→ ∞.

Using this and the bounds in (1.6), the convergence/divergence of∑∞
n=1 ω

−α
n is seen to be equivalent to the convergence/divergence of

the sum
∑∞

m=0 2
2m · 2−αm, and we thus conclude that

∑∞
n=1 ω

−α
n con-

verges when α > 2, and diverges when α ≤ 2.

Remark 1.3. Another quick way to get this answer goes via noticing
that (1.4) actually implies ωn ∼

√
n/c as n→ ∞.

We now move on to the second question in Example 1.3: For α > 2 we
know that

∑∞
n=1 ω

−α
n converges, and hence

∑
ωn>T ω

−α
n is a well-defined

function of T (which is clearly positive, and decreasing). We now wish
to give an asymptotic estimate of this sum as T → ∞. For this we will
use another very important method for the asymptotic study of sums:
Consider the following way to rewrite

∑
ωn>T ω

−α
n as an integral over

the counting function A(x) for x ≥ T . Using ω−α
n =

∫∞
ωn
αx−α−1 dx we

have

∑

ωn>T

ω−α
n =

∑

ωn>T

∫ ∞

ωn

αx−α−1 dx =

∫ ∞

T

∞∑

n=1
(T<ωn≤x)

αx−α−1 dx

=

∫ ∞

T

(
A(x)− A(T )

)
αx−α−1 dx.(1.7)



6 ANDREAS STRÖMBERGSSON

(The change of order of summation here is permitted since all func-
tions involved are nonnegative; indeed, write

∑
ωn>T

∫∞
ωn
αx−α−1 dx as∑

ωn>T

∫∞
T
I(x > ωn)αx

−α−1 dx and apply Folland’s Theorem 2.15. 2)

Continuing from (1.7) we get:

∑

ωn>T

ω−α
n =

∫ ∞

T

A(x)αx−α−1 dx− A(T )T−α.(1.8)

Using here (1.4) we have:

∫ ∞

T

A(x)αx−α−1 dx ∼
∫ ∞

T

cx2 · αx−α−1 dx = c
αT 2−α

α− 2
as T → ∞.

[Detailed proof of the last “∼” relation: We know that A(T ) ∼ cT 2;
hence given any ε > 0 there exists some T0 > 0 such that (c− ε)T 2 <
A(T ) < (c + ε)T 2 for all T ≥ T0; hence for all T ≥ T0 we have∫∞
T
A(x)αx−α−1 dx ≤

∫∞
T
(c + ε)x2 · αx−α−1 dx = (c + ε)αT

2−α

α−2
and

similarly
∫∞
T
A(x)αx−α−1 dx ≥ (c− ε)αT

2−α

α−2
. The fact that this can be

achieved for each ε > 0 leads to the desired conclusion.]

Furthermore in (1.8) we have A(T )T−α ∼ cT 2−α. Hence, since α
α−2

>

1 and α
α−2

− 1 = 2
α−2

, we conclude:

∑

ωn>T

ω−α
n ∼ 2c

α− 2
T 2−α as T → ∞.

This holds for any fixed α > 2, and we have thus answered the second
question in Example 1.3.

The computation in (1.7), (1.8) is very reminiscent of integration
by parts, and in the next section will show that it is indeed a spe-
cial case of integration by parts when viewed in the framework of
the Riemann-Stieltjes integral. Namely,

∑
ωn>T ω

−α
n can be expressed

as
∫∞
T
x−α dA(x), and integrating by parts we get [A(x)x−α]x=∞

x=T +

α
∫∞
T
x−α−1A(x) dx, i.e. the formula in (1.8)!

1.2. The Riemann-Stieltjes Integral. In this section we loosely fol-
low [13, Appendix A].

Let us first recall the definition of the Riemann integral over a
bounded interval:

2This is if we view the integrals as Lebesgue integrals; it is of course also possible
to justify the present computation using only the Riemann integral.
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Definition 1.4. Let real numbers A < B and a function g : [A,B] → C
be given. We call a finite sequence {xn}Nn=0 is a partition3 of [A,B] if

A = x0 ≤ x1 ≤ . . . ≤ xN = B.(1.9)

For any partition {xn}Nn=0 of [A,B] and any choice of numbers ξn ∈
[xn−1, xn] for n = 1, 2, . . . , N , we form the sum

S({xn}, {ξn}) =
N∑

n=1

g(ξn)(xn − xn−1).(1.10)

We say that the Riemann integral
∫ B

A
g(x) dx exists if there is some

I ∈ C such that for every ε > 0 there is a δ > 0 such that
∣∣S({xn}, {ξn})− I

∣∣ < ε(1.11)

holds whenever {xn} and {ξn} are as above and

mesh{xn} = max
1≤n≤N

(xn − xn−1) ≤ δ.(1.12)

If this holds, then we also say that
∫ B

A
g(x) dx equals I, and the function

g is said to be Riemann-integrable on [A,B].

It will be convenient in our discussion to call any pair of finite se-
quences 〈{xn}Nn=0, {ξn}Nn=1〉 such that {xn}Nn=0 is a partition of [A,B]
and ξn ∈ [xn−1, xn] for n = 1, 2, . . . , N a “tagged partition of [A,B]”;
we also agree that the mesh of 〈{xn}Nn=0, {ξn}Nn=1〉 equals the mesh of
{xn}.

We will later give a precise criterion for which functions are Riemann-
integrable; however let us already now point out the following funda-
mental result. We write C([A,B]) for the space of continuous functions
[A,B] → C.

Theorem 1.5. If g ∈ C([A,B]) then g is Riemann-integrable on [A,B].

This is a special case of Theorem 1.10 which we will prove below.

Let us also note:

Proposition 1.6. If g : [A,B] → C is Riemann integrable then g is
bounded (that is, there exists some numberM > 0 such that |g(x)| ≤M
for all x ∈ [A,B]).

3Of course, this is not the standard notion of partition! Recall that the standard
notion of a partition of a set X is: A family of nonempty subsets of X such that
every element x ∈ X belongs to exactly one of these subsets. However the two
different usages of the word “partition” will not cause any confusion. Note also
that the two concepts are related: If {xn}Nn=0 is a partition of [A,B] in the sense of
(1.9), then (e.g.) {[x0, x1), [x1, x2), . . . , [xN−1, XN ]} is a partition of [A,B] in the
more standard sense.
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Proof. Assume that g is not bounded. We will then prove that for every
tagged partition 〈{xn}Nn=0, {ξn}Nn=1〉 of [A,B] there exists another se-
quence {ξ′n}Nn=1 such that also 〈{xn}Nn=0, {ξ′n}Nn=1〉 (with the same {xn}!)
is a tagged partition of [A,B], and

∣∣S({xn}, {ξn})− S({xn}, {ξ′n})
∣∣ ≥ 1.(1.13)

Clearly this implies that g is not Riemann-integrable on [A,B].

To prove the above claim, let 〈{xn}Nn=0, {ξn}Nn=1〉 be a given tagged
partition of [A,B]. Note that since g is not bounded, there is some m ∈
{1, . . . , N} such that the restriction of g to [xm−1, xm] is not bounded.
This implies that xm−1 < xm and that there is some y ∈ [xm−1, xm]
such that

|g(y)| ≥ |g(ξm)|+ (xm − xm−1)
−1,

and therefore

|g(y)− g(ξm)|(xm − xm−1) ≥ 1.

Now define {ξ′n}Nn=1 by ξ′n = ξn for n 6= m and ξ′m = y. Then clearly
〈{xn}Nn=0, {ξ′n}Nn=1〉 is a tagged partition of [A,B], and
∣∣S({xn}, {ξn})− S({xn}, {ξ′n})

∣∣ =
∣∣(g(ξm)− g(y))(xm − xm−1)

∣∣ ≥ 1,

i.e. (1.13) holds. �

We next turn to the Riemann-Stieltjes Integral
∫ B

A
g(x) df(x), which

is a generalization of the Riemann integral. Intuitively, this integral

is meant to give “
∫ B

A
g(x)f ′(x) dx” (see Theorem 1.13 below for an

aposteriori justification), but the integral exists also in many cases
when f ′(x) does not exist for all x.

Definition 1.7. Let real numbers A < B and two functions f, g :
[A,B] → C be given. For any tagged partition 〈{xn}Nn=0, {ξn}Nn=1〉 of
[A,B], we form the sum

S({xn}, {ξn}) =
N∑

n=1

g(ξn)
(
f(xn)− f(xn−1)

)
.(1.14)

We say that the Riemann-Stieltjes integral
∫ B

A
g df =

∫ B

A
g(x) df(x)

exists and has the value I if for every ε > 0 there is a δ > 0 such that
∣∣S({xn}, {ξn})− I

∣∣ < ε(1.15)

whenever 〈{xn}Nn=0, {ξn}Nn=1〉 is a tagged partition of [A,B] of mesh
≤ δ.

Note that in the special case f(x) = x, Definition 1.7 specializes to
Definition 1.4; hence the Riemann-Stieltjes integral is indeed a gener-
alization of the Riemann integral!
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Example 1.4. For any A < B and any function f : [A,B] → C,

the Riemann-Stieltjes integral
∫ B

A
df(x) (viz. “g ≡ 1” in Definition

1.7) exists and equals f(B) − f(A). This is trivial, since in this
case S({xn}, {ξn}) = f(B) − f(A) holds for all tagged partitions
〈{xn}, {ξn}〉 of [A,B].

Example 1.5. Let A < B, g ∈ C([A,B]), and assume that f :
[A,B] → C is piecewise constant, that is, there are numbers A =
x0 < x1 < x2 < . . . < xn = B such that f is constant on each open
interval (xj , xj+1), j = 0, 1, . . . , n− 1. Then

∫ B

A

g df =
(
f(A+)− f(A)

)
g(A) +

n−1∑

j=1

(
f(xj+)− f(xj−)

)
g(xj)

+
(
f(B)− f(B−)

)
g(B),(1.16)

where

f(x+) = lim
t→x+

f(t) and f(x−) = lim
t→x−

f(t).(1.17)

The proof is a simple exercise.

Example 1.6. One has to be careful when working with the general
Riemann-Stieltjes integral, since some rules which are familiar from
ordinary integrals may fail to hold in general. For example, it is not

always true that if A < C < B then
∫ B

A
g(x) df(x) =

∫ C

A
g(x) df(x) +∫ B

C
g(x) df(x)! An example of this is the following: Suppose that

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise;
g(x) =

{
1 if 0 < x ≤ 1

0 otherwise.
(1.18)

Then
∫ 0

−1
g df and

∫ 1

0
g df both exist, but

∫ 1

−1
g df does not exist! We

leave the proof as an exercise. On the positive side, note that
∫ B

A
g(x) df(x) =∫ C

A
g(x) df(x)+

∫ B

C
g(x) df(x) holds whenever

∫ B

A
g(x) df(x) exists (this

can for example be easily proved using Lemma 1.11).

Unpleasant behavior such as in Example 1.6 typically arises in cases
when both f and g have a common point of discontinuity.

A natural assumption when working with the Riemann-Stieltjes in-

tegral
∫ B

A
g(x) df(x) is that f is of bounded variation. This concept is

defined as follows:

Definition 1.8. If f is a function f : [A,B] → C, then the variation
of f over [A,B], Var[A,B](f), is defined by

Var[A,B](f) = sup
N∑

n=1

|f(xn)− f(xn−1)|,(1.19)
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where the supremum is taken over all partitions {xn}Nn=0 of [A,B]. Thus
Var[A,B](f) is a well-defined number in [0,∞] (cf. Folland, Sec. 0.5).
The function f is said to be of bounded variation if Var[a,b](f) < ∞.
The space of all functions f : [A,B] → C of bounded variation is
denoted BV ([A,B]).

The reader should check that the above definition agrees with that
in Folland [5, p. 102]. Let us give an intuitive motivation of the above
definition of the variation of f , following Folland [5, p. 101]: If f(t)
represents the position of a particle moving along the real line (or more
generally in the complex plane) at time t, the “total variation” of f
over the interval [A,B] is the total distance traveled from time A to
time B, as shown on an odometer. If f has a continuous derivative, this

is just the integral of the “speed”,
∫ B

A
|f ′(t)| dt. The above definition

of Var[A,B](f) is simply the natural extension of “
∫ B

A
|f ′(t)| dt” to the

case when we have no smoothness hypothesis on f .

The assertion of the last sentence can be proved rigorously.

Proposition 1.9. If f ∈ C1([A,B]) 4 then

Var[A,B](f) =

∫ B

A

|f ′(x)| dx.(1.20)

In particular every function in C1([A,B]) is of bounded variation, i.e.
C1([A,B]) ⊂ BV ([A,B]).

We will prove Proposition 1.9 after the proof of our first main theo-
rem:

Theorem 1.10. Let g ∈ C([A,B]) and f ∈ BV ([A,B]). Then the

Riemann-Stieltjes integral
∫ B

A
g df exists.

To prepare for the proof, let us note a simple reformulation of the

criterion for existence of
∫ B

A
g(x) df(x):

Lemma 1.11. The Riemann-Stieltjes integral
∫ B

A
g df exists if and only

if for every ε > 0 there is some δ > 0 such that for any two tagged
partitions 〈{xn}, {ξn}〉 and 〈{x′n}, {ξ′n}〉 of [A,B], both having mesh
≤ δ, we have |S({xn}, {ξn})− S({x′n}, {ξ′n})| < ε.

Proof. One direction is trivial: Namely, assume that
∫ B

A
g df exists and

equals I. Let ε > 0 be given. Then there is a δ > 0 such that
|S({xn}, {ξn}) − I| < ε/2 holds for any tagged partition 〈{xn}, {ξn}〉

4As usual, Ck([A,B]) denotes the space of functions f : [A,B] → C which are
k times continuously differentiable, where at x = A we only consider the right

derivative(s), and at x = B we only consider the left derivative(s).
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of [A,B] with mesh ≤ δ. Then if 〈{xn}, {ξn}〉 and 〈{x′n}, {ξ′n}〉 are any
two tagged partitions of [A,B] both having mesh ≤ δ, we have

|S({xn}, {ξn})− S({x′n}, {ξ′n})|
≤ |S({xn}, {ξn})− I|+ |S({x′n}, {ξ′n})− I| < ε

2
+
ε

2
= ε.

Conversely, assume that the condition given in the lemma holds. For

each j ∈ N, let us fix once and for all a tagged partition 〈{x(j)n }, {ξ(j)n }〉
of [A,B] having mesh ≤ j−1, and set

Ij = S({x(j)n }, {ξ(j)n }).
Then our assumption implies that {Ij}∞j=1 is a Cauchy sequence! Hence

I = lim
j→∞

Ij ∈ R

exists. Now let ε > 0 be given. Because of our assumption there
exists some δ > 0 such that |S({xn}, {ξn}) − S({x′n}, {ξ′n})| < ε/2
holds whenever 〈{xn}, {ξn}〉 and 〈{x′n}, {ξ′n}〉 are tagged partitions of
[A,B] having mesh ≤ δ. Now fix j so large that both j−1 ≤ δ and

|Ij−I| < ε/2 hold, and take 〈{x′n}, {ξ′n}〉 equal to 〈{x(j)n }, {ξ(j)n }〉 in the
previous statement. The conclusion is that |S({xn}, {ξn})− Ij| < ε/2
holds for any tagged partition 〈{xn}, {ξn}〉 of [A,B] having mesh ≤ δ.
Hence also

|S({xn}, {ξn})− I| ≤ |S({xn}, {ξn})− Ij |+ |Ij − I| < ε

2
+
ε

2
= ε.

This proves that
∫ B

A
g df exists and equals I. �

Proof of Theorem 1.10. Let ε > 0 be given. Since g is continuous on
the closed and bounded interval [A,B], g is uniformly continuous on
[A,B]; hence there exists δ > 0 such that

|g(x)− g(x′)| < ε for all x, x′ ∈ [a, b] with |x− x′| ≤ δ.(1.21)

We now claim that for any two tagged partitions 〈{xn}, {ξn}〉 and
〈{x′n}, {ξ′n}〉 of [A,B], both having mesh ≤ δ, we have

∣∣∣S({xn}, {ξn})− S({x′n}, {ξ′n})
∣∣∣ ≤ 2εVar[A,B](f).(1.22)

This suffices to prove the existence of
∫ B

A
g df , by Lemma 1.11.

In order to prove (1.22), let us pick a tagged partition 〈{x′′n}, {ξ′′n}〉
of [A,B] such that both {xn} and {x′n} are subsequences of {x′′n}. We
will then prove that

∣∣∣S({xn}, {ξn})− S({x′′n}, {ξ′′n})
∣∣∣ ≤ εVar[A,B](f).(1.23)
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This will complete the proof, since exactly the same argument will also
give (1.23) with 〈{xn}, {ξn}〉 replaced by 〈{x′n}, {ξ′n}〉; and then (1.22)
follows using the triangle inequality.

In order to prove (1.23), assume {xn} = {xn}Nn=0 and {x′′n} = {x′′n}Mn=0,
and note that since {xn}Nn=0 is a subsequence of {x′′n}Mn=0 there exist in-
dices 0 = k0 < k1 < . . . < kN =M such that xn = x′′kn for n = 0, . . . , N .
Now

S({xn}, {ξn})− S({x′′n}, {ξ′′n})

=

N∑

n=1

g(ξn)
(
f(xn)− f(xn−1)

)
−

M∑

n=1

g(ξ′′n)
(
f(x′′n)− f(x′′n−1)

)

=
N∑

n=1

(
g(ξn)

(
f(xn)− f(xn−1)

)
−

kn∑

k=1+kn−1

g(ξ′′k)
(
f(x′′k)− f(x′′k−1)

))

=

N∑

n=1

kn∑

k=1+kn−1

(
g(ξn)− g(ξ′′k)

)(
f(x′′k)− f(x′′k−1)

)
,

(1.24)

where in the last equality we used the fact that for every n ∈ {1, . . . , N}
we have

kn∑

k=1+kn−1

(f(x′′k)− f(x′′k−1)) = f(x′′kn)− f(x′′kn−1
) = f(xn)− f(xn−1).

It follows from (1.24) that
∣∣∣S({xn}, {ξn})− S({x′′n}, {ξ′′n})

∣∣∣

≤
N∑

n=1

kn∑

k=1+kn−1

∣∣g(ξn)− g(ξ′′k)
∣∣∣∣f(x′′k)− f(x′′k−1)

∣∣.

Here for any pair 〈n, k〉 appearing in the sum we have ξn ∈ [xn−1, xn]
and ξ′′k ∈ [x′′k−1, x

′′
k] ⊂ [xn−1, xn], and hence

|ξn − ξ′′k | ≤ |xn − xn−1| ≤ mesh{xn} ≤ δ.

Hence by (1.21) we have |g(ξn)− g(ξ′′k)| < ε for all 〈n, k〉 appearing in
our sum, and we conclude

∣∣∣S({xn}, {ξn})− S({x′′n}, {ξ′′n})
∣∣∣ ≤ ε

N∑

n=1

kn∑

k=1+kn−1

∣∣f(x′′k)− f(x′′k−1)
∣∣

= ε

M∑

k=1

∣∣f(x′′k)− f(x′′k−1)
∣∣ ≤ εVar[A,B](f).

We have thus proved (1.23), and the proof of the theorem is complete.
�
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Proof of Proposition 1.9. Since f ∈ C1([A,B]), the function x→ |f ′(x)|
is continuous, and thus the Riemann integral

∫ B

A
|f ′(x)| dx exists by

Theorem 1.5. Hence for any ε > 0 there is some δ > 0 such that for
any tagged partition 〈{xn}Nn=0, {ξn}Nn=1〉 of [A,B] of mesh ≤ δ we have

∣∣∣∣∣
N∑

n=1

(xn − xn−1)|f ′(ξn)| −
∫ B

A

|f ′(x)| dx
∣∣∣∣∣ < ε.(1.25)

Furthermore since f ′ is uniformly continuous on [A,B], by taking δ
sufficiently small we can ensure that for any numbers x ≤ ξ ≤ y in
[A,B] satisfying y − x ≤ δ we have

|f(y)− f(x)− (y − x)f ′(ξ)| ≤ (y − x)ε.(1.26)

((Let us recall a proof of the last statement: Since f ∈ C1([A,B])
and [A,B] is a closed and bounded interval, f ′ is uniformly continuous
on [A,B]; thus we can take δ > 0 so small that |f ′(ξ) − f ′(η)| <
ε/2 for any ξ, η ∈ [A,B] with |ξ − η| ≤ δ. Now let x ≤ ξ ≤ y be
arbitrary numbers in [A,B] with y − x ≤ δ; then by the mean-value
theorem applied to ℜf and ℑf there exist η1, η2 ∈ [x, y] such that
ℜf(y)−ℜf(x) = (y− x)ℜf ′(η1) and ℑf(y)−ℑf(x) = (y−x)ℑf ′(η2).
But |η1 − ξ| ≤ y − x ≤ δ; thus |f ′(η1) − f ′(ξ)| < ε/2; hence also
|ℜf ′(η1)−ℜf ′(ξ)| < ε/2 and |ℜf(y)−ℜf(x)−(y−x)ℜf ′(ξ)| ≤ ε

2
(y−x);

similarly |ℑf(y)−ℑf(x)− (y−x)ℑf ′(ξ)| ≤ ε
2
(y−x); adding these two

we obtain (1.26).))

By taking δ > 0 so small that both the statements around (1.25)
and (1.26) hold, then for any partition {xn}Nn=0 of [A,B] of mesh ≤ δ,

∣∣∣∣∣
N∑

n=1

|f(xn)− f(xn−1)| −
∫ B

A

|f ′(x)| dx
∣∣∣∣∣

< ε+

∣∣∣∣∣
N∑

n=1

|f(xn)− f(xn−1)| −
N∑

n=1

(xn − xn−1)|f ′(xn)|
∣∣∣∣∣

≤ ε+

N∑

n=1

∣∣∣f(xn)− f(xn−1)− (xn − xn−1)f
′(xn)

∣∣∣

≤ ε+
N∑

n=1

(xn − xn−1)ε = (1 +B − A)ε.(1.27)

Such a δ > 0 can be obtained for every ε > 0; this immediately im-

plies that the supremum in (1.19) is ≥
∫ B

A
|f ′(x)| dx. Now note also

that if {x′n}Nn=0 is an arbitrary partition of [A,B] then we can find
another partition {xn}Mn=0 of [A,B] of mesh ≤ δ such that {x′n}Nn=0 is
a subsequence of {xn}Mn=0. Then by the triangle inequality we have∑N

n=1 |f(x′n) − f(x′n−1)| ≤ ∑M
n=1 |f(xn) − f(xn−1)|, and also (1.27)

holds. Using this we conclude also that the supremum in (1.19) is

≤
∫ B

A
|f ′(x)| dx, and the proposition is proved. �



14 ANDREAS STRÖMBERGSSON

We next prove a formula for integration by parts:

Theorem 1.12. For arbitrary functions f and g : [A,B] → C, if∫ B

A
g(x) df(x) exists then

∫ B

A
f(x) dg(x) also exists, and

∫ B

A

g(x) df(x) =
(
f(B)g(B)− f(A)g(A)

)
−
∫ B

A

f(x) dg(x).(1.28)

Proof. For any tagged partition 〈{xn}Nn=0, {ξn}Nn=1〉 of [A,B] we have
the following identity, if we set ξ0 = A and ξN+1 = B:

N∑

n=1

g(ξn)
(
f(xn)− f(xn−1)

)
= f(B)g(B)− f(A)g(A)−

N+1∑

n=1

f(xn−1)
(
g(ξn)− g(ξn−1)

)
.

Here note that 〈{ξn}N+1
n=0 , {xn−1}N+1

n=1 〉 is also a tagged partition of [A,B],
since xn−1 ∈ [ξn−1, ξn], and the sum on the right hand sum is a Riemann-

Stieltjes sum S({ξn}, {xn−1}) approximating
∫ B

A
f(x) dg(x), Moreover,

mesh{ξn} ≤ 2mesh{xn}, so that the sum on the right tends to
∫ B

A
f(x) dg(x)

as mesh{xn} tends to 0. �

Recall that the intuition behind the definition of the Riemann-Stieltjes

integral is that
∫ B

A
g df should equal

∫ B

A
g(x)f ′(x) dx when g and f are

nice functions. The following theorem shows that this holds in quite
some generality:

Theorem 1.13. Let f ∈ C1([A,B]) and let g : [A,B] → C be Riemann-

integrable. Then the Riemann-Stieltjes integral
∫ B

A
g(x) df(x) exists,

the function x 7→ g(x)f ′(x) is Riemann-integrable, and we have
∫ B

A

g(x) df(x) =

∫ B

A

g(x)f ′(x) dx.(1.29)

In order to prepare for the proof of Theorem 1.13 we first prove two
propositions – which are also useful in their own right.

Proposition 1.14. Let A < B and let g be an arbitrary function
[A,B] → C. Then g is Riemann integrable if and only if for every
ε > 0 there exists some δ > 0 such that for every partition {xn}Nn=0 of
[A,B] with mesh{xn} ≤ δ we have

N∑

n=1

(xn − xn−1) · sup
{
|g(ξ)− g(ξ′)| : ξ, ξ′ ∈ [xn−1, xn]

}
≤ ε.(1.30)

(Note that for any every partition {xn} of [A,B], the left hand side
of (1.30) is a well-defined number in [0,∞]; cf. Folland, Sec. 0.5.)

Proof. Assume first that the stated condition holds. Let ε > 0 be given,
and choose δ > 0 such that (1.30) holds for all partitions {xn}Nn=0
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of [A,B] with mesh{xn} ≤ δ. We then claim that |S({xn}, {ξn}) −
S({x′′n}, {ξ′′n})| ≤ ε holds whenever 〈{xn}, {ξn}〉 and 〈{x′′n}, {ξ′′n}〉 are
tagged partitions of [A,B] with mesh ≤ δ such that {xn} is a sub-
sequence of {x′′n}. Note that this suffices to show that g is Riemann
integrable, by the same argument as in the proof of Theorem 1.10.

To prove the claim, note that if 〈{xn}, {ξn}〉 and 〈{x′′n}, {ξ′′n}〉 are as
above then we have, using the same notation as in the proof of Theorem
1.10 (see (1.24), but now with f(x) ≡ x):
∣∣S({xn}, {ξn})− S({x′′n}, {ξ′′n})

∣∣

=

∣∣∣∣
N∑

n=1

kn∑

k=1+kn−1

(
g(ξn)− g(ξ′′k)

)(
x′′k − x′′k−1

)∣∣∣∣

≤
N∑

n=1

kn∑

k=1+kn−1

(
x′′k − x′′k−1

)
· sup

{
|g(ξ)− g(ξ′)| : ξ, ξ′ ∈ [xn−1, xn]

}

=

N∑

n=1

(
xn − xn−1

)
· sup

{
|g(ξ)− g(ξ′)| : ξ, ξ′ ∈ [xn−1, xn]

}
≤ ε,

and the claim is proved.

Conversely, assume that g is Riemann-integrable. Let ε > 0 be given.
Then by Lemma 1.11 there is some δ > 0 such that for any two tagged
partitions 〈{xn}, {ξn}〉 and 〈{x′n}, {ξ′n}〉 of [A,B], both having mesh
≤ δ, we have |S({xn}, {ξn}) − S({x′n}, {ξ′n})| < ε/2. Applying this in
particular when {xn} = {x′n} and considering the real part, it follows
that if {xn}Nn=0 is any partition of [A,B] with mesh ≤ δ, then

N∑

n=1

(xn − xn−1) · ℜ(g(ξn)− g(ξ′n)) <
ε

2

for all choices of {ξn}Nn=1 and {ξ′n}Nn=1 with ξn, ξ
′
n ∈ [xn−1, xn]. Hence

also

N∑

n=1

(xn − xn−1) · sup
{
ℜ(g(ξ)− g(ξ′)) : ξ, ξ′ ∈ [xn−1, xn]

}
≤ ε

2
(1.31)

Similarly one proves

N∑

n=1

(xn − xn−1) · sup
{
ℑ(g(ξ)− g(ξ′)) : ξ, ξ′ ∈ [xn−1, xn]

}
≤ ε

2
(1.32)

Note also that if F is any set of complex numbers satisfying z ∈ F ⇒
−z ∈ F then sup{|z| : z ∈ F} ≤ sup{ℜz : z ∈ F}+sup{ℑz : z ∈ F}.
Applying this with F = {g(ξ) − g(ξ′) : ξ, ξ′ ∈ [xn−1, xn]} for each n
and using (1.31) and (1.32) we conclude that (1.30) holds. �
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Proposition 1.15. Let A < B and let f, g : [A,B] → C be two
Riemann-integrable functions. Then also the (pointwise) product func-
tion fg is Riemann-integrable on [A,B].

Proof. By Proposition 1.6 both f and g are bounded, i.e. there exists
some M > 0 such that |f(x)| ≤ M and |g(x)| ≤ M for all x ∈ [A,B].
Now the Riemann-integrability of fg follows by using the criterion in
Proposition 1.14 and the inequality
∣∣f(ξ)g(ξ)− f(ξ′)g(ξ′)

∣∣ ≤
∣∣f(ξ)− f(ξ′)

∣∣|g(ξ)|+ |f(ξ′)|
∣∣g(ξ)− g(ξ′)

∣∣

≤M
(∣∣f(ξ)− f(ξ′)

∣∣+
∣∣g(ξ)− g(ξ′)

∣∣
)
.

�

Proof of Theorem 1.13. Take M > 0 such that |g(x)| ≤ M for all x ∈
[A,B] (this is possible by Proposition 1.6). The fact that x 7→ g(x)f ′(x)
is Riemann integrable follows from Theorem 1.5 and Proposition 1.15.
Let us write S1({xn}, {ξn}) for the Riemann sum corresponding to∫ B

A
g(x) df(x), and S2({xn}, {ξn}) for the Riemann sum corresponding

to
∫ B

A
g(x)f ′(x) dx.

Let ε > 0 be given. We can now choose δ > 0 so small that

|S2({xn}, {ξn}) −
∫ B

A
g(x)f ′(x) dx| < ε holds for any tagged partition

〈{xn}, {ξn}〉 of [A,B] of mesh ≤ δ, and also

|f(y)− f(x)− (y − x)f ′(ξ)| ≤ (y − x)ε

for any numbers x ≤ ξ ≤ y in [A,B] satisfying y − x ≤ δ (see below
(1.26) for a proof of the latter.) Now let 〈{xn}, {ξn}〉 be an arbitrary
tagged partition of [A,B] of mesh ≤ δ. Then
∣∣S1({xn}, {ξn})−

∫ B

A
g(x)f ′(x) dx

∣∣

≤
∣∣∣S2({xn}, {ξn})−

∫ B

A
g(x)f ′(x) dx

∣∣∣ +
∣∣∣S1({xn}, {ξn})− S2({xn}, {ξn})

∣∣∣

< ε+

∣∣∣∣∣
N∑

n=1

(
g(ξn)(f(xn)− f(xn−1))− g(ξn)f

′(ξn)(xn − xn−1)
)∣∣∣∣∣

≤ ε+
N∑

n=1

∣∣g(ξn)
∣∣ ·

∣∣∣f(xn)− f(xn−1)− (xn − xn−1)f
′(ξn)

∣∣∣

< ε+

N∑

n=1

M(xn − xn−1)ε = (1 +M(B −A))ε.

This proves that the Riemann-Stieltjes integral
∫ B

A
g(x) df(x) exists and

equals
∫ B

A
g(x)f ′(x) dx. �
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Example 1.7. Assume A < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ B; let c1, c2, . . . , cm ∈
C, and set

f(x) =
∑

λn≤x

cn

(the notation indicates a summation over the finite set of those n ∈ N
for which λn ≤ x). Then, if g ∈ C1([A,B]), we have

m∑

n=1

cng(λn) = f(B)g(B)−
∫ B

A

f(x)g′(x) dx.

Indeed,
m∑

n=1

cng(λn) =

∫ B

A

g df = f(B)g(B)− f(A)g(A)−
∫ B

A

f dg

= f(B)g(B)−
∫ B

A

f(x)g′(x) dx,

where the first equality holds by Example 1.5, the second by Theorem
1.12, and the last equality holds by Theorem 1.13 (using also f(A) = 0).

In order to make the notation really flexible we also need the follow-
ing definition of generalized Riemann-Stieltjes integrals.

Definition 1.16. We define the generalized Riemann-Stieltjes integral
∫ B

A+

g(x) df(x) := lim
a→A+

∫ B

a

g(x) df(x),(1.33)

provided that
∫ B

a
g(x) df(x) exists for all a > A sufficiently near A.

Similarly we define
∫ B

A−
g(x) df(x) := lim

a→A−

∫ B

a

g(x) df(x);(1.34)

∫ B

−∞
g(x) df(x) := lim

a→−∞

∫ B

a

g(x) df(x),(1.35)

Also, the generalized Riemann-Stieltjes integrals
∫ B−
A

g(x) df(x),
∫ B+

A
g(x) df(x)

and
∫∞
A
g(x) df(x) are defined in the analogous way.

Finally generalized Riemann-Stieltjes integrals with limits on both
end-points are defined in the natural way, i.e.

∫ B+

A−
g(x) df(x) := lim

b→B+
lim

a→A−

∫ b

a

g(x) df(x);(1.36)

∫ B−

−∞
g(x) df(x) := lim

b→B−

lim
a→−∞

∫ b

a

g(x) df(x),(1.37)

etc.
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Remark 1.17. In (1.36) (and similarly in any of the other cases with
limits on both end-points) it does not matter if the limit is considered
as an iterated limit (in either order) or as a simultanous limit in a, b; if
one of these limits exist (as a finite real number) then so do the other
ones. This follows by fixing an arbitrary number C ∈ (A,B) and using∫ b

a
g(x) df(x) =

∫ C

a
g(x) df(x) +

∫ b

C
g(x) df(x) inside the limit.

Example 1.8. Let a1, a2, . . . be any sequence of complex numbers, and
set f(x) =

∑
1≤n<x an. Also let g ∈ C(R+). We then have, for any

integers 1 ≤M ≤ N :
N∑

n=M

ang(n) =

∫ N+

M

g(x) df(x) =

∫ N+ 1
2

M

g(x) df(x).(1.38)

Hence also
∞∑

n=M

ang(n) =

∫ ∞

M

g(x) df(x).(1.39)

On the other hand, if we set f1(x) =
∑

1≤n≤x an (thus f1(x) = f(x)
except when x is an integer) then

N∑

n=M

ang(n) =

∫ N

M−
g(x) df1(x) =

∫ N

M− 1
2

g(x) df1(x)(1.40)

and
∞∑

n=M

ang(n) =

∫ ∞

M−
g(x) df1(x).(1.41)

1.3. Example: Euler-MacLaurin summation. (The following pre-
sentation is partly influenced by Olver, [16, Ch. 8].) We will now discuss
how the Riemann-Stieltjes integral can be used together with integra-
tion by parts to give increasingly precise estimates of a sum

∑N
n=M f(n)

whereM and N are integers, M < N , and f is a given (nice, not wildly
oscillating) function on [M,N ]. Actually let us consider instead the
sum ∑

A<n≤B

f(n),

where A < B are arbitrary real numbers (and it is understood that the
sum is taken over all integers n satisfying A < n ≤ B).5

Referring to Example 1.5 we see that this sum can be expressed as
∫ B

A

f(x) d⌊x⌋,(1.42)

5This sum is of course not at all more general than “
∑N

n=M f(n)” but the treat-
ment becomes, in my opinion, slightly clearer in this way.
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where ⌊x⌋ is the “floor function”, i.e. ⌊x⌋ is the largest integer ≤ x.
(Make sure to think this through; in particular check that we do get
the correct contributions at x = A and x = B, if A or B happen to be
an integer.)

Applying integration by parts (Theorem 1.12 and then Theorem 1.13)
we get, assuming f ∈ C1([A,B]):

∑

A<n≤B

f(n) =

∫ B

A

f(x) d⌊x⌋ =
[
f(x)⌊x⌋

]x=B

x=A
−

∫ B

A

f ′(x)⌊x⌋ dx.

(1.43)

It is natural to compare
∑

A<n≤B f(n) with
∫ B

A
f(x) dx. Applying the

analogous integration by parts for
∫ B

A
f(x) dx we have

∫ B

A

f(x) dx =
[
f(x)(x−K)

]B
A
−

∫ B

A

f ′(x)(x−K) dx,(1.44)

for any constant K. (We used the fact that the most general primitive
function of “1” is “x−K”.) Combining (1.44) and (1.43) we conclude

∑

A<n≤B

f(n) =

∫ B

A

f(x) dx−
[
f(x)

(
x− ⌊x⌋ −K

)]x=B

x=A

+

∫ B

A

f ′(x)
(
x− ⌊x⌋ −K

)
dx.(1.45)

In order to make use of this formula we have to understand the
last term,

∫ B

A
f ′(x)(x − ⌊x⌋ − K) dx. Note that the function x 7→

x− ⌊x⌋ −K is oscillating around the mean value 1
2
−K. Now there’s

a general principle that when dealing with an integral
∫ B

A
h(x)g(x) dx,

where h(x) is “slowly varying” while g(x) is oscillating with mean value

0, it is often advantageous to integrate by parts:
∫ B

A
h(x)g(x) dx =

[h(x)G(x)]x=B
x=A −

∫ B

A
h′(x)G(x) dx (where G is a primitive function of

x); the point is that
∫ B

A
h′(x)G(x) dx can here typically be expected to

be comparatively small!

Applying this principle to
∫ B

A
f ′(x)

(
x − ⌊x⌋ − K

)
dx we see that

we should take K = 1
2
and then integrate by parts, assuming now

f ∈ C2([A,B]). We then need to compute the primitive function of
x−⌊x⌋− 1

2
. (This function is sometimes called the saw-tooth function;

draw a picture!) It is convenient to set

ω1(x) = x− 1
2

and ω̃1(x) = ω1(x− ⌊x⌋) = x− ⌊x⌋ − 1
2
.

(Thus ω̃1(x) is the periodic function with period one which agrees with
ω1(x) for x ∈ [0, 1).) We note that for x ∈ [0, 1] we have

∫ x

0
ω̃1(x1) dx1 =∫ x

0
ω1(x1) dx1 = 1

2
(x2 − x). Since ω̃1(x1) is periodic with period one
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and
∫ 1

0
ω̃1(x1) dx1 = 0, it follows that for general x ∈ R,

∫ x

0
ω̃1(x1) dx1

equals the periodic function with period one which agrees with 1
2
(x2−x)

for x ∈ [0, 1); thus
∫ x

0
ω̃1(x1) dx1 = τ̃(x), where

τ(x) = 1
2
(x2 − x) and τ̃ (x) = τ(x− ⌊x⌋).

Hence we have∫ B

A

f ′(x)
(
x− ⌊x⌋ − 1

2

)
dx =

∫ B

A

ω̃1(x)f
′(x) dx

=
[(
τ̃(x)−K

)
f ′(x)

]x=B

x=A
−
∫ B

A

(τ̃(x)−K)f ′′(x) dx,(1.46)

where K is an arbitrary constant (it does not have to be the same as
our previous K).

This procedure can now be repeated: In order for the periodic func-
tion τ̃ (x)−K to have mean-value zero we should takeK =

∫ 1

0
τ(x) dx =

− 1
12
; thus we set

ω2(x) =
1
2
(x2 − x+ 1

6
) and ω̃2(x) = ω2(x− ⌊x⌋).

Then ω̃2(x) is periodic with period one and
∫ 1

0
ω̃2(x) dx = 0; the above

formula reads∫ B

A

ω̃1(x)f
′(x) dx =

[
ω̃2(x)f

′(x)
]x=B

x=A
−

∫ B

A

ω̃2(x)f
′′(x) dx.

The rth step of this procedure (r ∈ N) is to let ωr+1(x) be that primitive

function of ωr(x) which satisfies
∫ 1

0
ωr+1(x) dx = 0; then set ω̃r+1(x) =

ωr+1(x− ⌊x⌋), and note that (if f ∈ Cr+1([A,B])):
∫ B

A

ω̃r(x)f
(r)(x) dx =

[
ω̃r+1(x)f

(r)(x)
]x=B

x=A
−
∫ B

A

ω̃r+1(x)f
(r+1)(x) dx.

The result can be collected as follows: If h ∈ N and f ∈ Ch([A,B]),
then

∑

A<n≤B

f(n) =

∫ B

A

f(x) dx+
h∑

r=1

(−1)r
[
ω̃r(x)f

(r−1)(x)
]x=B

x=A

+(−1)h−1

∫ B

A

ω̃h(x)f
(h)(x) dx.(1.47)

Here from the above recursion formula we see that ωr(x) is a polynomial
of degree r (with xr-coefficient = r!−1). We compute:

ω1(x) = x− 1
2

ω2(x) =
1
2
(x2 − x+ 1

6
)

ω3(x) =
1
6
(x3 − 3

2
x2 + 1

2
x).

ω4(x) =
1
24
(x4 − 2x3 + x2 − 1

30
).
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It is customary to use a slightly different normalization: The rth Bernoulli
polynomial is given by Br(x) = r! ·ωr(x). Thus from the above discus-
sion we see that we can define Br(x) as follows (we extend to the case
r = 0 in a natural way).

Definition 1.18. The Bernoulli polynomials B0(x), B1(x), B2(x), . . .,
are defined by B0(x) = 1 and recursively by the relations B′

r(x) =

rBr−1(x) and
∫ 1

0
Br(x) dx = 0 for r = 1, 2, 3, . . .. The rth Bernoulli

number is defined by Br = Br(0).

We have now proved (see (1.47)):

Theorem 1.19. The Euler-MacLaurin summation formula.
Let A < B be real numbers, h ∈ N and f ∈ Ch([A,B]). Then

∑

A<n≤B

f(n) =

∫ B

A

f(x) dx+

h∑

r=1

(−1)r

r!

[
B̃r(x)f

(r−1)(x)
]x=B

x=A

+(−1)h−1

∫ B

A

B̃h(x)

h!
f (h)(x) dx,(1.48)

where B̃r(x) = Br(x− ⌊x⌋).

The first Bernoulli polynomials are:

B0(x) = 1

B1(x) = x− 1
2

B2(x) = x2 − x+ 1
6

B3(x) = x3 − 3
2
x2 + 1

2
x.

B4(x) = x4 − 2x3 + x2 − 1
30
.

It follows immediately from the recursion formula that Br(1 − x) =
Br(x) for all even r and Br(1−x) = −Br(x) for all odd r; also Br(0) =
Br(1) = 0 for all odd r ≥ 3. Furthermore, the periodized function

B̃r(x) is continuous for all r ≥ 2.

The Euler-MacLaurin summation formula is very useful for obtaining
asymptotic expansions of sums. For example we will see later how it
is used to derive Stirling’s formula for the Γ-function Γ(z), with an
error term with arbitrary power rate decay as |z| → ∞. At present we
content ourselves by giving a single example:

Example 1.9. Recall Example 1.2, the question about the asymptotic
behavior of the sum

∑N
n=1 n

α for fixed α > −1. We can use the Euler-
MacLaurin summation formula to attack this question for an arbitrary
complex α.
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Indeed, by Theorem 1.19 applied with f(x) = xα, A < 1 tending to

1 and B = N , we have (using B̃r(N) = Br for r ≥ 1 and B̃r(1−) = Br

for r ≥ 2 while B̃1(1−) = 1
2
= 1 +B1):

N∑

n=1

nα =

∫ N

1

xα dx+ 1 +
h∑

r=1

(−1)rBr

r!

(
f (r−1)(N)− f (r−1)(1)

)

+(−1)h−1

∫ N

1

B̃h(x)

h!
f (h)(x) dx.

Using f (r)(x) = α(α−1) · · · (α− r+1)xα−r we see that for α 6= −1 the
above can be expressed as

N∑

n=1

nα =
1

α + 1

(
Nα+1 − 1

)
+ 1 +

1

α+ 1

h∑

r=1

(−1)rBr

(
α + 1

r

)(
Nα+1−r − 1

)

+(−1)h−1

(
α

h

)∫ N

1

B̃h(x)x
α−h dx.(1.49)

Since |B̃h(x)| is bounded above by a constant which only depends on
h, we see that the last integral is O(Nℜα−h+1) if ℜα > h− 1, O(logN)
if ℜα = h − 1, and O(1) if ℜα < h − 1 (the implied constant may
depend on α and h but not on N). In particular if ℜα > 0 then this
leads to a more precise asymptotic formula than (1.3)! For a concrete
example, say α = 3

2
; then taking h = 3 above we get:

N∑

n=1

n
3
2 =

2

5
N

5
2 +

1

2
N

3
2 +

1

8
N

1
2 +O(1).

Numerical example: For N = 1000 the left hand side equals S =
12664925.95633 . . . and we find that S − 2

5
N

5
2 = 15815.3 . . .,

S−(2
5
N

5
2+ 1

2
N

3
2 ) = 3.927 . . . and S−(2

5
N

5
2+ 1

2
N

3
2+ 1

8
N

1
2 ) = −0.0254 . . ..

In fact trying also N = 104, 105, 106, . . . it seems as if the difference∑N
n=1 n

α − (2
5
N

5
2 + 1

2
N

3
2 + 1

8
N

1
2 ) tends to a number −0.025485 . . . as

N → ∞. This will be explained below.

Note that once h > ℜα+ 1, we do not get any better power of N in
the error term by increasing h further! This is easy to fix: If h > ℜα+1

then the integral
∫∞
1
B̃h(x)x

α−h dx is absolutely convergent and hence
we can express the last term in (1.49) as

(−1)h−1

∫ ∞

1

B̃h(x)

h!
f (h)(x) dx− (−1)h−1

∫ ∞

N

B̃h(x)

h!
f (h)(x) dx.

Here the first integral is a constant independent of N , and to the second
integral we can now apply repeated integration by parts just as in the
proof of the Euler-MacLaurin formula to obtain, for an arbitrary integer
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k ≥ h:

= (−1)h−1

∫ ∞

1

B̃h(x)

h!
f (h)(x) dx+

k∑

r=h+1

(−1)rBr

r!
f (r−1)(N)

+ (−1)k
∫ ∞

N

B̃k(x)

k!
f (k)(x) dx,

and the good thing is that the last integral is O(Nℜα−k+1)! (This is

since |B̃k(x)| = O(1) and |f (k)(x)| = O(xℜα−k) for all x ≥ 1, and
k ≥ h > ℜα + 1.)

Using this in (1.49), we obtain:

N∑

n=1

nα =
1

α+ 1

k∑

r=0

(−1)rBr

(
α + 1

r

)
Nα+1−r + C(α)

+(−1)k
(
α

k

)∫ ∞

N

B̃k(x)x
α−k dx,(1.50)

where

C(α) = 1− 1

α + 1

h∑

r=0

(−1)rBr

(
α + 1

r

)
+ (−1)h−1

(
α

h

)∫ ∞

1

B̃h(x)x
α−h dx.

(1.51)

Recall that this formula is valid for any complex α 6= −1 and any k, h ∈
N satisfying k ≥ h > ℜα+1. The point of separating out the term C(α)
is that this term does not depend on N , i.e. it appears as a constant
in our asymptotic expansion as N → ∞ for fixed α! Note that C(α)
is independent of h since all the other terms in (1.50) are independent
of h; this can of course also be seen easily by using integration by
parts in (1.51). Note also that in (1.50) we have incorporated the term
1

α+1
Nα+1 in the r-sum by letting it start at r = 0.

The constant C(α) can easily be computed in practice (with rigorous
error bounds) by evaluating the two sums in (1.50) for a modest value of
N and an appropriate k, and bounding the last integral using simply

|B̃k(x)| ≤ supx∈[0,1] |Bk(x)|. As a concrete example, for α = 3
2
and

k = 5, (1.50) gives

N∑

n=1

n
3
2 = C(3

2
) + 2

5
N

5
2 + 1

2
N

3
2 + 1

8
N

1
2 + 1

1920
N− 3

2 +O(N− 5
2 ),

and numerical evaluation for N = 104, 105, 106 strongly suggests that
C(α) = −0.02548520188983303 . . ..
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Analytically, we can relate C(α) to the Riemann zeta function! 6

Namely, (recall that) the Riemann zeta function is defined by:

ζ(s) =
∞∑

n=1

1

ns
for s ∈ C, ℜs > 1.

This sum is absolutely convergent, uniformly on compact subsets of
{s ∈ C : ℜs > 1}; hence ζ(s) is an analytic function in the region
{s ∈ C : ℜs > 1}. To see the connection, take N → ∞ in (1.50) to
conclude

C(α) = lim
N→∞

( N∑

n=1

nα − 1

α+ 1

k∑

r=0

(−1)rBr

(
α + 1

r

)
Nα+1−r

)
,

since the last term in (1.50) tends to zero. If ℜα < −1 then each term

in
∑k

r=0(−1)rBr

(
α+1
r

)
Nα+1−r tends to zero as N → ∞ and therefore

C(α) = limN→∞
∑N

n=1 n
α =

∑∞
n=1 n

α = ζ(−α). On the other hand, for
an arbitrary fixed h ∈ N, the formula (1.51) can be seen to define C(α)
as an analytic function of α in the larger region {α ∈ C : α 6= −1, ℜα < h− 1}
(because of uniform convergence on compacta). Hence, by uniqueness
of analytic continuation, our formula for C(α) provides the analytic
continuation of ζ(−α) to this region! In particular, since h is arbi-
trary, we have proved that ζ(s) has an analytic continuation to all of
s ∈ C \ {1}!

(Connecting with our previous example: In Maple, typing Digits:=30:
and then evalf(Zeta(-3/2)); indeed gives “−0.02548520188983303 . . .”.)

Finally, it is interesting to consider the special case of α being a
nonnegative integer: α ∈ Z≥0. In this case we have

(
α
k

)
=

(
α
h

)
= 0

(since k ≥ h > α + 1) and
(
α+1
r

)
= 0 for all integers r ≥ α + 2; hence

(1.50) says

N∑

n=1

nα = 1 +
1

α+ 1

α+1∑

r=0

(−1)r
(
α + 1

r

)
Br

(
Nα+1−r − 1

)
(1.52)

This has been proved for all N ∈ N, but one easily convinces oneself
that this identity must also be valid at N = 0, 7 and this implies

α∑

r=0

(−1)r
(
α+ 1

r

)
Br = α + 1.(1.53)

6In this paragraph we assume knowledge of some complex analysis, and we don’t
give as many details as mostly elsewhere.

7A completely elementary way of seeing this without going back and generalizing
the earlier discussion is to note that the right hand equals P (N), where P (X) is a
polynomial of degree ≤ α + 1; and the identity implies that P (X + 1) − P (X) −
(X + 1)α = 0 for all X ∈ N; but both sides of the last relations are polynomials,
hence the last identity in fact holds for all X ∈ R, and taking X = 0 and using
P (1) = 1 we get the desired claim.
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Using this, (1.52) can be simplified somewhat, into

N∑

n=1

nα =
1

α + 1

α∑

r=0

(−1)r
(
α + 1

r

)
BrN

α+1−r.

This is the so-called Faulhaber’s formula. Furthermore, from (1.53)
and (1.51) we obtain:

ζ(−α) = C(α) =
(−1)αBα+1

α + 1
.

In particular ζ(0) = −1
2
, ζ(−1) = − 1

12
, ζ(−2) = 0, ζ(−3) = 1

120
.

1.4. Some more examples.

Example 1.10. A counting function of fundamental importance in
number theory is

π(x) = #
{
p : p is a prime number ≤ x}.

The Prime Number Theorem (PNT) gives an asymptotic formula for
π(x):

π(x) ∼ x

log x
as x→ ∞.

The PNT was proved independently by Hadamard and de la Vallée-
Poussin (1896); much of the work was based on a celebrated memoir
by Riemann 1859. The starting point for the proof is the Euler product
formula for the Riemann zeta function:

ζ(s) =
∏

p

1

1− p−s
, ∀s ∈ C with ℜs > 1,(1.54)

where the product is taken over all primes p. This formula is simply
a rephrasing of the fundamental theorem of arithmetic (the fact that
each positive integer has a unique factorization into primes) in terms
of generating functions. Indeed, on a formal level unique factorization
implies that

ζ(s) =

∞∑

n=1

1

ns
=

∏

p

(
1 +

1

ps
+

1

p2s
+

1

p3s
+ . . .

)
=

∏

p

1

1− p−s
,

and this calculation can easily be made rigorous for all s with ℜs > 1.
(Similarly in the remainder of this example we will present calculations
in a rather formal style, but they can all be made rigorous.)

The starting idea for the (standard) proof of the PNT is to try to
invert the formula (1.54) to extract information about the primes, or
more specifically about π(x). An obvious first step is to take the log-
arithm in (1.54) so as to transform the product into a sum; in fact it
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turns out to be slightly more convenient to deal with the derivative of
the logarithm; i.e.

ζ ′(s)

ζ(s)
=

d

ds
log

∏

p

1

1− p−s
=

∑

p

d

ds
log

1

1− p−s
= −

∑

p

p−s log p

1− p−s

= −
∑

p

(
p−s + p−2s + p−3s + . . .

)
log p = −

∞∑

n=1

Λ(n)

ns
,

where

Λ(n) =

{
log p if n = pr for some prime p and r ∈ N

0 otherwise.

Writing

Ψ(x) =
∑

1≤n≤x

Λ(n),

the last formula can be expressed as

ζ ′

ζ
(s) = −

∫ ∞

1

x−s dΨ(x) = −s
∫ ∞

1

x−s−1Ψ(x) dx,

where we integrated by parts in the last step. This means that ζ′

ζ
(s) is a

kind of Fourier transform of Ψ(x). Indeed, writing s = σ+ it (σ, t ∈ R)

and substituting x = eu we get ζ′

ζ
(σ + it) = −s

∫∞
0
e−σuΨ(eu)e−itu du,

i.e. the function t 7→ ζ′

ζ
(σ+ it) is the Fourier transform of the function

u 7→ −se−σuΨ(eu). I hope to discuss, in a later lecture, as an exam-
ple on the inverse Fourier transformation and methods of asymptotic
expansions, how the last formula can be inverted and used, in combi-
nation with the very important fact that ζ(s) has no zeros for ℜs ≥ 1,
to deduce

Ψ(x) ∼ x as x→ ∞,

which can be seen in an elementary way to imply the PNT.

Example 1.11. The Gauss circle problem is about estimating the
number of integer points in a circle of radius r centered at the ori-
gin, for large r, that is

A(r) = #
{
n = (n1, n2) ∈ Z2 : |n|2 = n2

1 + n2
2 ≤ r2

}
.

Gauss made the first progress on this problem by proving

A(r) = πr2 +O(r), ∀r ≥ 1.(1.55)

This can be proved by estimating A(r) from above and below using
circles of slightly larger/smaller radius. In precise terms: Let us write
Br ⊂ R2 for the open disc with center at the origin and radius r. Let
Mr ⊂ R2 be the union of all squares n + [−1

2
, 1
2
]2 for n ∈ Z2, |n| ≤ r;

then the area of Mr equals A(r). Now B
r−
√

1/2
⊂ Mr ⊂ B

r+
√

1/2
for
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all r ≥ 1; this is easily seen by drawing a picture! (The detailed proof
uses the triangle inequality and the fact that every point in a square
n+[−1

2
, 1
2
]2 has distance ≤

√
1/2 to its center n.) Hence by comparing

areas we conclude:

π
(
r −

√
1/2

)2 ≤ A(r) ≤ π
(
r +

√
1/2

)2
, ∀r ≥ 1,

and this implies (1.55).

The error bound in (1.55) has been successively improved over the
years; Sierpinski (1906) improved it to O(r2/3), and the best known
bound today is due to Bourgain and Watt (2017) [4] who proved

A(r) = πr2 + O(r
517
824

+ε). 8 (Note that 517
1648

≈ 0.6274 . . ..) It has been

conjectured that A(r) = πr2+O(r
1
2
+ε). This bound would be optimal;

it is know that A(r) = πr2 +O(rθ) cannot hold with any θ ≤ 1
2
.

One way to attack the the Gauss circle problem, which we will discuss
in a later lecture, is by using the Poisson summation formula. This
formula says that for any sufficiently nice function f : Rm → C, if

f̂(ξ) =
∫
Rm f(x)e

−2πiξ·x dx is the Fourier transform of f then
∑

n∈Zm

f(n) =
∑

ξ∈Zm

f̂(ξ).(1.56)

“Sufficiently nice” here means that f has to be both sufficiently smooth
and decay sufficiently fast at infinity; cf., e.g., Folland Theorem 8.32
for one precise statement. For the circle problem, one would like to
take f(x) = I(|x| ≤ r), i.e. f(x) = 1 when |x| ≤ r and f(x) = 0
when |x| > r. With this choice the left hand side of (1.56) would equal
A(r) exactly! The problem is that this function f is far fram smooth;
it is even discontinuous, and correspondingly (1.56) is not absolutely
convergent and one has to do some work before one can make sense
out of the right hand side in (1.56). In a later lecture we will see how
to modify this approach and use it to prove the Sierpinski estimate
A(r) = πr2 +O(r

2
3 ).

The Gauss circle problem is only one very special case of the general
problem of counting the lattice points in a given (large) region. This
general problem has applications in many areas of mathematics and we
will come back to it several times in later lectures.

8This statement should be understood as: For any fixed ε > 0 one has A(r) =

πr2 +O(r
517
824

+ε) as r → ∞ (or equivalently: for all r ≥ 1). The implied constant is
allowed to depend on ε but not on r.
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2. Push-forward of measures and substitution in

integrals

We here prove a very basic fact about substitution in integrals, which
as far as I could see is not explicitly discussed in Folland’s book. (Cf.
Wikipedia.)

Definition 2.1. If T : X → Y is a measurable map from one mea-
surable space (X,M) to another measurable space (Y,N ), and µ is
a measure on (X,M), then the push-forward T∗µ : N → [0,+∞] is
defined by the formula T∗µ(E) = µ(T−1(E)), ∀E ∈ N . 9 One checks
immediately that T∗µ is a measure on (Y,N ).

Now we have the following natural integration formula:

Proposition 2.2. Let T , (X,M, µ), (Y,N ) be as above. Then for
any f ∈ L+(Y,N ) we have f ◦ T ∈ L+(X,M) and

∫
X
(f ◦ T ) dµ =∫

Y
f d(T∗µ). Similarly for any f ∈ L1(Y, T∗µ) we have f ◦T ∈ L1(X, µ)

and, again,
∫
X
(f ◦ T ) dµ =

∫
Y
f d(T∗µ).

The proof is completely standard:

Proof. If φ is a simple function in L+(Y,N ) with standard represen-
tation φ =

∑n
j=1 zjχEj

(thus E1, . . . , En ∈ N and these sets form a

partition of Y ), then φ ◦ T =
∑n

j=1 zjχT−1(Ej); this is a simple function

in L+(X,M) in its standard representation, and

∫

X

(φ ◦ T ) dµ =
n∑

j=1

zj µ(T
−1(Ej)) =

n∑

j=1

zj [T∗µ](Ej) =

∫

Y

φ d(T∗µ).

(2.1)

Now let f be an arbitrary function in L+(Y,N ). Then f ◦T is the com-
position of two measurable functions, hence f ◦ T is an M-measurable
function X → [0,+∞], thus f ◦ T ∈ L+(X,M). Let φ1, φ2, . . . be an
increasing sequence of simple functions in L+(Y,N ) such that φj → f
pointwise. Such a sequence exists by Folland’s Theorem 2.10. Then φ1◦
T, φ2◦T, . . . is an increasing sequence of simple functions in L+(X,M),
and φj ◦ T → f ◦ T pointwise. Hence
∫

X

(f ◦ T ) dµ = lim
j→∞

∫

X

(φj ◦ T ) dµ = lim
j→∞

∫

X

φj d(T∗µ) =

∫

X

f d(T∗µ).

[The first equality holds by the Monotone Convergence Theorem; the
second by (2.1), and the third by the Monotone Convergence Theorem.]

9In this formula, recall that “ T−1(E) ” denotes the set {x ∈ X : T (x) ∈ E},
and this set is in M for every E ∈ N , since T is measurable. Thus: “T−1” is
really a map from N to M, and the push-forward measure T∗µ is the same as the
composition µ ◦ T−1; certain authors prefer to use the latter notation. (Cf., e.g.,
Kallenberg [12], where our Prop. 2.2 appears as [12, Lemma 1.22].)

https://en.wikipedia.org/wiki/Pushforward_measure
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Finally let f be an arbitrary function in L1(Y, T∗µ). Then f ◦ T
is an M-measurable function X → C and |f ◦ T | = |f | ◦ T (where
|f | ∈ L+(X,M)) so that

∫
X
|f ◦ T | dµ =

∫
Y
|f | d(T∗µ) < ∞ by what

we have already proved; thus f ◦T ∈ L1(X, µ). Finally
∫
X
(f ◦T ) dµ =∫

Y
f d(T∗µ) follows by splitting f into its real and imaginary part, and

the positive and negative parts of these (viz., using the definition of
integrals of complex functions, Folland p. 53), and using the result
which we have already proved for L+-functions. �

Example 2.1. Consider Folland’s Theorem 2.44. Let us note that
in view of the above Proposition 2.2, the two parts of that theorem
are “obviously” equivalent! Similarly, also the two parts of Folland’s
Theorem 2.42 are “obviously” equivalent.

[Details: First assume that Thm. 2.44(a) holds. Given any E ∈ Ln,
the function χE is a Lebesgue measurable function on Rn; hence Thm
2.44(a) (applied for T−1) says that χE ◦ T−1 = χT (E) is Lebesgue
measurable, and

∫
χE dm = | detT−1|

∫
χT (E) dm. In other words

T (E) ∈ Ln and m(E) = | detT |−1m(T (E)), i.e. we have proved Thm
2.44(b). Conversely, now assume that Thm. 2.44(b) holds. Applying
this for T−1, we have that T : Rn → Rn is (Ln,Ln)-measurable, and
that the push-forward measure T∗m equals | det T−1|m = | det T |−1m
(equality of measures on (Rn,Ln)). Hence if f is any Lebesgue mea-
surable function f on Rn, so is f ◦ T , and furthermore by Prop. 2.2, if
f ≥ 0 or f ∈ L1(m) then∫

Rn

(f ◦ T ) dm =

∫

Rn

f d(T∗m) = | det T |−1

∫

Rn

f dm.

In other words, we have proved Thm 2.44(a)!]
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3. Conditional expectation and conditional probability

We here discuss how the concepts of conditional expectation and
conditional probability arise as special cases of the Radon-Nikodym
Theorem, using the set-up of Folland’s book (cf. also Folland’s Exer-
cise 17, p. 93). For a more thorough presentation and development
you should consult any standard book on probability theory; cf., e.g.,
Billingsley, [2, Sections 33–34].

We start by giving a solution to Folland’s Exercise 17: Let (X,M, µ)
be a finite measure space and let N be a sub-σ-algebra of M. Then
(X,N , µ|N ) is also a finite measure space. Now let f ∈ L1(µ) and let
λ ∈ M(M) 10 be given by dλ = f dµ; then λ≪ µ and hence λ|N , which
is clearly a complex measure on N , satisfies λ|N ≪ µ|N . Hence by the
Radon-Nikodym Theorem there exists a unique function g ∈ L1(µ|N )
such that

∀E ∈ N :

∫

E

f dµ =

∫

E

g dµ|N .(3.1)

Recall that the uniqueness is understood in the usual sense of L1 that
we identify any two functions that agree a.e. (for us: µ|N -a.e.). Thus, to
be precise, the uniqueness says that if g′ ∈ L1(µ|N ) is another function
satisfying (3.1) then g = g′ µ|N -a.e.

This completes the solution of Folland’s Exercise 17.

Let us note that the property (3.1) may equivalently be expressed
as:

∀E ∈ N :

∫

E

f dµ =

∫

E

g dµ.(3.2)

This follows from the fact (definition) that
∫
E
g =

∫
χEg (where χEg

is N -measurable) and the following lemma:

Lemma 3.1. If (X,M, µ) be a finite measure space, N a sub-σ-algebra
of M, then

∫
X
h dµ|N =

∫
X
h dµ for all h ∈ L1(µ|N ).

Proof. (Cf. Billingsley, [2, Ex. 16.4].) One easily checks (via the defi-
nitions in Folland’s Sec. 2.3) that it suffices to prove the claim for all
h ∈ L+(µ|N ). Given such an h, by Folland’s Theorem 2.10 there is a
sequence {hn} of simple N -measurable functions such that 0 ≤ h1 ≤
h2 ≤ · · · and hn → h pointwise; and then by the Monotone Conver-
gence Theorem we have

∫
X
h dµ|N = limn→∞

∫
X
hn dµ|N . Note that h

and each hn is also M-measurable (since N ⊂ M), and by another
application of the Monotone Convergence Theorem we have

∫
X
h dµ =

limn→∞
∫
X
hn dµ. Hence it now suffices to prove

∫
X
hn dµ|N =

∫
X
hn dµ

10As in lecture #4 we write M(M) for the set of all complex measures on M.
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for each n, and thus it suffices to prove that
∫
X
h dµ|N =

∫
X
h dµ when-

ever h is a simple N -measurable (nonnegative) function. By linearity
we then reduce to the case when h is a characteristic function: h = χA

for some A ∈ N . But then
∫
X
h dµ|N = µ|N (A) = µ(A) =

∫
X
h dµ, and

we are done. �

To connect with probability theory, let us now assume that µ is
a probability measure, i.e. µ(X) = 1. In other words, (X,M, µ) is
a probability space. (A more common notation in probability theory
would be to write Ω for X and P for µ; however we will continue
writing X and µ.) A µ-measurable function on X is now called a
random variable; in particular our f ∈ L1(µ) is a random variable.
The function g ∈ L1(µ|N ) whose existence we proved above and which
satisfies (3.1) and (3.2) is now called the conditional expectation of f
given N , and denoted by E[f‖N ]. Thus, to recapitulate: E[f‖N ] is
the unique function in L1(µ|N ) satisfying

∫

E

f dµ =

∫

E

E[f‖N ] dµ, ∀E ∈ N .

In the special case when f is the characteristic function of a set A ∈ M;
f = χA, then E[f‖N ] is called the conditional probability of A given
N , and denoted by µ[A‖N ]. Thus:

µ[A‖N ] = E[χA‖N ],

and the defining property (3.2) reads:

µ(A ∩ E) =
∫

E

µ[A‖N ] dµ, ∀E ∈ N .(3.3)

Note that µ[A‖N ] is a function, and not just a number in [0, 1].
Informally, µ[A‖N ](x) may be interpreted as (at least for µ|N -a.e. x):
“The conditional probability that a µ-random element ω ∈ X happens
to lie in A, given that ω is contained in exactly the same N -sets as x
11”.

We note:

Lemma 3.2. For any given A ∈ M, we have 0 ≤ µ[A‖N ](x) ≤ 1 for
µ|N -a.e. x.

Proof. Let A ∈ M be given. Note that the function ℜµ[A‖N ] satisfies
the same defining property as µ[A‖N ]; hence µ[A‖N ](x) ∈ R must
hold for µ|N -a.e. x, and replacing µ[A‖N ] by ℜµ[A‖N ] we may assume
µ[A‖N ](x) ∈ R for all x ∈ X .

Now for any given ε > 0, let us set E = {x ∈ X : µ[A‖N ](x) ≥
1 + ε}. Then E ∈ N , and (3.3) gives µ(A ∩ E) ≥ (1 + ε)µ(E). But

11in other words: given that [∀E ∈ N : ω ∈ E ⇔ x ∈ E].
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µ(A ∩ E) ≤ µ(E); hence µ(E) ≥ (1 + ε)µ(E), which forces µ(E) = 0.
Letting ε = 1/n and n→ ∞ this implies (using continuity from below
for µ; cf. Folland’s Thm. 1.8(c)) µ({x ∈ X : µ[A‖N ](x) > 1}) = 0. By
an entirely similar argument we also have µ({x ∈ X : µ[A‖N ](x) <
0}) = 0, and this completes the proof. �

We conclude by giving two examples to show how the above concept
connects with the elementary or intuitive notion of “conditional prob-
ability”. In these examples we will write P in place of µ and Ω in place
of X .

Example 3.1. Let X and Y be two integer valued random variables
whose joint distribution is given by probabilities

pij = P (X = i, Y = j), ∀i, j ∈ Z.

Thus P is the probability measure on (Z2,P(Z2)) determined by

P (A) =
∑

〈i,j〉
pij,

and we of course have pij ≥ 0 for all i, j ∈ Z, and
∑

i,j∈Z pij = P (Z2) =

1. Now let N be the sub-σ-algebra of P(Z2) given by

N = {B × Z : B ⊂ Z}.
For an arbitrary A ⊂ Z, letting A′ := Z × A we wish to determine
P [A′‖N ], the conditional probability of the event A′ (i.e., “the event
Y ∈ A”) given N . The fact that P [A′‖N ] is an N -measurable function
means that there is a function g : Z → C such that

P [A′‖N ](i, j) = g(i), ∀〈i, j〉 ∈ Z2.

Also the defining property (3.3) says that for every E ∈ N ,

P (E ∩A′) =
∑

〈i,j〉∈E
g(i)pij.

In particular taking E = {i0} × Z for any i0 ∈ Z (note that this E
indeed lies in N ) we conclude:

P (({i0} × Z) ∩ A′) = g(i0) · P ({i0} × Z).

Using our random variables X and Y the same relation may be ex-
pressed as:

P (Y ∈ A and X = i0) = g(i0)P (X = i0).

Hence for any i0 ∈ Z with P (X = i0) > 0, and any j ∈ Z, we have

P [A′‖N ](i0, j) = g(i0) =
P (Y ∈ A and X = i0)

P (X = i0)
.

This is exactly the classical, elementary definition of the conditional
probability of Y ∈ A given that X = i0.
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Example 3.2. Let X and Y be real-valued random variables taking
values in [0, 1], whose joint distribution is given by a probability density
function f ∈ C([0, 1]2) which is everywhere positive. Thus our proba-
bility space is (Ω,BΩ, P ), where Ω = [0, 1]2, BΩ is the Borel σ-algebra
on Ω, and P is the probability measure given by

P (A) =

∫

[0,1]2
f(x) dx =

∫ 1

0

∫ 1

0

f(x1, x2) dx1 dx2, ∀A ∈ BΩ,

where dx = dx1 dx2 is Lebesgue measure. Now let N be the sub-σ-
algebra of BΩ given by

N = {B × [0, 1] : B ∈ B[0,1]}.

Given any A ∈ B[0,1], letting A
′ := [0, 1] × A ∈ BΩ, we wish to deter-

mine P [A′‖N ] ∈ L1(P|N ). The fact that this function is N -measurable
means that there is a Borel measurable function g : [0, 1] → R such
that

P [A′‖N ](x1, x2) = g(x1), ∀(x1, x2) ∈ Ω.

The definining property (3.3) says that for every E ∈ N ,

P (E ∩ A′) =

∫

E

g(x1) dP (x),

i.e.,
∫

E∩A′

f(x1, x2) dx1 dx2 =

∫

E

g(x1)f(x1, x2) dx1 dx2.

But E ∈ N means that E = B × [0, 1] for some B ∈ B[0,1]; hence the
requirement is that the following should hold for every B ∈ B[0,1]:

∫

B

∫ 1

0

I((x1, x2) ∈ A′)f(x1, x2) dx2 dx1 =

∫

B

g(x1)

∫ 1

0

f(x1, x2) dx2 dx1.

This implies that the following must hold for (Lebesgue-)almost every
x1:

∫ 1

0

I(x2 ∈ A)f(x1, x2) dx2 = g(x1)

∫ 1

0

f(x1, x2) dx2.

Hence since f is continuous and everywhere positive:

g(x1) =

∫ 1

0
I(x2 ∈ A)f(x1, x2) dx2∫ 1

0
f(x1, x2) dx2

for almost every x1 ∈ [0, 1]. This agrees with the “undergraduate
formula” for the conditional probability of Y ∈ A “given that X = x1”!
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4. Computing the Poisson kernel

We wish to calculate the inverse Fourier transform φ(x) of

Φ(ξ) = e−2π|ξ|.

This function φ(x) is called the Poisson kernel; see Folland p. 260.
Thus:

φ(x) = Φ∨(x) =

∫

Rn

e−2π|ξ|e2πix·ξ dξ.

Folland outlines a proof of the explicit formula

φ(x) =
Γ(n+1

2
)

π
n+1
2

(1 + |x|2)−n+1
2 , ∀x ∈ Rn.(4.1)

in his Exercise 26, p. 262. This proof goes via expressing Φ(ξ) as a
superposition of dilated Gauss kernels, and then using the fact that we
already know the inverse Fourier transform of these (Prop 8.24). It is
a very elegant and fairly short computation! However here we wish to
give an alternative proof of (4.1), by pushing through the method which
to me seems like the most natural/naive method possible. It turns out
that this computation is not at all as nice as the one which Folland
outlines in his Exercise 26 (at least not in the way which I carry it out
below); however it provides an opportunity to illustrate several impor-
tant points which are often useful in computations (namely: the fact
that polar coordinates can certainly be useful for integration even if the
integrand is not radial, and some tips on how to deal with complicated
looking integrals and special functions).

Let Sn−1
1 be the n− 1 dimensional sphere, which we will always take

to be concretely realized as Sn−1
1 = {x ∈ Rn : |x| = 1}, just as in

Folland, p. 78. Let σ be the unique Borel measure on Sn−1
1 described in

Folland’s Theorem 2.49; this is the natural “n− 1 dimensional volume
measure” on Sn−1

1 . Then by Theorem 2.49,

φ(x) =

∫ ∞

0

∫

Sn−1
1

e−2πre2πix·rωrn−1 dσ(ω) dr

=

∫

Sn−1
1

∫ ∞

0

e2π(−1+ix·ω)rrn−1 dr dσ(ω).

The inner integral can be evaluated (for any fixed x ∈ Rn and ω ∈ Sn−1
1 )

by substituting r =
u

2π(1− ix · ω). This gives
∫ ∞

0

e2π(−1+ix·ω)rrn−1 dr =
1

(2π)n(1− ix · ω)n
∫

C

e−uun−1 du,

where C is the infinite ray in the complex plane which starts at 0 and
goes through the point 1− ix · ω. For R > 0, let CR be the part of the
ray C which starts at 0 and ends at z ∈ C with |z| = R. Also let DR
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be the contour which goes in the circle {|z| = R} from the end-point
of CR to z = R ∈ R>0. Then by the Cauchy integral theorem,

∫

CR

e−uun−1 du+

∫

DR

e−uun−1 du =

∫ R

0

e−uun−1 du.

Furthermore using |e−uun−1| = e−ℜu|u|n−1 = e−R cos(arg(u))Rn−1 for all
u ∈ DR and the fact that arg(1 − ix · ω) ∈ (−π

2
, π
2
), we see that, with

c := cos(arg(1− ix · ω)) = (1 + (x · ω)2)− 1
2 :

∣∣∣∣
∫

DR

e−uun−1 du

∣∣∣∣ ≤
∫

DR

|e−uun−1| |du| ≤ π

2
Rne−cR → 0, as R → ∞.

Hence
∫

C

e−uun−1 du = lim
R→∞

∫

CR

e−uun−1 du = lim
R→∞

∫ R

0

e−uun−1 =

∫ ∞

0

e−uun−1.

The last integral can be computed by repeated integration by parts,
and is seen to equal (n− 1)!, which can also be expressed as Γ(n), the
gamma function at n. (We discuss the gamma function more in detail
in Sec. 7.1 below.) Thus we conclude:

∫ ∞

0

e2π(−1+ix·ω)rrn−1 dr =
Γ(n)

(2π)n(1− ix · ω)n .

Hence:

φ(x) =
Γ(n)

(2π)n

∫

Sn−1
1

(1− ix · ω)−n dσ(ω).

We can use the fact that the measure σ is invariant under rotations (this
is Folland’s Exercise 62 on p. 80; it can be solved using his Theorems
2.49 and 2.44) to see that φ(x) is invariant under rotations: If R :
Rn → Rn is any rotation about the origin then

φ(Rx) =
Γ(n)

(2π)n

∫

Sn−1
1

(1− i(Rx) · ω)−n dσ(ω)

=
Γ(n)

(2π)n

∫

Sn−1
1

(1− ix · (R−1ω))−n dσ(ω)

=
Γ(n)

(2π)n

∫

Sn−1
1

(1− ix ·̟)−n dσ(̟) = φ(x),

where in the third equality we substituted ω = R(̟) and used the
fact that R is a bijection of Sn−1

1 onto itself preserving the measure
σ. (To be more precise, we used the integration formula for push-
forwards of measures, Proposition 2.2 above, together with the fact that
R∗σ = σ.) Of course, the fact that φ(x) is invariant under rotations can

alternatively be seen from the very start, using φ(x) = Φ̌(x) =
̂̃
Φ(x)
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and Folland’s Theorem 8.22(b) together with the fact that Φ̃ = Φ is
invariant under rotations.

Since φ(x) is invariant under rotations, it suffices to evaluate φ(x)
when x = (x1, 0, . . . , 0), x1 ≥ 0. In this case we have, writing ω =
(ω1, . . . , ωn):

φ((x1, 0, . . . , 0)) =
Γ(n)

(2π)n

∫

Sn−1
1

(1− ix1ω1)
−n dσ(ω).

Note that as ω varies over Sn−1
1 , ω1 varies over the interval [−1, 1], and

it seems clear that the above integral over Sn−1
1 should be expressible

as an integral simply over ω1 ∈ [−1, 1]. Indeed, by Proposition 2.2
applied with the map T being T : Sn−1

1 → [−1, 1]; T (ω) := ω1, we have

φ((x1, 0, . . . , 0)) =
Γ(n)

(2π)n

∫

[−1,1]

(1− ix1ω1)
−n d(T∗σ)(ω1).

The question is thus: What is the push-forward T∗σ of the measure σ
under the projection T : Sn−1

1 → [−1, 1]? The answer is easily found
e.g. using spherical coordinates; cf. Folland’s exercise 65 on p. 80.12

d(T∗σ)(ω1) =
2π

n−1
2

Γ(n−1
2
)
(1− ω2

1)
n−3
2 dω1.(4.2)

(Here dω1 is Lebesgue measure, as usual.) Using this we have

φ((x1, 0, . . . , 0)) =
Γ(n)

2n−1π
n+1
2 Γ(n−1

2
)

∫

[−1,1]

(1− ix1ω1)
−n (1− ω2

1)
n−3
2 dω1.

This explicit integral is perhaps not entirely simple to compute. I
present one (dirty!) way to compute it below: The two main points
I want to make are (1) it is often useful to use a computer algebra
package, e.g. Maple, both to get the answer and to learn about e.g.
special functions involved, and (2) it is often convenient to use hand-
books of mathematical formulas, such as [6]; also google, Wikipedia,
[14, http://dlmf.nist.gov/], etc, can be useful.

This integral can be computed using Maple: Typing

> simplify(int((1-omega1^2)^((n-3)/2)*(1-I*x1*omega1)^(-n),omega1=-1..1));

gives the answer

12Some details: By Folland’s Exercise 65 we have for any Borel set E ⊂ [−1, 1]:
(T∗σ)(E) =

∫
X I(cosφ1 ∈ E) sinn−2 φ1 sin

n−3 φ2 · · · sinφn−2 dφ1 · · · dφn−2 dθ,

where X = (0, π)n−2 × (0, 2π). Substituting ω1 = cosφ1 we have∫ π

0 I(cosφ1 ∈ E) sinn−2 φ1 dφ1 =
∫
E(1 − ω2

1)
n−3

2 dω1; also the integral over the

remaining variables is recognized as σn−2(S
n−2), by applying the same exercise 65

with n− 1 in place of n. But σn−2(S
n−2) = 2π

n−1
2

Γ(n−1

2
)
by Folland’s Prop. 2.54. Hence

the formula (4.2) follows.
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1/2 2 (- 1/2 - n/2)

Pi (x1 + 1) GAMMA(n/2 - 1/2)

---------------------------------------------

GAMMA(n/2)

Let us try to check where Maple’s answers come from. In this case,
typing the above without the “simplify” we see that the integral is
related to the hypergeometric function (a fact which perhaps the more
experienced readers could see from start without help). In fact, substi-
tuting ω1 = 2u− 1 we have

∫ 1

−1

(1− ix1ω1)
−n (1− ω2

1)
n−3
2 dω1

= 2n−2

∫ 1

0

u
n−3
2 (1− u)

n−3
2 (1 + ix1 − 2ix1u)

−n du

= 2n−2(1 + ix1)
−n

∫ 1

0

u
n−3
2 (1− u)

n−3
2

(
1− 2ix1

1 + ix1
u
)−n

du

By [6, 9.111] and [6, 8.384] (cf. also wikipedia) we get

2n−2(1 + ix1)
−n Γ(n−1

2
)2

Γ(n− 1)
F
(
n,
n− 1

2
;n− 1;

2ix1
1 + ix1

)
,

where F is the (Gauss’) hypergeometric function (often also denoted
by 2F1). Next using [6, 9.134.1] we get

= 2n−2 Γ(
n−1
2
)2

Γ(n− 1)
F
(n
2
,
n+ 1

2
;
n

2
;−x21

)
,

and by [6, 9.100–9.102] this is, assuming |x1| < 1:

= 2n−2 Γ(
n−1
2
)2

Γ(n− 1)

∞∑

j=0

(−(n + 1)/2

j

)
(−1)j(−x21)j

= 2n−2 Γ(
n−1
2
)2

Γ(n− 1)
(1 + x21)

−n+1
2 .

Using also the doubling formula for the Gamma function (see [6, 8.335.1]),

Γ(n− 1) = π− 1
22n−2Γ(n−1

2
)Γ(n

2
); we conclude:

∫ 1

−1

(1− ix1ω1)
−n (1− ω2

1)
n−3
2 dω1 =

√
πΓ(n−1

2
)

Γ(n
2
)

(1 + x21)
−n+1

2 .

We have proved this for all x1 ∈ (−1, 1), but since both the left and
the right sides in the last identity are clearly holomorphic functions in
the open connected region

x1 ∈ C \ i
(
(−∞,−1] ∪ [1,∞)

)
,

http://en.wikipedia.org/wiki/Hypergeometric_function#Euler_type
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the identity must hold for all these x1 by analytic continuation, and
in particular the identity holds for all x1 ∈ R. This validates Maple’s
answer! Using this we conclude

φ((x1, 0, . . . , 0)) =
Γ(n)

2n−1π
n+1
2 Γ(n−1

2
)
·
√
πΓ(n−1

2
)

Γ(n
2
)

(1 + x21)
−n+1

2

=
Γ(n+1

2
)

π
n+1
2

(1 + x21)
−n+1

2 ,

where in the last step we again used the doubling formula for Γ, i.e.
Γ(n) = π− 1

22n−1Γ(n
2
)Γ(n+1

2
). (Note that our two applications of the

doubling formula cancel each other; we only used it to check agreement
with the Maple output.) Hence, using the fact that φ is invariant under
rotations, we have

φ(x) =
Γ(n+1

2
)

π
n+1
2

(1 + |x|2)−n+1
2 , ∀x ∈ Rn.

�
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5. Notation: “big O”, “little o”, “≪”, “≫”, “≍” and “∼”

Note: The exact conventions regarding these symbols differ in the
literature. The following are the conventions which we will use through-
out these notes.

“Big O”: If a is a non-negative number, the symbol “O(a)” is used
to denote any number b for which |b| ≤ Ca, where C is a positive
“constant”, called the implied constant. We write “constant” within
quotation marks since C is often allowed to depend on certain parame-
ters: When using the big-O notation it is very important to always be
clear about which parameters C is allowed to depend on. Furthermore,
it must always be clear for which variable ranges the bound holds. For
example: “f(x) = O(x3) as x→ ∞” means that there is some constant
C > 0 such that for all sufficiently large x we have |f(x)| ≤ Cx3. On
the other hand, “f(x) = O(x3) for x ≥ 1” means that there is some
constant C > 0 such that |f(x)| ≤ Cx3 holds for all x ≥ 1.

If the implied constant can be taken to be independent of all param-
eters present in the problem, then the implied constant is said to be
absolute.

Note that whenever we use the notation “O(a)” we require that
a ≥ 0.

“little o”: We write “f(x) = o(g(x)) as x → a” to denote that

limx→a
f(x)
g(x)

= 0; we will only use this notation when g(x) > 0 for

all x sufficiently near a! Thus for example if we write “
∑N

n=1 an =
2
3
N

3
2 − 6

7
N

7
6 (1 + o(1)) as N → ∞” then “o(1)” denotes some function

f(N) which satisfies limN→∞ f(N) = 0. Note that, unlike the “big O”-
notation the “little o”-notation can only be used when we are taking a
limit.

“≪”: “b≪ a” means the same as b = O(a).

“≫”: “b ≫ a” means that there is a constant C > 0 (again called
the implied constant) such that |b| ≥ Ca ≥ 0.

Thus note that “a≪ b” is in general not equivalent with “b≫ a” –
but they are equivalent whenever both a and b are nonnegative.

“≍”: “b ≍ a” means [b≪ a and b≫ a].

“∼”: We write “f(x) ∼ g(x) as x→ a” to denote that limx→a
f(x)
g(x)

=

1. Thus this notation can only be used when g(x) 6= 0 for all x suffi-
ciently near a. We may note that if g(x) 6= 0 for all x sufficiently near a,
then “f(x) ∼ g(x) as x→ a” is equivalent with “f(x) = g(x)(1+ o(1))
as x→ a”.
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6. On counting integer points in large convex sets

Given a set E ⊂ Rn we are interested in the number of integer points
in E, i.e. #(Zn ∩ E). If E is “large” and “nice” it seems clear that
#(Zn ∩ E) should be approximately equal to the volume of E. The
following result gives a precise error bound for this approximation,
when E is replaced by the rescaled set RE and we let R→ ∞.

Theorem 6.1. Assume that E is a bounded open convex set in Rn

(n ≥ 2) and that there is a constant C > 0 such that

|χ̂E(ξ)| ≤ C(1 + |ξ|)−n+1
2 , ∀ξ ∈ Rn.(6.1)

Then there is a constant C ′ > 0 such that
∣∣#(Zn ∩RE)− vol(RE)

∣∣ ≤ C ′R
(n−1)n
n+1 , ∀R ≥ 1.(6.2)

(Here “vol” denotes volume, i.e. Lebesgue measure; thus vol(RE) =
Rn vol(E).)

Here are some remarks to put the result in context:

Remark 6.2. It follows from results which we will prove later (see Ex.
8.1 and Sec. 9.3), that the bound (6.1) holds when C is a ball. But in
fact (6.1) holds whenever the convex set C has a boundary ∂C which
is sufficiently smooth and has everywhere positive gaussian curvature.
Cf. Hlawka [10], [9], and Herz, [7].

Remark 6.3. The bound (6.2) with R
(n−1)n
n+1 replaced by Rn−1 is “trivial”

(note that Rn−1 is the order of magnitude of the (n− 1)-volume of the
boundary ∂(RE)). We proved this in a special case in (1.55), and the
proof in the general case is similar.

Remark 6.4. For n = 2 the bound in (6.2) is C ′R2/3; this gives the
Sierpinski (1906) bound on the Gauss’ circle problem. For n = 3 the
bound in (6.2) is C ′R3/2.

Remark 6.5. Herz 1962, [8] proves a result similar to Theorem 6.1 but
with a more precise discussion on the implied constant, C ′. We will
essentially follow Herz’ proof below.

Remark 6.6. It will be immediate from the proof that the bound (6.2)
is in fact uniform over all translates of RE, i.e. C ′ can be taken so that
∣∣#(Zn ∩ (x+RE))− vol(RE)

∣∣ ≤ C ′R
(n−1)n
n+1 , ∀R ≥ 1, x ∈ Rn.
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Proof of Theorem 6.1. The starting idea is to try to apply the Poisson
summation formula to χRE , i.e.

“
∑

k∈Zn

χRE(k) =
∑

k∈Zn

χ̂RE(k) ”,

the point being that the left hand side in this relation equals #(Zn ∩
RE), the number of integer points in RE. However some modification
of is necessary since the sum

∑
k∈Zn χ̂RE(k) typically does not converge!

A standard way to make the Fourier transform decay more rapidly
would be to convolve χRE with a smooth bump function acting like
an approximate identity, i.e. convolving with φδ, for some fixed φ ∈
C∞

c (Rn) satisfying φ ≥ 0,
∫
φ = 1, and with δ > 0 chosen in an optimal

way depending on R.13 This method can be used to prove Theorem 6.1
(I carried this out in my 2013 version of these lecture notes).

Here we will instead follow the method of proof of Herz, [8, Sec. 1],
convolving χRE with χhE with a suitably chosen h ∈ R. More precisely,
we consider the convolution χR′E∗χhE with appropriateR′ ≈ R and h ∈
R; we wish to bound χRE from above and below by such convolutions!
In one direction this is quite easy: The bound from below is perhaps
easiest: For any 0 < h < R, we have

vol(hE) · χRE ≥ χ(R−h)E ∗ χhE .(6.3)

[Proof: By Folland, [5, Prop. 8.6(d)], the support of χ(R−h)E ∗ χhE is
contained in the closure of (R − h)E + hE 14, and using the fact that
E is convex one easily proves (R − h)E + hE = RE; hence we have
(χ(R−h)E ∗χhE)(x) = 0 whenever x /∈ RE. Also for all x ∈ Rn we have∣∣(χ(R−h)E ∗ χhE)(x)

∣∣ ≤ ‖χ(R−h)E‖∞‖χhE‖1 = vol(hE). Hence (6.3) is
proved.]

The bound from above looks as follows: For any R, h > 0 we have:15

vol(hE) · χRE ≤ χ(R+h)E ∗ χ−hE.(6.4)

[Proof: We have

(χ(R+h)E ∗ χ−hE)(x) =

∫

Rn

χ(R+h)E(x− y)χ−hE(y) dy,(6.5)

and if x ∈ RE then for every y ∈ −hE we have x − y ∈ RE + hE =
(R + h)E; i.e. the integrand in (6.5) equals one for all y ∈ −hE; and
clearly it vanishes for all other y in Rn. Hence for every x ∈ RE we
have (χ(R+h)E ∗ χ−hE)(x) = vol(−hE) = vol(hE). Also, obviously,
χ(R+h)E ∗ χ−hE ≥ 0 everywhere. Hence (6.4) holds.]

13One has to balance between two effects: Increasing δ leads to a better decay
for the Fourier coefficients of χR′E ∗ φδ, but also forces us to choose R1 and R2

further away from R in order to ensure that χR1E ∗ φδ ≤ χRE ≤ χR2E ∗ φδ.
14Notation: For any subsets A,B ⊂ Rn we write A+B := {a+b : a ∈ A, b ∈ B}.
15Note: We write rE := {rx : x ∈ E} for any r ∈ R (not only for r > 0).
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For any a ∈ R \ {0} we have χ̂aE(ξ) = |a|nχ̂E(aξ); hence the Fourier
transform of χ(R−h)E ∗ χhE is

ξ 7→ (R− h)nhnχ̂E((R− h)ξ)χ̂E(hξ),

and the Fourier transform of χ(R+h)E ∗ χ−hE is

ξ 7→ (R + h)nhnχ̂E((R + h)ξ)χ̂E(−hξ).
Note that both these are ≪ (1 + |ξ|)−n−1, because of the assumption
on χ̂E in Theorem 6.1. Furthermore both the functions χ(R−h)E ∗ χhE

and χ(R+h)E ∗ χ−hE, by [5, Prop. 8.8] are continuous, and so are their
Fourier transforms. Hence both χ(R−h)E∗χhE and χ(R+h)E∗χ−hE satisfy
all the necessary assumptions in the Posson Summation Formula, [5,
Theorem 8.32]. Applying the resulting Poisson formulas together with
the inequalities (6.3) and (6.4), we obtain, for any 0 < h < R:

(R− h)nhn

vol(hE)

∑

k∈Zn

χ̂E((R− h)k)χ̂E(hk) ≤ #(Zn ∩RE)

≤ (R + h)nhn

vol(hE)

∑

k∈Zn

χ̂E((R + h)k)χ̂E(−hk).(6.6)

Using χ̂E(0) = vol(E), we see that the contribution from the k =
0 term in the right sum in (6.6) is (R + h)n vol(E). Note also that
(R + h)n = Rn +O(Rn−1h), since 0 < h < R. Hence we obtain

#(Zn ∩RE)− vol(RE) ≤ O

(
Rn−1h + (R + h)n

∑

k∈Zn\{0}

∣∣∣χ̂E((R + h)k)
∣∣∣
∣∣∣χ̂E(−hk)

∣∣∣
)
,

where the implied constant depends on E, but not on R or h. Using
also (6.1) and R + h ≍ R, this implies

#(Zn ∩RE)− vol(RE) ≤ O

(
Rn−1h +Rn

∑

k∈Zn\{0}
(1 + |Rk|)−n+1

2 (1 + |hk|)−n+1
2

)
.

By a similar argument, if we from now on assume 0 < h ≤ 1
2
R (so that

R− h ≍ R), we obtain from the left inequality in (6.6):

vol(RE)−#(Zn ∩ RE) ≤ O

(
Rn−1h +Rn

∑

k∈Zn\{0}
(1 + |Rk|)−n+1

2 (1 + |hk|)−n+1
2

)
.

Hence we have proved:

∣∣#(Zn ∩RE)− vol(RE)
∣∣ ≪ Rn−1h +Rn

∑

k∈Zn\{0}
(1 + |Rk|)−n+1

2 (1 + |hk|)−n+1
2 .

(6.7)

It remains to bound the sum in (6.7) in an optimal way. This is a
quite standard problem and a nice illustration of the method of dyadic
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decomposition. First of all, we have R ≥ 1 and hence for all k ∈ Zn\{0}
we have |Rk| ≥ 1 and 1 + |Rk| ≍ |Rk| = R|k|. Hence16

∑

k∈Zn\{0}
(1 + |Rk|)−n+1

2 (1 + |hk|)−n+1
2 ≍ R−n+1

2

∑

k∈Zn\{0}
|k|−n+1

2 (1 + |hk|)−n+1
2 .

(6.8)

If h ≥ 1 then we similarly have 1 + |hk| ≍ h|k| and so we obtain that
the above is

(Rh)−
n+1
2

∑

k∈Zn\{0}
|k|−(n+1) ≍ (Rh)−

n+1
2 .

(The fact that
∑

k∈Zn\{0} |k|−(n+1) < ∞ is well-known and it will also

be seen in the discussion below.) However it will turn out that the case
0 < h < 1 is more relevant for us. When this holds, we have two regimes

for the factor (1+ |hk|)−n+1
2 : If |k| ≤ h−1 then (1+ |hk|)−n+1

2 ≍ 1, while

if |k| > h−1 then (1+|hk|)−n+1
2 ≍ h−

n+1
2 |k|−n+1

2 . Hence we obtain, when
0 < h < 1, that the expression in (6.8) is

≍ R−n+1
2

∑

k∈Zn

1≤|k|≤h−1

|k|−n+1
2 + (Rh)−

n+1
2

∑

k∈Zn

|k|>h−1

|k|−(n+1)(6.9)

We here apply dyadic decomposition: We note that the set

{k ∈ Zn : 1 ≤ |k| ≤ h−1}
is contained in the union of the pairwise disjoint sets

Am := {k ∈ Zn : 2m ≤ |k| < 2m+1}
for m = 0, 1, . . . ,M , whereM is the minimal integer satisfying 2M+1 >
h−1 (thus M ≥ 0 since 0 < h < 1). Note that for every k ∈ Am we

have |k|−n+1
2 ≤ 2−

m(n+1)
2 . Furthermore by an elementary argument we

have

#Am ≤ #{k ∈ Zn : |k| < 2m+1} ≪ (2m+1)n ≪ 2mn.

Hence

∑

k∈Zn

1≤|k|≤h−1

|k|−n+1
2 ≤

M∑

m=0

#Am · 2−m(n+1)
2 ≪

M∑

m=0

2
m(n−1)

2 ≪ 2
M(n−1)

2

(in the last bound we used the fact that 2(n−1)/2 ≥
√
2 > 1, since

n ≥ 2). Also 2M ≤ h−1 by the definition of M ; hence we conclude:
∑

k∈Zn

1≤|k|≤h−1

|k|−n+1
2 ≪ h−

n−1
2 .(6.10)

16In all of the following bounds, up to and including (6.12), the implied constants
depend only on n.
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Similarly, to bound the last sum in (6.9), we express the set

{k ∈ Zn : |k| > h−1}
as the union of the pairwise disjoint sets

Am := {k ∈ Zn : 2mh−1 < |k| ≤ 2m+1h−1}
form = 0, 1, 2, . . .. Similarly as above, we have |k|−(n+1) < (2mh−1)−(n+1)

for all k ∈ Am, and #Am ≪ 2mnh−n. Hence:

∑

k∈Zn

|k|>h−1

|k|−(n+1) ≤
∞∑

m=0

#Am · (2mh−1)−(n+1) ≪
∞∑

m=0

2mnh−n · 2−m(n+1)hn+1

= h

∞∑

m=0

2−m ≪ h.(6.11)

Using the bounds in (6.10) and (6.11) we conclude that the expression

in (6.9) is ≪ R−n+1
2 h−

n−1
2 (both terms give the same contribution).

Incorporating also the case h ≥ 1, we have now proved that

∑

k∈Zn\{0}
(1 + |Rk|)−n+1

2 (1 + |hk|)−n+1
2 ≪

{
(Rh)−

n+1
2 if h ≥ 1

R−n+1
2 h−

n−1
2 if 0 < h < 1

= R−n+1
2 h−

n−1
2 min(1, h−1).(6.12)

Plugging this into (6.7), we conclude:
∣∣vol(RE)−#(Zn ∩ RE)

∣∣ ≪ Rn−1h+R
n−1
2 h−

n−1
2 min(1, h−1).(6.13)

We have proved that this holds for any R ≥ 1 and any 0 < h ≤ 1
2
R.

Now for given R ≥ 1 we choose h so as to minimize (the order of
magnitude of) the right hand side. A simple analysis shows that the

correct choice is h = R−n−1
n+1 ,17 and this gives

∣∣#(Zn ∩ RE)− vol(RE)
∣∣ ≪ R

(n−1)n
n+1 ,

i.e. we have proved Theorem 6.1. �

Remark 6.7. The bounds obtained above using dyadic decomposition,
i.e. (6.10) and (6.11), are in fact optimal (as h → 0). This is eas-
ily proved using the same dyadic decompositions, arguing similarly as
above but with bounds from below.

17For this to be acceptable, we have to require R ≥ 2
n+1

2n so as to guarantee
0 < h ≤ 1

2R; however this is not a problem, since the bound (6.2) is trivial when

restricted to a fixed finite interval 1 ≤ R ≤ B.
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7. The gamma function

In this section we introduce the gamma function, and at the same
time get an opportunity to discuss some techniques for the study of
asymptotics, in particular techniques for estimating positive integrals.

7.1. The gamma function; basic facts. For easy reference we here
collect the basic facts about the gamma function, mostly without proofs.
For more details, cf., e.g., Ahlfors [1, Ch. 6.2.4-5], Olver [16, Ch. 2.1]
and Wikipedia.

The Γ-function is commonly defined by

Γ(z) =

∫ ∞

0

e−ttz−1 dt for z ∈ C with ℜz > 0,(7.1)

together with the relation

Γ(z + 1) = zΓ(z)(7.2)

which can be used to extend Γ(z) to a meromorphic function for all
z ∈ C, the only poles being at z ∈ {0,−1,−2,−3, . . .}, and each pole
being simple. (Note that (7.1) defines Γ(z) as an analytic function in
the region {ℜz > 0}, and using integration by parts one proves that
(7.2) holds in this region; it is then easy to prove that if (7.2) is used
to define Γ(z) also when ℜz ≤ 0, then we get a meromorphic function
as claimed.)

We have

Γ(n) = (n− 1)!, ∀n ∈ N.

The Γ-function is also given by the following infinite product formula
(which is sometimes used as a definition):

1

Γ(z)
= zeγz

∞∏

n=1

(
1 +

z

n

)
e−z/n,(7.3)

where γ is Euler’s constant, defined so that Γ(1) = 1, i.e.

γ := − log
( ∞∏

n=1

(
1 +

1

n

)
e−1/n

)
= lim

N→∞

(
− logN +

N∑

n=1

1

n

)
= 0.57722 . . . .

(7.4)

The product in (7.3) is a so called Weierstrass product (cf. Wikipedia),
and since

∑∞
n=1 n

−2 < ∞ the product in (7.3) is uniformly absolutely
convergent18 on compact subsets of C, and (thus) Γ(z)−1 is an entire

18Recall that a product
∏∞

n=1(1 + un(z)) is said to be absolutely con-
vergent if

∑∞
n=1 |un(z)| < ∞. Hence in the present case we should set

un(z) = (1 + z
n

)
e−z/n − 1, and the claim is that then

∑∞
n=1 |un(z)| converges, and

converges uniformly with respect to z in any compact subset of C.

https://en.wikipedia.org/wiki/Gamma_function
http://en.wikipedia.org/wiki/Weierstrass_factorization_theorem
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function which has simple zeros at each point z = 0,−1,−2, . . ., and
no other zeros.

The Γ-function satisfies the following relations (identities between
meromorphic functions of z ∈ C):

Γ(z)Γ(1− z) =
π

sin πz
;(7.5)

Γ(2z) = π− 1
222z−1Γ(z)Γ(z + 1

2
).(7.6)

(The relation (7.6) is called Legendre’s duplication formula.)

An important formula involving the Γ-function is the following:
∫ 1

0

xa−1(1− x)b−1 dx =
Γ(a)Γ(b)

Γ(a + b)
,(7.7)

true for all a, b ∈ C with ℜa,ℜb > 0. (Cf. Folland p. 77, Exercise 60.)
The above function (as a function of a and b) is called the beta function,
B(a, b). Many other integrals can be transformed into a beta function –

namely any convergent integral of the form
∫ B

A
L1(x)

αL2(x)
β dx where

L1 and L2 are two affine linear forms of x such that L1(x) is 0 or ∞ at
x = A and L2(x) is 0 or ∞ at x = B (here A or B may be ±∞).

Finally, we mention that the (n− 1)-dimensional volume of the unit
sphere Sn−1

1 is

σ(Sn−1
1 ) =

2πn/2

Γ(1
2
n)
,

and (hence) the volume of the n-dimensional unit ball is

vol(Bn
1 ) =

πn/2

Γ(1
2
n + 1)

.

Cf. Folland, Prop. 2.54 and Cor. 2.55. (When using these formulas for
n odd, note that Γ(1

2
) =

√
π; hence Γ(3

2
) = 1

2

√
π, Γ(5

2
) = 3

4

√
π, etc.)
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7.2. Stirling’s formula. We have the following asymptotic formula
for Γ(z) for z large:

Theorem 7.1. (Stirling’s formula.) For any fixed ε > 0 we have

log Γ(z) =
(
z − 1

2

)
log z − z + log

√
2π +O

(
|z|−1

)
,(7.8)

for all z with |z| ≥ 1 and
∣∣arg z

∣∣ ≤ π − ε. (The implied constant
depends on ε but of course not on z. Also in the right hand side we
use the principal branch of the logarithm function.) In fact we have the
following more precise asymptotic formula, for any m ∈ Z≥0:

log Γ(z) = log
√
2π +

(
z − 1

2

)
log z − z +

m∑

k=0

B2k+2

(2k + 2)(2k + 1)
z−2k−1 +O

(
|z|−2m−3

)
(7.9)

for all z with |z| ≥ 1 and
∣∣arg z

∣∣ ≤ π−ε. (The implied constant depends
on m and ε but of course not on z.) Here Br is the rth Bernoulli
number; cf. Definition 1.18.

Exponentiating, (7.8) gives:

Γ(z) =
√
2π · z

z− 1
2

ez
· eO(|z|−1) =

√
2π · z

z− 1
2

ez
·
(
1 +O(|z|−1)

)

for all z with |z| ≥ 1 and
∣∣arg z

∣∣ ≤ π−ε. Here if z is general complex one

has to remember that zz−
1
2 is by definition the same as exp((z− 1

2
) log z)

where the principal branch of the logarithm is used.

There is a slight modification of Stirling’s formula which is often
convenient to remember:

Corollary 7.2. For any fixed ε > 0 and α ∈ C we have

log Γ(z + α) =
(
z + α− 1

2

)
log z − z + log

√
2π +O

(
|z|−1

)
,(7.10)

for all z with |z| ≥ 1, |z + α| ≥ 1 and
∣∣arg(z + α)

∣∣ ≤ π − ε. (The
implied constant depends on ε and α but of course not on z.)

This corollary follows more or less immediately from (7.8) by using
log(z+α) = log z+ α

z
+O(|z|2) for |z| large (viz., the Taylor expansion

of log(1 + αz−1) for z large); there are some instructive technicalities
involved19 in the proof and therefore we write it out in an appendix
below; see Sec. 7.5.

It is important to note that if we are interested in finer asymptotics
as in (7.9) then the transformation from z to z + α is not as simple as
in (7.10) – but it can of course be worked out, using Taylor expansions.

19which fall outside the main scope of the course.
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As an example, taking α = 1 in Corollary 7.10 gives

Γ(z + 1) =
√
2π zz+

1
2 e−z(1 +O(|z|−1)),(7.11)

and in particular:

n! =
√
2π · n

n+ 1
2

en
(1 +O(n−1)), ∀n ≥ 1.

Let us now discuss the proof of Stirling’s formula: One method of
proof is to use the product formula, (7.3), take the logarithm, and
then apply the Euler-MacLaurin summation formula, Theorem 1.19.
Let us discuss this in some detail. First, since Γ(z) is a meromorphic
function of z ∈ C with no zeros, and simple poles at z = 0,−1,−2, . . .
and no other points, we can define a branch of log Γ(z) for z ∈ C \
(−∞, 0] 20 (cf., e.g., [18, Thm. 13.11(b)⇔(h)]). This branch is uniquely
determined by requiring that log Γ(z) > 0 for all large z ∈ R>0. Now
the product formula, (7.3), implies:

log Γ(z) = − log z − γz +

∞∑

n=1

( z
n
− log

(
1 +

z

n

))
, ∀z ∈ C \ (−∞, 0],

(7.12)

where in the right hand side the principal branch of the logarithm
is used throughout. (Outline of details: One checks that the sum in
(7.12) is uniformly absolutely convergent for z in compact subsets of
C \ (−∞, 0]; hence the right hand side defines an analytic function in
the region C\(−∞, 0]. This function is real for z ∈ R>0, and using (7.3)
one verifies that the exponential of this function equals Γ(z). Done!)

By writing
∑∞

n=1 as limN→∞
∑N

n=1 and then using the fact that∑N
n=1

z
n
− z logN = γz (cf. (7.4)), the formula (7.12) can be rewritten

as (∀z ∈ C \ (−∞, 0]):

log Γ(z) = lim
N→∞

(
z logN −

N∑

n=0

log(z + n) +

N∑

n=1

logn
)
.(7.13)

This is the formula to which we apply the Euler-MacLaurin summa-
tion formula, Theorem 1.19. For the details of how this leads to The-
orem 7.1, cf., e.g., Olver [16, Ch. 8.4].

20That is, an analytic function g : C \ (−∞, 0] → C satisfying eg(z) = Γ(z) for
all z ∈ C \ (−∞, 0].
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7.3. Some estimates of the incomplete gamma functions. In
computations one often encounters the following integrals:

Γ(s, x) =

∫ ∞

x

ts−1e−t dt

and

γ(s, x) =

∫ x

0

ts−1e−t dt.

These are called (upper and lower) incomplete gamma functions; cf.
Wikipedia. Obviously,

γ(s, x) + Γ(s, x) = Γ(s) (x ∈ R>0, s ∈ C, ℜs > 0).(7.14)

In this section we give some basic estimates of the incomplete gamma
function for s real; note that in this case the integrand, “ts−1e−t”, is
positive; and all of the following results can be seen as examples of
basic techniques for estimating positive integrals.

As a first example, let us consider the (complementary) error func-
tion;

erfc(A) :=
2√
π

∫ ∞

A

e−t2 dt.(7.15)

(Cf. Wikipedia.) The name of this function is connected with the
normal distribution in probability theory: If X is a random variable
with mean 0 and variance 1

2
then erfc(A) is the probability of the event

|X| > A. Note that the error function is indeed a special case of an
incomplete gamma function, since we have, by substituting t =

√
u:∫ ∞

A

e−t2 dt =
1

2

∫ ∞

A2

e−u du√
u
=

1

2
Γ(1

2
, A2).(7.16)

The following lemma gives the order of magnitude of the integral in
(7.15) as A→ ∞:

Lemma 7.3. ∫ ∞

A

e−t2 dt ≍ e−A2

A
for all A ≥ 1.

Proof. The upper bound follows from
∫ ∞

A

e−t2 dt =

∫ ∞

0

e−(A+u)2 du ≤
∫ ∞

0

e−A2−2Au du =
e−A2

2A
,

and the lower bound follows from∫ ∞

A

e−t2 dt =

∫ ∞

0

e−(A+u)2 du ≥
∫ 1

0

e−A2−2Au−1 du = e−A2−1

[
e−2Au

2A

]u=1

u=0

= e−A2−1 1− e−2A

2A
≥ 1− e−2

2e
· e

−A2

A
.

https://en.wikipedia.org/wiki/Incomplete_gamma_function
https://en.wikipedia.org/wiki/Error_function
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(Note that we used the assumption “A ≥ 1” in the last “≥”.) �

Of course, using
∫∞
0
e−t2 dt =

√
π/2, Lemma 7.3 immediately implies

Lemma 7.4.
∫ A

0

e−t2 dt =

√
π

2
+O

(
e−A2

A

)
for all A ≥ 1.

The following bound generalizes21 Lemma 7.3:

Lemma 7.5. For any fixed s ∈ R and c > 0, we have

Γ(s, x) =

∫ ∞

x

ts−1e−t dt ≍ xs−1e−x, ∀x ≥ c.

(The implied constant depends on s and c, but not on x.)

Proof. The bound from below is very easy; one merely has to note that
ts−1 ≫ xs−1 for all t ∈ [x, 2x] 22; hence
∫ ∞

x

ts−1e−t dt≫ xs−1

∫ 2x

x

e−t dt = xs−1(e−x − e−2x) ≥ (1− e−c) · xs−1e−x.

The bound from above is also very easy if s ≤ 1, since then ts−1 is a
decreasing function of t, and so

∫ ∞

x

ts−1e−t dt ≤ xs−1

∫ ∞

x

e−t dt = xs−1e−x.

For larger s we may integrate by parts in order to lower the exponent
of t in the integrand: Assume k < s ≤ k + 1 with k ∈ Z+. Integrating
by parts k times gives
∫ ∞

x

ts−1e−t dt =
[
−ts−1e−t

]∞
x
+ (s− 1)

∫ ∞

x

ts−2e−t dt

= xs−1e−x + (s− 1)

∫ ∞

x

ts−2e−t dt

· · ·

=

k∑

j=1

( j−1∏

m=1

(s−m)
)
xs−je−x +

( k∏

m=1

(s−m)
) ∫ ∞

x

ts−k−1e−t dt.

Here ts−k−1 is a decreasing function of t and hence
∫∞
x
ts−k−1e−t dt ≤

xs−k−1
∫∞
x
e−t dt = xs−k−1e−x, implying that the above expression is

≤
k+1∑

j=1

( j−1∏

m=1

(s−m)
)
xs−je−x ≪ xs−1e−x.

�

21(via (7.16))
22Indeed, if s ≥ 1 then ts−1 ≥ xs−1 for all t ≥ x, while if 0 < s ≤ 1 then

ts−1 ≥ 2s−1xs−1 for all t ∈ [x, 2x].
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Remark 7.6. The computation in the above proof, where we integrated
by parts k times, is valid for any s > 0 and k ∈ Z+, and it immediately
implies the following asymptotic expansion of Γ(s, x) for large x: For
any fixed s ∈ R, c > 0 and k ∈ Z+, we have

Γ(s, x) =
k∑

j=1

as,j x
s−je−x +O

(
xs−k−1e−x

)
∀x ≥ c,(7.17)

with as,j =
∏j−1

m=1(s−m). [Details: When k ≥ s− 1, the expansion in (7.17)

follows immediately by the arguments at the end of the proof of the lemma. But

then one also notes that the claim in (7.17) for one fixed k immediately implies the

corresponding claim for any smaller (positive) k. Hence (7.17) indeed holds for any

fixed k ∈ Z+.]

Exercise 7.1. Deduce from (7.17) a precise asymptotic expansion of
erfc(A) for large A. Compare with Wikipedia.

Let us also note that, using (7.14), Lemma 7.5 immediately gives an
asymptotic formula for γ(s, x) valid for fixed s > 0 and large x:

Lemma 7.7. For any fixed s > 0 and c > 0, we have

γ(s, x) =

∫ x

0

ts−1e−t dt = Γ(s) +O
(
xs−1e−x

)
, ∀x ≥ c.

(The implied constant depends on s and c, but not on x.)

7.4. Γ-asymptotics directly from the integral. As a further, more
involved, example of techniques for bounding and estimating positive
integrals, we will here discuss the asymptotics of Γ(s) as s→ ∞ along
the real axis, using the formula Γ(s) =

∫∞
0
e−xxs−1 dx (cf. (7.1)).

This present section should be compared with Olver [16, Ch. 3.8]
and Wong [20, Ch. II.1].

We assume from start that s > 0, and we will focus on the case of s
large. We consider the integral

Γ(s) =

∫ ∞

0

e−xxs−1 dx,

and we note that the integrand is positive for all x. It turns out that
our computations will be quite a bit cleaner if we work instead with

λ := s− 1.

Thus: We assume from start that λ > −1, and we consider the integral

Γ(λ+ 1) =

∫ ∞

0

e−xxλ dx.

https://en.wikipedia.org/wiki/Error_function#Asymptotic_expansion
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As a first step we determine the monotonicity properties of the inte-
grand. Set

f(x) = e−xxλ.

We compute:

f ′(x) = (λ− x)xλ−1e−x.

Already here we see that it is convenient to assume λ > 0, so let’s
assume this. Now we see that f(x) is increasing for 0 < x < λ and
decreasing for x > λ; thus f(x) attains its maximum at x = λ. When
studying how quickly f(x) descends when x moves away from λ it is
convenient to set x = λ+ y, and consider the logarithm of f(x):

log f(λ+ y) = −(λ + y) + λ log(λ+ y)

= λ
(
−1− y

λ
+ log λ+ log

(
1 +

y

λ

))
.

We see that it is convenient to take u = y
λ
as a new variable. Then:

log f
(
λ(1 + u)

)
= λ log

(λ
e

)
− λ

(
u− log(1 + u)

)
,

or in other words:

f(λ(1 + u)) =
(λ
e

)λ

e−λ(u−log(1+u)).

Substituting x = λ(1 + u) in our integral we get:

Γ(λ+ 1) = λλ+1e−λ

∫ ∞

−1

e−λ(u−log(1+u)) du.(7.18)

Set

g(u) = u− log(1 + u).

It is clear from the above analysis that g(u) attains its minimum at
u = 0 23. Using the Taylor expansion for log(1 + u) we see that, for
any fixed 0 < c0 < 1,

g(u) =
1

2
u2 +O(u3), ∀u ∈ [−c0, c0].

Hence for any 0 < α ≤ c0:∫ α

−α

e−λ(u−log(1+u)) du =

∫ α

−α

e−
1
2
λ(u2+O(u3)) du

{
Set u =

(
2
λ

)1/2
t
}

=

√
2

λ

∫ α(λ/2)1/2

−α(λ/2)1/2
e−t2+O(λ−

1
2 t3) dt.

23This can of course also easily be checked at this point: We have g′(u) = u
1+u ,

thus g′(u) < 0 for −1 < u < 0 and g′(u) > 0 for u > 0.
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If we assume that α ≤ 10λ−
1
3 (say) then λ−

1
2 t3 in the last integral

always has a bounded absolute value, and hence we may continue as
follows:

=

√
2

λ

∫ α(λ/2)1/2

−α(λ/2)1/2
e−t2

(
1 +O(λ−

1
2 t3)

)
dt

=

√
2

s− 1

∫ α(λ/2)1/2

−α(λ/2)1/2
e−t2 dt+O(λ−1).

(In the last equality we simply used
∫∞
−∞ e−t2 |t3| dt = O(1).) Using

Lemma 7.3 to estimate the explicit integral, we conclude:
∫ α

−α

e−λ(u−log(1+u)) du =

√
2π

λ
+O

(
e−

1
2
λα2

αλ
+

1

λ

)
.

It remains to bound the integrals
∫ −α

−1
and

∫∞
α
. The first of these is

easily handled using the fact that u−log(1+u) ≥ 1
2
u2 for all u ∈ (−1, 0];

this is clear e.g. from the Taylor expansion of log(1+u). Hence we get:
∫ −α

−1

e−λ(u−log(1+u)) du ≤
∫ −α

−1

e−
1
2
λu2

du

≤
√

2

λ

∫ ∞

α(λ/2)1/2
e−t2 dt≪ e−

1
2
λα2

αλ
.

(Cf. Lemma 7.3 regarding the last bound.) Finally to bound the
∫∞
α

we use the fact that there is an absolute constant c1 > 0 such that
u−log(1+u) ≥ c1u

2 for all u ∈ [0, 1]. (Prove this fact as an exercise! In
fact the optimal choice of c1 is c1 = 1−log 2 = 0.3068 . . ..) Furthermore
there is an absolute constant c2 > 0 such that for all u ≥ 1 we have
u− log(1 + u) ≥ c2u. (Prove this fact as an exercise!) Hence

∫ ∞

α

e−λ(u−log(1+u)) du ≤
∫ 1

α

e−c1λu2

du+

∫ ∞

1

e−c2λu du

≪ e−c1λα2

αλ
+
e−c2λ

λ
.

Adding together the integrals we have now proved that (using the fact

that 0 < c1 ≤ 1
2
and thus e−

1
2
λα2 ≤ e−c1λα2

):

∫ ∞

−1

e−λ(u−log(1+u)) du =

√
2π

λ
+O

(
e−c1λα2

αλ
+

1

λ

)
.

The last relation has been proved for any λ > 0 and any α satisfying
0 < α ≤ c0 < 1 and α ≤ 10λ−

1
3 . Making now a definite choice of α,

say α = 1
2
λ−

1
3 , and assuming λ ≥ 1 so as to ensure α ≤ 1

2
, we trivially

have that the first error term decays exponentially (with respect to λ)
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and is subsumed by the second error term, O(λ−1). Hence, recalling
(7.18), we have proved:

Γ(λ+ 1) =
√
2πλλ+

1
2 e−λ

(
1 +O

(
λ−

1
2

))
, ∀λ ≥ 1.(7.19)

Note that this agrees with (7.11) above, but with a worse error term.

In order to get a better error term, and even an asymptotic expansion
of Γ(λ + 1), we modify the treatment of (7.18) as follows:24 We have
seen that g(u) = u− log(1+u) is strictly decreasing for u ∈ (−1, 0] and
strictly increasing for u ∈ [0,∞), since g′(u) = u

1+u
. Hence the function

g has continuous inverses, h1 : [0,∞) → (−1, 0] (a decreasing function
with h1(0) = 0, satisfying g(h1(v)) = v, ∀v ∈ R≥0) and h2 : [0,∞) →
[0,∞) (an increasing function with h2(0) = 0, satisfying g(h2(v)) = v,
∀v ∈ R≥0). We note that h1 and h2 are C

∞ in (0,∞), and substituting
u = h1(v) and u = h2(v) in the integral in (7.18) we obtain:

∫ ∞

−1

e−λ(u−log(1+u)) du =

∫ 0

−1

· · ·+
∫ ∞

0

· · ·

=

∫ ∞

0

e−λv(−h′1(v)) dv +
∫ ∞

0

e−λvh′2(v) dv.(7.20)

By implicit differentiation using g(hj(v)) = v we see that

h′j(v) = 1 + hj(v)
−1, j = 1, 2.

In particular, for any fixed constant c3 > 0, both −h′1(v) and h′2(v)
are bounded and positive for all v ≥ c3. (Namely: 0 < −h′1(v) ≤
−1 − h1(c3)

−1 and 0 < h′2(v) ≤ 1 + h2(c3)
−1.) Hence the contribution

from v ≥ c3 to the integrals in (7.20) is:

≪
∫ ∞

c3

e−λv dv =
e−c3λ

λ
,(7.21)

i.e. exponentially small.

It remains to treat the integrals for v near 0, and here we will use
the power series expansion of hj(v): Since g(u) is analytic for u ∈ C
with |u| < 1, with the power series

g(u) = u− log(1 + u) =
1

2
u2 − 1

3
u3 +

1

4
u4 − · · · ,

it follows that there exists some open disc Ω ⊂ C centered at 0, and
an analytic function H : Ω → C, such that H(0) = 0, H(w) > 0 for

24The following discussion is in fact a special case of Laplace’s method for obtain-

ing the asymptotic expansion of an integral of the form
∫ b

a ϕ(t)e
−λh(t) dt as λ→ ∞,

with h a real-valued function. Again compare Olver [16, Ch. 3.8] and Wong [20,
Ch. II.1].
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w ∈ Ω ∩ R>0, and g(H(w)) = w2 for all w ∈ Ω. The power series for
H(w) can be found by substituting in g(H(w)) = w2, and we compute:

H(w) =
√
2w +

2

3
w2 +

1

9
√
2
w3 + . . . , ∀w ∈ Ω.(7.22)

Let r > 0 be the radius of Ω. Now since v 7→ H(
√
v) for v ∈ [0, r2)

is a continuous function with H(
√
0) = 0, increasing at least for small

v, and whose composition with g is the identity function, we conclude
that h2(v) = H(

√
v) for all v ∈ [0, r2). Similarly h1(v) = H(−√

v) for
all v ∈ [0, r2). Differentiating this relation gives

h′j(v) =
(−1)j

2
√
v
H ′((−1)j

√
v) =

(−1)j

2
√
v

(√
2 +

4

3
(−1)j

√
v +

1

3
√
2
v + . . .

)
,

for all v ∈ (0, r2). Hence if we choose c3 =
1
2
r2, say, then we have

∫ c3

0

e−λv(−h′1(v)) dv =
∫ c3

0

e−λv
( 1√

2v
− 2

3
+

√
v

6
√
2
+O(v)

)
dv(7.23)

Here note that for each fixed α > −1, we have by Lemma 7.7 (assuming
s ≥ 2, say):
∫ c3

0

e−λvvα dv = λ−α−1

∫ c3λ

0

e−uuα du = Γ(α + 1)λ−(α+1) +O
(
λ−1e−c3λ

)
.

Using this for α = −1
2
, 0, 1

2
and 1, we conclude from (7.23):

∫ c3

0

e−λv(−h′1(v)) dv =
Γ(1

2
)√
2
λ−

1
2 − 2

3
Γ(1)λ−1 +

Γ(3
2
)

6
√
2
λ−

3
2 +O

(
λ−2

)

(since the error term λ−1e−c3λ decays exponentially and is therefore
subsumed by O(λ−2)). Similarly

∫ c3

0

e−λvh′2(v) dv =
Γ(1

2
)√
2
λ−

1
2 +

2

3
Γ(1)λ−1 +

Γ(3
2
)

6
√
2
λ−

3
2 +O

(
λ−2

)
.

Adding these together, and using Γ(1
2
) =

√
π and Γ(3

2
) = 1

2

√
π and

the fact that the contribution from v ≥ c3 is bounded by (7.21), we
conclude: ∫ ∞

−1

e−λ(u−log(1+u)) du =
√
2π

(
λ−

1
2 +

1

12
λ−

3
2 +O

(
λ−2

))
.(7.24)

It is clear from the ± symmetry that if we keep track of one more term
in (7.22), then the λ−2 cancels, i.e. we may actually improve the error

in (7.24) to O(λ−
5
2 ). Hence, recalling (7.18), we have proved:

Γ(λ+ 1) =
√
2πλλ+

1
2 e−λ

(
1 +

1

12
λ−1 +O(λ−2)

)
, ∀λ ≥ 1.(7.25)

Clearly by keeping track of more terms in (7.22) we can obtain an
asymptotic expansion with an error O(λ−N) for any fixed N ∈ Z+.
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Exercise 7.2. By keeping track of a few more terms, verify that

Γ(λ+ 1) =
√
2πλλ+

1
2 e−λ

(
1 +

1

12
λ−1 +

1

288
λ−2 +O(λ−3)

)
, ∀λ ≥ 1.

(7.26)

Finally let us verify that (7.25) and (7.26) agree with Stirling’s for-
mula, Theorem 7.1 – that is, let us deduce from (7.26) an asymp-
totic expansion of Γ(s) in terms of negative powers of s. This can be
proved by using Taylor expansions in a similar manner as in Section 7.5.
However, since the jump step is exactly one when passing from λ to
s = λ + 1, it is simpler to just use the formula (7.1)! Thus, (7.26)
implies that for all s ≥ 1:

log Γ(s) = log
(
s−1Γ(s+ 1)

)

= log
√
2π + (s− 1

2
) log s− s+ log

(
1 +

1

12
s−1 +

1

288
s−2 +O(s−3)

)
,

and writing α := 1
12
s−1 + 1

288
s−2 + O(s−3) we have, if s is sufficiently

large: log(1 + α) = α − 1
2
α2 + O(α3) = 1

12
s−1 + 1

288
s−2 − 1

2
· 1
122
s−2 +

O(s−3) = 1
12
s−1 +O(s−3). Hence:

log Γ(s) = log
√
2π + (s− 1

2
) log s− s+

1

12
s−1 +O(s−3).

This agrees with (7.9) for m = 0, since B2 =
1
6
.
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7.5. Appendix: Proof of Corollary 7.2.

By Stirling’s formula, Theorem 7.1, we have

log Γ(z + α) =
(
z + α− 1

2

)
log(z + α)− (z + α) + log

√
2π +O

(
|z + α|−1

)
,

(7.27)

for all z with |z+α| ≥ 1 and
∣∣arg(z+α)

∣∣ ≤ π− ε. Here and below, for definiteness,
we consider the argument function to take its values in (−π, π], i.e. arg : C \ {0} →
(−π, π].

Let us fix a constant C > 1 so large that
∣∣arg(1 + w)

∣∣ < 1
2ε for all w ∈ C with

|w| ≤ C−1. Note that if |z| ≥ C|α| and |z| ≥ 1 then

arg(z + α) = arg(z(1 + α/z)) ≡ arg(z) + arg(1 + α/z) (mod 2π);

also
∣∣arg(z + α)

∣∣ ≤ π − ε and
∣∣arg(1 + α/z)

∣∣ < 1
2ε, and therefore

∣∣arg(z)
∣∣ ≤ π − 1

2ε
and

arg(z + α) = arg(z) + arg(1 + α/z).

Hence

log(z + α) = log z + log
(
1 +

α

z

)
,

where in all three places we use the principal branch of the logarithm function.
Since |α/z| ≤ C−1 < 1 we can continue:

log(z + α) = log z +
α

z
+O

(α2

z2

)
= log z +

α

z
+O

(
|z|−2

)

(since we allow the implied constant to depend on α). Using this in (7.27) we get

log Γ(z + α) =
(
z + α− 1

2

)(
log z +

α

z
+O

(
|z|−2

))
− (z + α) + log

√
2π +O

(
|z + α|−1

)

=
(
z + α− 1

2

)
log z − z + log

√
2π +O

(
|z|−1

)
+O

(
|z + α|−1

)

=
(
z + α− 1

2

)
log z − z + log

√
2π +O

(
|z|−1

)
,

where in the last step we used the fact that |z + α| ≥ |z| − |α| = |z|
(
1 − |α/z|

)
≥

(1 − C−1)|z| ≫ |z|. Hence we have proved the desired formula for all z satisfying
|z| ≥ 1, |z + α| ≥ 1, | arg(z + α)| ≤ π − ε and |z| ≥ C|α|.

It remains to treat z satisfying |z| ≥ 1, |z + α| ≥ 1, | arg(z + α)| ≤ π − ε and

|z| ≤ C|α|. This is trivial: The set of such z is compact and log Γ(z + α) −
(
z +

α − 1
2

)
log z + z − log

√
2π is continuous on this set, hence bounded. Also |z| is

bounded on the set; hence |z|−1 is bounded from below. Hence by adjusting the

implied constant we have log Γ(z+α)−
(
z+α− 1

2

)
log z+ z− log

√
2π = O

(
|z|−1

)

for all z in our compact set, as desired. �
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8. The J-Bessel function

In this section we give an introduction to the J-Bessel function.

8.1. Introduction. The J-Bessel function can be defined by the fol-
lowing Taylor series expansion around z = 0:

Jν(z) =
(z
2

)ν
∞∑

m=0

(−1)m

m! Γ(m+ ν + 1)

(z
2

)2m

.(8.1)

This definition works for any ν ∈ C and any z ∈ C \ (−∞, 0], say, and
for fixed ν we see that Jν(z) is an analytic function of z ∈ C \ (−∞, 0].
(Jν(z) is also jointly analytic in the variables ν, z.) Note that if ν
happens to be a nonnegative integer then Jν(z) is in fact an entire
function, i.e. an analytic function in z ∈ C.

Note that Jν(z) is real when ν and z are real. See Figure 3 for graphs
of the functions Jν(z) for z > 0, for ν = 0, 1, 10 and 100.

For given ν ∈ C, the function z 7→ Jν(z) is a solution of the so called
Bessel differential equation,

f ′′(z) +
1

z
f ′(z) +

(
1− ν2

z2

)
f(z) = 0.(8.2)

The solution (8.1) of (8.2) is easily obtained using the Frobenius method;
that is, one makes the Ansatz f(z) = zν

∑∞
n=0 anz

n and seeks possible
values of ν and a0, a1, . . . ∈ C (a0 6= 0) which make f satisfy (8.2).
Note that also J−ν(z) is a solution to (8.2) (since the equation (8.2)
remains unchanged when replacing ν by −ν) and in fact, if ν /∈ Z,
then {Jν(z), J−ν(z)} form a fundamental system of solutions, i.e. any
solution to (8.2) can be expressed as a linear combination of these two.
In the (important!) special case ν = n ∈ Z however, we have

J−n(z) = (−1)nJn(z) (n ∈ Z),(8.3)

and another function is needed to obtain a fundamental system of so-
lutions to (8.2).

Exercise 8.1. Verify (8.3) directly from (8.1).

[Hint: For n ∈ Z+, the first n terms in the sum defining J−n(z) vanish.]

Let us record some basic recurrence relations for the Bessel functions,
both of which can be proved directly from (8.1):

Jν−1(z) + Jν+1(z) =
2ν

z
Jν(z);(8.4)

Jν−1(z)− Jν+1(z) = 2J ′
ν(z).(8.5)

https://en.wikipedia.org/wiki/Frobenius_method
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From these we also deduce:

Jν+1(z) =
ν

z
Jν(z)− J ′

ν(z);(8.6)

Jν−1(z) =
ν

z
Jν(z) + J ′

ν(z).(8.7)

An alternative formula which can be taken as the definition of the
J-Bessel function when ℜν > −1

2
is the following (cf. [6, 8.411.10]):

Jν(z) =
( z
2
)ν

Γ(ν + 1
2
)Γ(1

2
)

∫ 1

−1

eizt(1− t2)ν−
1
2 dt(8.8)

=
( z
2
)ν

Γ(ν + 1
2
)Γ(1

2
)

∫ π/2

−π/2

eiz sin θ(cos θ)2ν dθ.

Proof of (8.8) from our definition (8.1): The second formula follows
from the first by substituting t = sin θ. It remains to prove the first

formula. Using eizt =
∑∞

n=0
(izt)n

n!
(which is true for all z, t) we have

∫ 1

−1

eizt(1− t2)ν−
1
2 dt =

∫ 1

−1

∞∑

n=0

(izt)n

n!
(1− t2)ν−

1
2 dt.

Here we may change order of summation and integration, since

∫ 1

−1

∞∑

n=0

∣∣∣(izt)
n

n!
(1− t2)ν−

1
2

∣∣∣ dt =
∫ 1

−1

∞∑

n=0

|izt|n
n!

(1− t2)ℜν− 1
2 dt

=

∫ 1

−1

e|zt|(1− t2)ℜν− 1
2 dt ≤ e|z|

∫ 1

−1

(1− t2)ℜν− 1
2 dt <∞,

where the last step holds since ℜν > −1
2
. Hence

∫ 1

−1

eizt(1− t2)ν−
1
2 dt =

∞∑

n=0

∫ 1

−1

(izt)n

n!
(1− t2)ν−

1
2 dt.

In the last expression, for each odd n the integrand is an odd function
of t and hence the integral vanishes. Thus we may continue:

=
∞∑

m=0

∫ 1

−1

(izt)2m

(2m)!
(1− t2)ν−

1
2 dt =

∞∑

m=0

(−1)mz2m

(2m)!
· 2

∫ 1

0

t2m(1− t2)ν−
1
2 dt.
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Substituting t =
√
u in the integral and then using (7.7) and (7.6) we

get:

=

∞∑

m=0

(−1)mz2m

Γ(2m+ 1)
·
∫ 1

0

um− 1
2 (1− u)ν−

1
2 du

=

∞∑

m=0

(−1)mz2m

π− 1
222mΓ(m+ 1

2
)Γ(m+ 1)

Γ(m+ 1
2
)Γ(ν + 1

2
)

Γ(m+ ν + 1)

=
√
π Γ(ν + 1

2
)

∞∑

m=0

(−1)m

m! Γ(m+ ν + 1)

(z
2

)2m

.

Hence, comparing with (8.1) and using Γ(1
2
) =

√
π, we have proved

(8.8). �

For ν = n ∈ Z we have the following alternative integral formula for
Jn(z) (cf. [6, 8.411.1]):

Jn(z) =
1

2π

∫ π

−π

eiz sin θ−inθ dθ (n ∈ Z).(8.9)

Before proving this formula, let us make some observations about the
right hand side. Given z ∈ C we set f(θ) = eiz sin θ; note that f is
periodic with period 2π, i.e. f(θ + 2π) = f(θ) for all θ. It follows that

the right hand side in (8.9) equals 1
2π

∫ a+2π

a
eiz sin θ−inθ dθ for any a ∈ R,

and in fact the formula says that Jn(z) is the nth Fourier coefficient
of the periodic function f .25 Furthermore, by substituting θ = π − ω
one verifies that the integral satisfies the following n ↔ −n symmetry
relation:

∫ π

−π

eiz sin θ−inθ dθ =

∫ 2π

0

eiz sin θ−inθ dθ = (−1)n
∫ π

−π

eiz sinω+inω dω.

(8.10)

We now give the proof of (8.9): Because of (8.10) and (8.3), it suffices

to prove the formula for n ∈ Z≥0. We have eiz sin θ =
∑∞

k=0
(iz sin θ)k

k!
, with

absolute convergence uniformly over θ ∈ [−π, π]; hence
1

2π

∫ π

−π

eiz sin θ−inθ dθ =

∞∑

k=0

(iz)k

k!

1

2π

∫ π

−π

(sin θ)ke−inθ dθ.(8.11)

Here use sin θ = 1
2i
(eiθ−e−iθ) to get (sin θ)k = (2i)−k

∑k
j=0

(
k
j

)
(−1)je(k−2j)iθ.

From this we see that

1

2π

∫ π

−π

(sin θ)ke−inθ dθ =

{
0 if k < n or k 6≡ n mod 2;

(2i)−k(−1)
1
2
(k−n)

(
k

(k−n)/2

)
if k ≥ n and n ≡ k mod 2.

25To connect with the notation in Folland [5, Ch. 8] one should of course consider
the rescaled function g(θ) = f(2πθ) which is periodic with period 1, i.e. a function
on T; and (8.9) says that Jn(z) = ĝ(n).
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Writing k = n+ 2m we thus conclude that the expression in (8.11) is

=

∞∑

m=0

(−1)m(z/2)n+2m

(n+ 2m)!

(
n+ 2m

m

)
=

∞∑

m=0

(−1)m(z/2)n+2m

m!(n +m)!
= Jn(z),

where the last equality holds because of (8.1). �

Exercise 8.2. Give an alternative proof of (8.9), by using (8.8) instead
of (8.1). [Cf. the brief outline in Stein, [19, p. 338 (below (16))].]
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8.2. Application: The Fourier transform of radial functions.
The J-Bessel function can be used to express the Fourier transform of
the surface measure σ on the unit sphere Sn−1

1 . 26 Indeed (cf. Folland’s
Exercise 22, p. 256), for any ξ ∈ Rn,

σ̂(ξ) =

∫

Sn−1
1

e−2πiξ·ω dσ(ω) =

∫

Sn−1
1

e−2πi|ξ|ω1 dσ(ω)

=
2π

n−1
2

Γ(n−1
2
)

∫ 1

−1

e−2πi|ξ|ω1(1− ω2
1)

n−3
2 dω1 = 2π|ξ|1−n

2 Jn
2
−1(2π|ξ|),

where we first used the rotational symmetry, then used (4.2), and finally
used (8.8).

It follows that if F ∈ L1(Rn) is any radial function, i.e. a function
such that F (ξ) only depends on |ξ|; say F (ξ) = f(|ξ|), then

F̂ (ξ) =

∫

Rn

F (x)e−2πiξ·x dx =

∫ ∞

0

f(ρ)

∫

Sn−1
1

e−2πiξ·ρω dσ(ω) ρn−1 dρ

=

∫ ∞

0

f(ρ)σ̂(ρξ)ρn−1 dρ = 2π|ξ|1−n
2

∫ ∞

0

f(ρ)ρ
n
2 Jn

2
−1(2πρ|ξ|) dρ.

(8.12)

Example 8.1. Let us compute the Fourier transform of χBn
1
, the char-

acteristic function of the unit ball Bn
1 in Rn. We have χBn

1
(ξ) = f(|ξ|)

with f = χ[0,1]. Hence by (8.12),

χ̂Bn
1
(ξ) = 2π|ξ|1−n

2

∫ 1

0

ρ
n
2 Jn

2
−1(2πρ|ξ|) dρ

{
set ρ = u/(2π|ξ|)

}

= (2π)−
n
2 |ξ|−n

∫ 2π|ξ|

0

u
n
2 Jn

2
−1(u) du.

However, using (8.7) we have d
du
(u

n
2 Jn

2
(u)) = u

n
2 (n/2

u
Jn

2
(u) + J ′

n
2
(u)) =

u
n
2 Jn

2
−1(u), i.e. u

n
2 Jn

2
(u) is a primitive function of u

n
2 Jn

2
−1(u). Also

this function u
n
2 Jn

2
(u) equals 0 at u = 0. Hence we conclude:

χ̂Bn
1
(ξ) = |ξ|−n

2 Jn/2(2π|ξ|).

Returning to the general situation, note that the formula (8.12) gives
an explicit expression for the Fourier transform of a radial function
(which is again a radial function). Applying now Fourier inversion, we
conclude that for any “nice” f : R≥0 → C 27, if we define

f̃(r) = 2πr1−
n
2

∫ ∞

0

f(ρ)ρ
n
2 Jn

2
−1(2πrρ) dρ,

26We view σ as a Borel measure on Rn in the usual way, i.e. σ(E) = σ(E∩Sn−1
1 )

for any Borel subset E ⊂ Rn.
27More precisely, for any f : R≥0 → C such that both

∫∞

0
|f(ρ)|ρn−1 dρ < ∞

and
∫∞

0 |f̃(ρ)|ρn−1 dρ <∞.
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then f can be recovered by applying exactly the same integral trans-
form once more, i.e.:

f(ρ) = 2πρ1−
n
2

∫ ∞

0

f̃(r)r
n
2 Jn

2
−1(2πρr) dr,(8.13)

Exercise 8.3. The inversion formula (8.13) can be seen as a special
case of the “Hankel inversion formula”: For any fixed ν ≥ −1

2
, the

Hankel transform of a function g : R≥0 → C is defined by

Hνg(r) =

∫ ∞

0

g(ρ)ρJν(rρ) dρ,

and the Hankel inversion formula says that for any “nice” g we have
HνHνg = g. Verify that the inversion formula (8.13) follows from
HνHνg = g applied with ν = n

2
− 1 and g(ρ) = f(ρ)ρ

n
2
−1.

https://en.wikipedia.org/wiki/Hankel_transform
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8.3. Application: The Dirichlet eigenfunctions in a disk. In this
section we will see how the J-Bessel function shows up when seeking
the Dirichlet eigenfunctions and eigenvalues in a disk. Specifically, let
Ω be the disk Ω = B2

a = {|x| < a} in R2, and consider the following
PDE (for real-valued u ∈ C(Ω) ∩ C2(Ω) and λ ≥ 0):

{
∆u+ λu = 0 in all Ω

u|∂Ω = 0.
(8.14)

The first equation says that u is an eigenvalue of the Laplace operator
∆ = ∂2x1

+ ∂2x2
with eigenvalue −λ; the second equation says that u

should satisfy the Dirichlet boundary conditions, i.e. u should vanish
along the boundary of Ω.

Physically, the eigenvalues λ of the above problem corresponds to
the eigenfrequencies of vibration of an idealized circular “drum” of
radius a in the plane; and the eigenfunctions u give the corresponding
“vibration patterns”. Note also that solving problem (8.14) is a first
step in solving e.g. the heat or wave equation in a cylinder domain,
using separation of variables.

Recall that using Green’s formula one easily sees that all eigenvalues
λ to the above problem (as well as for the corresponding Dirichlet
eigenvalue problem in any nice domain in Rn) are positive. Hence in
the following investigation we will assume λ > 0 from start.

Let us now try to solve (8.14) (i.e. to find all solution pairs u, λ) by
expressing u in polar coordinates and separating variables.28 Thus we
write (by slight abuse of notation) u(r, θ) for the value of u at the points
(r cos θ, r sin θ) ∈ R2. Recalling that the Laplacian in polar coordinates
is given by ∆ = ∂2r +

1
r
∂r +

1
r2
∂2θ , we see that the task is to solve:

{
∂2ru+

1
r
∂ru+

1
r2
∂2θu+ λu = 0, 0 < r < a, 0 ≤ θ ≤ 2π,

u(a, θ) = 0, 0 ≤ θ ≤ 2π.

Separating the variables r and θ means making the Ansatz that u is of
the form u(r, θ) = R(r)φ(θ). Then we get:





(
R′′(r) + 1

r
R′(r) + λR(r)

)
φ(θ) = − 1

r2
R(r)φ′′(θ);

R(a) = 0;

φ(0) = φ(2π), φ′(0) = φ′(2π).

If the first equation has a non-vanishing solution then there must exist
a constant µ ∈ R such that

R′′(r) +
1

r
R′(r) + λR(r) =

µ

r2
R(r), 0 < r < a,

28We here follow Pinchover and Rubinstein, [17, Sec. 9.5.3], to which we refer
for more details. Our exposition will be slightly sloppy regarding certain details.
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and

φ′′(θ) = −µφ(θ), ∀θ ∈ [0, 2π].

The last equation has the general solution

φ(θ) =





Ae
√−µθ +Be−

√−µθ if µ < 0

A+Bθ if µ = 0

A cos(
√
µθ) +B sin(

√
µθ) if µ > 0.

One easily checks that if µ < 0 then the there is no choice of A,B other
than A = B = 0 which makes the boundary conditions φ(0) = φ(2π)
and φ′(0) = φ′(2π) hold; if µ = 0 then the boundary conditions are
satisfied iff B = 0 (i.e. φ is a constant function), and if µ > 0 then
the boundary conditions are satisfied iff

√
µ ∈ N. Thus we may –

incorporating also the case µ = 0 – from now on write µ = µn = n2

(n ∈ Z≥0) and the general φ-solution is

φn(θ) = An cos nθ +Bn sinnθ, (An, Bn ∈ R).

(Here B0 is “redundant” since sin(0 · θ) ≡ 0, and this is in agreement
with the fact that the constant functions are the only solutions when
µ = 0.) The equation for R(r) now reads:

R′′(r) +
1

r
R′(r) +

(
λ− n2

r2

)
R(r) = 0, 0 < r < a,

Applying the change of variables s =
√
λr, i.e. writing

ψ(s) = R(s/
√
λ),

the equation takes the form

ψ′′(s) +
1

s
ψ′(s) +

(
1− n2

s2

)
ψ(s) = 0, 0 < s <

√
λa.

This is the Bessel differential equation! Our boundary conditions
are ψ(

√
λa) = 0 and the requirement that lims→0 ψ(s) should exist

and be finite. For the present case, i.e. order = n, it can be shown
that the only solution to the Bessel differential equation for which
lims→0+ ψ(s) exists and is finite, is ψ(s) = Jn(s) (up to multiplica-
tion with a constant). Remember that we also have the boundary

condition Jn(
√
λa) = ψ(

√
λa) = R(a) = 0. That is,

√
λ a must be

a zero of Jn(z). Let us write 0 < jn,1 < jn,2 < . . . for the full set of
positive zeros of Jn(z). Then we conclude: The general solution 〈λ, u〉
of our Dirichlet eigenvalue problem (8.14) with u being of the form
u(r, θ) = R(r)Φ(θ), is:

λ = (jn,m/a)
2, un,m(r, θ) = Jn

(jn,m
a
r
)(
An,m cosnθ +Bn,m sinnθ

)
,

where 〈n,m〉 runs through Z≥0 × N. (Recall that each B0,m is “redun-
dant”.)
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9. Complements to Stein’s Ch. 8.1 on stationary phase

9.1. Regarding
∫∞
0
eiλxψ(x)xµ dx. The following lemma is Stein’s [19,

8.5.1(d)], with the formula for aj corrected:

Lemma 9.1. For any fixed ψ ∈ C∞
c (R), µ ∈ C with ℜµ > −1, and

N ∈ Z+, we have

∫ ∞

0

eiλxψ(x)xµ dx =

N−1∑

j=0

ajλ
−j−1−µ +O(λ−N−1−ℜµ) as λ→ +∞,

where aj = ij+µ+1 Γ(j + µ+ 1)

j!
ψ(j)(0).

Proof. (We follow the outline on [19, p. 356], but provide a few more
details.)

To start with, we discuss a modified integral
∫∞
0
eiλxxµ ψ̃(x) dx, where

ψ̃ is a fixed function in C∞
c (R) which equals 1 on the support of ψ. Us-

ing ℜµ > −1 and ψ̃ ∈ C∞
c (R) we have

∫ ∞

0

eiλxxµ ψ̃(x) dx = lim
ε→0+

∫ ∞

0

eiλxe−εxxµ ψ̃(x) dx.(9.1)

On the other hand, for any ε > 0 and λ ∈ R we have, by a change of
contour argument very similar to [19, p. 335 (lines 5–9)]:

∫ ∞

0

eiλxe−εxxµ dx = (ε− iλ)−1−µ

∫ ∞

0

e−yyµ dy =
Γ(µ+ 1)

(ε− iλ)µ+1
.

Hence, assuming λ > 0, it follows that

lim
ε→0+

∫ ∞

0

eiλxe−εxxµ dx =
Γ(µ+ 1)

λµ+1
e

π
2
(µ+1)i =

Γ(µ+ 1) iµ+1

λµ+1
.(9.2)

We wish to combine (9.1) and (9.2) to get an asymptotic formula for∫∞
0
eiλxxµ ψ̃(x) dx. To this end, we note that

sup
ε>0

∣∣∣∣
∫ ∞

0

eiλxe−εxxµ
(
1− ψ̃(x)

)
dx

∣∣∣∣ = O(λ−K) as λ→ +∞,(9.3)

for any K ≥ 0. [Proof: Write the integral as
∫∞
0
e(iλ−ε)xu(x) dx with

u(x) = xµ
(
1− ψ̃(x)

)
. Note that u ∈ C∞(R), with u(x) = 0 for x near

0 and u(x) = xµ for x large; hence for any j ≥ 0 we have u(j)(x) = 0
for x near 0 and u(j)(x) = µ(µ−1) · · · (µ−j+1)xµ−j for x large. Hence
for any given λ > 0 and ε > 0 we may integrate by parts K times to
get

∫ ∞

0

e(iλ−ε)xu(x) dx = (−1)K(iλ− ε)−K

∫ ∞

0

e(iλ−ε)xu(K)(x) dx
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If K > ℜµ+ 1 then
∫∞
0

|u(K)(x)| dx <∞, and hence
∣∣∣∣
∫ ∞

0

e(iλ−ε)xu(x) dx

∣∣∣∣ ≤ |iλ− ε|−K

∫ ∞

0

|u(K)(x)| dx≪ λ−K .

Here the implied constant depends on u and K, but not on λ and not
on ε. Hence we have proved (9.3).29]

Subtracting the two limit expressions in (9.1) and (9.2), and using
(9.3), we conclude that (now writing ν in place of µ):

∫ ∞

0

eiλxxν ψ̃(x) dx =
Γ(ν + 1) iν+1

λν+1
+O(λ−K) as λ→ +∞.(9.4)

This has been proved for any fixed K ≥ 0 and any fixed ν ∈ C with
ℜν > −1.

Finally we now turn to the integral
∫∞
0
eiλxψ(x)xµ dx. By Taylor’s

formula, for any integer M ≥ 0 there exists some RM ∈ C∞(R) such
that

ψ(x) =
M∑

j=0

bjx
j + xM+1RM(x) (∀x ∈ R),

where bj = ψ(j)(0)/j!. Using this expansion, and also the fact that

ψ̃ = 1 on the support of ψ, we have:
∫ ∞

0

eiλxψ(x)xµ dx =

∫ ∞

0

eiλxψ(x)xµψ̃(x) dx

=

M∑

j=0

bj

∫ ∞

0

eiλxxj+µψ̃(x) dx+

∫ ∞

0

eiλxRM(x)xM+1+µψ̃(x) dx.(9.5)

Here, because of the assumption ℜµ > −1, the function u(x) = RM(x)xM+1+µψ̃(x)
is in CM(R), and for every j = 0, 1, . . . ,M we have u(j)(0) = 0 and

also u(j)(x) = 0 for all large x (since ψ̃ has compact support). Hence
by integrating by parts M times,
∫ ∞

0

eiλxRM (x)xM+1+µψ̃(x) dx = (−1)M(iλ)−M

∫ ∞

0

eiλxu(M)(x) dx

= O(λ−M).

We also apply (9.4) (with ν = j + µ for j = 0, 1, . . . ,M) to get an
asymptotics for each term in the sum in (9.5). This gives:

∫ ∞

0

eiλxψ(x)xµ dx =
M∑

j=0

bj
Γ(j + µ+ 1)ij+µ+1

λj+µ+1
+O(λ−K + λ−M).

29Pedantically, we have only proved (9.3) under the extra assumption that K >
ℜµ+ 1; however this trivially implies that (9.3) also holds if 0 ≤ K ≤ ℜµ+ 1.
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Applying this with K =M = [any fixed integer larger than N+1+ℜµ],
and using bj = ψ(j)(0)/j!, we obtain the statement of the lemma. �

9.2. Explicit formula for the coefficients in Stein’s Prop. 3.

Exercise 9.1. In the special case φ(x) = x2, prove that the coefficients
(aj) in Stein’s [19, Prop. 8.3] (with x0 = 0 and k = 2) are given
explicitly by:

a1 = a3 = a5 = · · · = 0

and

a2ℓ =
√
π e

π
4
i iℓ

22ℓ ℓ!
ψ(2ℓ)(0) (ℓ = 0, 1, 2, . . .).(9.6)

[Hint: This can be proved by working explicitly from the proof of [19,
Prop. 8.3]. Compare [19, 8.5.1(a)] for a slightly different proof which
applies also in higher dimension; however note that the formula there
should be corrected into30 “aj = (iπ)n/2 ij

22j j!
(∆jψ)(0)”.]

9.3. Example: Asymptotics for Jm(r) as r → ∞, using (8.8).

Using the formula (8.8),

Jm(r) =
( r
2
)m

Γ(m+ 1
2
)Γ(1

2
)

∫ 1

−1

eirx(1− x2)m− 1
2 dx,(9.7)

we will now seek an asymptotic formula for Jm(r) for fixed m ∈ C with
ℜm > −1

2
, as r → +∞ (through real numbers). This integral is of the

general form “
∫ b

a
eiλφ(x)ψ(x) dx” which is discussed in Stein’s [19, Ch.

8.1] – with φ(x) = x and ψ(x) = (1− x2)m− 1
2 and λ = r → +∞. Since

the function φ(x) = x has no critical points, the only contributions to
the asymptotic formula will come from the endpoints of the interval of
integration. The standard approach to separate the individual contri-
butions is to choose smooth, real-valued functions Ψ1,Ψ2,Ψ3 ∈ C∞(R)
such that

Ψ1(x) + Ψ2(x) + Ψ3(x) = 1 (∀x ∈ [−1, 1])

and, say

Ψ1(x) = 1 (∀x ∈ [−1,− 9
10
]); Ψ1(x) = 0 (∀x ≥ −4

5
);

Ψ3(x) = 1 (∀x ∈ [ 9
10
, 1]); Ψ3(x) = 0 (∀x ≤ 4

5
);

(Note that it then follows that Ψ2(x) = 1 for all x ∈ [−4
5
, 4
5
] and

Ψ2(x) = 0 for all x with 9
10

≤ |x| ≤ 1.) We then split the integral

30The “aj” there is not the same as “aj” in Prop. 3, even in dimension n = 1.
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which we are interested into a sum of three terms:
∫ 1

−1

eirx(1− x2)m− 1
2 dx =

3∑

j=1

∫ 1

−1

eirx(1− x2)m− 1
2Ψj(x) dx.(9.8)

We will consider each term separately.

First of all, since the function x 7→ (1 − x2)m− 1
2Ψ2(x) is smooth

and has compact support in (−1, 1), [19, Prop. 8.1] implies that the
Ψ2-contribution in (9.8) is rapidly decaying, i.e.

∫ 1

−1

eirx(1− x2)m− 1
2Ψ2(x) dx = O(r−N) as r → +∞,

for any N ≥ 0. (The implied constant of course depends on N .)

Next, in the Ψ1-contribution in (9.8) we replace x by x− 1 and use
1− (x− 1)2 = x(2− x). This gives:

∫ 1

−1

eirx(1− x2)m− 1
2Ψ1(x) dx = e−ir

∫ 2

0

eirxxm− 1
2 (2− x)m− 1

2Ψ1(x− 1) dx.

(9.9)

The last integral can be expressed as
∫∞
0
eirxxm− 1

2ψ(x) dx with ψ(x) =

(2 − x)m− 1
2Ψ1(x − 1) for x ∈ [0, 2] and ψ(x) = 0 for x > 2; 31 clearly

then ψ ∈ C∞
c ([0,∞)) and we may extend ψ to a function in C∞

c (R).
Hence by Lemma 9.1 we conclude

∫ 1

−1

eirx(1− x2)m− 1
2Ψ1(x) dx = e−ir

N−1∑

j=0

cjr
−j−m− 1

2 +O(r−N− 1
2
−ℜm)

(9.10)

as r → ∞, for any fixed N ≥ 0, where32

cj = ij+m+ 1
2
Γ(j +m+ 1

2
)

j!

( dj

dxj
(2− x)m− 1

2

)
|x=0

.

We compute

dj

dxj
(2− x)m− 1

2 = (−1)j
( j∏

k=1

(
m− k + 1

2

))
(2− x)m−j− 1

2

= (−1)j
Γ(m+ 1

2
)

Γ(m− j + 1
2
)
· (2− x)m−j− 1

2 ;

hence

cj = e
π
2
i(j+m+ 1

2
)(−1)j

Γ(m+ 1
2
)Γ(j +m+ 1

2
)

j!Γ(m− j + 1
2
)

2m−j− 1
2 .

31thus in fact ψ(x) = 0 for all x ≥ 1
5 .

32Using also the fact that since Ψ1(x) = 1 for all x near −1, the function ψ(x) =

(2− x)m− 1
2Ψ1(x− 1) satisfies ψ(j)(0) =

(
dj

dxj (2 − x)m− 1
2

)
|x=0

.
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Finally, the Ψ3-contribution in (9.8) can be treated using symmetry.
Indeed, note that we may take Ψ3(x) ≡ Ψ1(−x), and with this choice
we have

∫ 1

−1

eirx(1− x2)m− 1
2Ψ3(x) dx =

∫ 1

−1

e−irx(1− x2)m− 1
2Ψ1(x) dx

=

∫ 1

−1

eirx(1− x2)m− 1
2Ψ1(x) dx.

Hence, by (9.10) with m in place of m, we conclude that

∫ 1

−1

eirx(1− x2)m− 1
2Ψ3(x) dx = eir

N−1∑

j=0

c′jr
−j−m− 1

2 +O(r−N− 1
2
−ℜm)

as r → ∞, for any fixed N ≥ 0, where

c′j = e−
π
2
i(m+ 1

2
+j)(−1)j

Γ(m+ 1
2
)Γ(m+ 1

2
+ j)

j!Γ(m+ 1
2
− j)

2m−j− 1
2 .

Now we can add up the three terms in (9.8). Note that

cje
−ir + c′je

ir = (−1)j
Γ(m+ 1

2
)Γ(m+ 1

2
+ j)

j!Γ(m+ 1
2
− j)

2m+ 1
2
−j

×
{
(−1)j/2 cos

(
r − mπ

2
− π

4

)
if 2 | j

(−1)(j−1)/2 sin
(
r − mπ

2
− π

4

)
if 2 ∤ j.

Hence we conclude:
∫ 1

−1

eirx(1− x2)m− 1
2 dx = cos

(
r − mπ

2
− π

4

) ∑

0≤k<N/2

αkr
−m−2k− 1

2

+ sin
(
r − mπ

2
− π

4

) ∑

0≤k<(N−1)/2

βkr
−m−2k− 3

2

+O(r−ℜm−N− 1
2 ),

where

αk = (−1)k
Γ(m+ 1

2
)Γ(m+ 1

2
+ 2k)

(2k)! Γ(m+ 1
2
− 2k)

2m+ 1
2
−2k

and

βk = −(−1)k
Γ(m+ 1

2
)Γ(m+ 3

2
+ 2k)

(2k + 1)! Γ(m− 1
2
− 2k)

2m− 1
2
−2k.
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Plugging this into (9.7) we finally conclude:

Jm(r) =
(πr
2

)− 1
2
cos

(
r − mπ

2
− π

4

) ∑

0≤k<N/2

akr
−2k

−
(πr
2

)− 1
2
sin

(
r − mπ

2
− π

4

) ∑

0≤k<(N−1)/2

bkr
−2k−1(9.11)

+O(r−N− 1
2 ),

where

ak = (−1)k
Γ(m+ 1

2
+ 2k)

(2k)! Γ(m+ 1
2
− 2k)

2−2k(9.12)

and

bk = (−1)k
Γ(m+ 3

2
+ 2k)

(2k + 1)! Γ(m− 1
2
− 2k)

2−2k−1.(9.13)

(Note that this is equivalent with the formula which Stein states in
[19, 8.5.2(a)], except that the “+” in the last line of p. 356 should be
corrected to “−”; cf. (9.11).)

Remark 9.2. Note that ak = (−1)kAm,2k and bk = (−1)kAm,2k+1, where

Am,n =
Γ(m+ 1

2
+ n)

n! Γ(m+ 1
2
− n)

2−n =

∏n−1
j=−n(m+ 1

2
+ j)

2nn!
(∀n ∈ Z≥0).

(9.14)

In particular we have in the above expansion:

a0 = 1; b0 =
(m− 1

2
)(m+ 1

2
)

2
; a1 = −(m− 3

2
)(m− 1

2
)(m+ 1

2
)(m+ 3

2
)

8
.

Exercise 9.2. In the above discussion, we assumed throughout that
ℜm > −1

2
. However, by using the fact that (9.11) holds for any fixed

m ∈ C with ℜm > −1
2
together with the recursion formula (8.4), prove

that (9.11) is in fact valid for any fixed m ∈ C.

Exercise 9.3. Note that if m ∈ 1
2
+Z then (in (9.14)) Am,n = 0 for all

n ≥ |m| + 1
2
, and hence only finitely many ak’s and bk’s are non-zero.

Prove that in this case, if N = |m| + 1
2
(or larger), then (9.11) is an

exact formula, i.e. the error term “O(r−N− 1
2 )” is in fact identically zero.

[Hint: When ν = m ∈ { 1
2 ,

3
2 , . . .}, the integral in (8.8) can be evaluated by

repeated integration by parts. In fact it suffices to use this for m = 1
2 and m = 3

2 ;

then we can use the recursion formula (8.4) to reach all other m ∈ 1
2 + Z.]
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9.4. Example: Asymptotics for Jm(r) when m ∈ Z, using (8.9).
This is discussed in Stein, [19, 8.1.4.1]. Of course the asymptotic for-
mula obtained there is a special case of the asymptotic expansion ob-
tained in Section 9.3 above; however it is still useful to study this as an
example of the stationary phase method, since here the phase function
has critical points in the domain of integration; this was not the case
in Section 9.3.

Exercise 9.4. It is a fun33 exercise to try to recover in this way the
(explicit) asymptotic expansion, as in (9.11)–(9.13) (now for m ∈ Z),
and not just the leading order term as in [19, 8.1.4.1; eq. (14)]. (One
can use the formula (9.6) above; however first one has to carry out the
substitution as in [19, 8.1.3.2], to transform the phase function near
the critical point(s) into the standard form φ(x) = x2.)

9.5. Example: The Airy function. The Airy function is defined by

Ai(ξ) =
1

π

∫ ∞

0

cos(1
3
w3 + ξw) dw, ξ ∈ R.

Note that this integral should be considered as a generalized inte-

gral, i.e. Ai(ξ) = limA→+∞
1
π

∫ A

0
cos(1

3
w3 + ξw) dw,34 since we have∫∞

0
| cos(1

3
w3 + ξw)| dw = ∞.

Ai(ξ)

Figure 1 – The Airy function Ai(ξ).

33But quite complicated, it seems to me!
34We will see below that this limit exists and is finite.

https://en.wikipedia.org/wiki/Airy_function


SOME NOTES FOR THE COURSE “ANALYSIS FOR PHD STUDENTS” 73

The Airy function is a smooth function satisfying the differential
equation

Ai′′(ξ) = ξ · Ai(ξ),
with

Ai(0) =
1

32/3Γ(2
3
)

and Ai′(0) = − 1

31/3Γ(1
3
)
.

It also satisfies the following asymptotic relations:

Ai(ξ) =
1

2
√
π
ξ−1/4e−

2
3
ξ3/2

(
1 +O

(
ξ−3/2

))
as ξ → ∞(9.15)

and

Ai(ξ) =
1√
π
|ξ|−1/4

(
cos

(
2
3
|ξ|3/2 − π

4

)
+O

(
|ξ|−3/2

))
as ξ → −∞.

(9.16)

Cf. [16, Ch. 11.1]. In this section we prove, as a further illustration of
the method of stationary phase, a weaker version of the formula (9.16).

Thus we consider the function

Ai(−u) = 1

π

∫ ∞

0

cos(1
3
w3 − uw) dw

for u > 0, and in particular as u→ +∞.

The stationary points of the integrand are w = ±√
u, and only

w =
√
u lies in the range of integration. Substituting w =

√
u(1 + x)

we get

Ai(−u) =
√
u

π

∫ ∞

−1

cos
(
u3/2

(
−2

3
+ x2 + 1

3
x3
))
dx

=

√
u

π
ℜ
(
e−

2
3
u3/2i

∫ ∞

−1

eiu
3/2(x2+ 1

3
x3) dx

)
.(9.17)

The last integral is almost of the form studied in Stein, [19, Ch. 8.1];
namely, we consider

∫ ∞

−1

eiλφ(x) dx as λ→ +∞,

where

λ := u3/2 and φ(x) = x2 + 1
3
x3.

The only thing that makes the integral not fit completely into that
framework is the fact mentioned above, that the integral is a generalized
one. However as we will see below, this causes very little extra difficulty.

In order to apply the machinery developed in [19, Ch. 8.1], we write
1 = Ψ1 + Ψ2 + Ψ3, where Ψ1,Ψ2,Ψ3 are smooth functions from R to
R, with supp(Ψ1) ⊂ (−∞, 0), supp(Ψ3) ⊂ (0,∞), while supp(Ψ2) is
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contained in a small neighborhood of the critical point x = 0. Then
we decompose

∫ ∞

−1

eiλφ(x) dx =

∫ 0

−1

eiλφ(x) Ψ1(x) dx+

∫

R

eiλφ(x) Ψ2(x) dx+

∫ ∞

0

eiλφ(x)Ψ3(x) dx.

(9.18)

The Ψ1-term in (9.18) is O(λ−1) as λ → +∞, by [19, Cor. to Prop.
8.2]. [Details: Take a ∈ (−1, 0) so that supp(Ψ1) is contained in (−∞, a]; note

that a is a completely absolute constant. Our integral equals
∫ a

−1 e
iλφ(x)Ψ1(x) dx,

and φ′(x) = x(2 + x) is increasing and ≤ φ′(a) < 0 for all x ∈ [−1, a]. Hence [19,

Cor. to Prop. 8.2] applies with k = 1, φnew(x) := |φ′(a)|−1φ(x) and λnew := |φ′(a)|λ.
]

Next we consider the Ψ3-term in (9.18). Let us first verify that this
term converges, as a generalized integral. Since Ψ3 = 1 for all large
x, this is equivalent to the statement that the integral

∫∞
−1
eiλφ(x) dx

converges; and we will prove this by proving that

∀λ > 0 : ∀ε > 0 : ∃A0 > 0 : ∀B > A > A0 :

∣∣∣∣
∫ B

A

eiλφ(x) dx

∣∣∣∣ < ε.

(9.19)

This is actually an immediate consequence of [19, Prop. 8.2]! Indeed,
we have φ′(x) = x(2 + x) and this function is increasing for x > 0 and
satisfies φ′(x) ≥ φ′(A0) whenever x ≥ A0 > 0. Hence by [19, Prop.
8.2]35 we have, for any B > A ≥ A0 > 0:

∣∣∣∣
∫ B

A

eiλφ(x) dx

∣∣∣∣ ≤
3

φ′(A0)λ
=

3

A0(2 + A0)λ
<

3

A2
0λ
.(9.20)

This obviously implies (9.19); one may e.g. take A0 =
√

3/(λε).

The bound in (9.20) also implies that the Ψ3-term in (9.18) is O(λ−1).
Indeed, exactly as in the proof of [19, Cor. to Prop. 8.2], the fact
that (9.20) holds whenever B > A ≥ A0 > 0 implies that, for any
B > A > 0:

∣∣∣∣
∫ B

A

eiλφ(x) Ψ3(x) dx

∣∣∣∣ <
3

A2λ

(
|Ψ3(B)|+

∫ B

A

|Ψ′
3(x)| dx

)
.

We have Ψ3(x) = 1 and Ψ′
3(x) = 0 for all large x, and we have proved

that the generalized integral
∫∞
A
eiλφ(x)Ψ3(x) dx exists; hence we may

take B → +∞ in the above to conclude that
∣∣∣∣
∫ ∞

A

eiλφ(x)Ψ3(x) dx

∣∣∣∣ ≤
3

A2λ

(
1 +

∫ ∞

A

|Ψ′
3(x)| dx

)

35Applied with φnew(x) := φ′(A0)
−1φ(x) and λnew := φ′(A0)λ. We also use the

fact that “c1 = 3” works in [19, Prop. 8.2].
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(and here
∫∞
A

|Ψ3(x)| dx < ∞). Here we can fix A > 0 so small that

supp(Ψ3) ⊂ (A,+∞); then
∫∞
A
eiλφ(x) Ψ3(x) dx =

∫∞
0
eiλφ(x)Ψ3(x) dx,

and hence we conclude that the Ψ3-term in (9.18) is O(λ−1).

Finally, for the Ψ2-term in (9.18) we can apply [19, Prop. 8.3] with
k = 2 and x0; indeed note that φ(0) = φ′(0) = 0 while φ′′(0) = 2 (since
φ′′(x) ≡ 2 + 2x). This gives (using also the explicit formula for a0 in
[19, 8.1.3.4]):∫

R

eiλφ(x) Ψ2(x) dx =
(
πi
)1/2

Ψ2(0)λ
− 1

2 +O(λ−1)

=
√
πe

π
4
iλ−

1
2 +O(λ−1) as λ→ +∞.

Adding up our results, we have now proved that∫

R

eiλφ(x) dx =

∫

R

eiλ(x
2+ 1

3
x3) dx =

√
πe

π
4
iλ−

1
2 +O(λ−1) as λ→ +∞.

Plugging this into (9.17) gives

Ai(−u) = cos
(
π
4
− 2

3
u3/2

)
√
π u

1
4

+O(u−1), as u → +∞.

This is a slightly weaker form of (9.16).
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10. Uniform asymptotic expansion for the J-Bessel

function

The purpose of this section is to illustrate, through an example,
the notion of uniform asymptotic formulas. Here “uniform” refers to some

additional parameter(s), apart from the main argument of the function which we are

considering.

10.1. Uniform asymptotics for Jν(x) for ν large. Using methods
for asymptotic expansions of solutions to (ordinary) second order dif-
ferential equations, Olver [15] (cf. also [16, Ch. 11, (10.18)]) has proved
the following formula. For all ν ≥ 1 and all t > 0:

Jν(νt) = ν−
1
3

( 4ζ

1− t2

)1/4
{
Ai(ξ) +O

(
ν−1 e

− 2
3
(ξ+)3/2

(1 + |ξ|)1/4
)}

(10.1)

where ζ = ζ(t) = (3
2
u(t))2/3 sgn(1− t) and ξ = ν2/3ζ with

u(t) =

{
arctanh

(√
1− t2

)
−

√
1− t2 if 0 < t ≤ 1√

t2 − 1− arctan
(√

t2 − 1
)

if t ≥ 1.

We also use the notation ξ+ = max(ξ, 0).

ζ(t))

Figure 2 – The auxiliary function ζ(t).

We stress: In (10.1), the implied constant in the big-O is absolute!
By contrast, the implied constant in (9.11), with N fixed as N =
1, depends on m (=our ν)! See Sec. 10.2 below for a more detailed
comparison.

In order to better understand what (10.1) really means, let us derive
from it an asymptotic relation involving only elementary functions:
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J0(x) J1(x)

J10(x) J100(x)

Figure 3 – The J-Bessel function Jν(x) for ν = 0, 1, 10, 100. We remark that
for every ν ≥ 1 the graph of the right hand side in (10.1) (without the error
term) is practically indistinguishable from the Jν(x)-graph; already for ν = 1
the relative error is typically below 0.01!

Proposition 10.1. Fix an arbitrary C > 0. Then for all ν ≥ 1 and
x > 0 we have

Jν(x) =





e
√
ν2−x2

√
2π 4

√
ν2 − x2

(
ν
x
+
√
(ν
x
)2 − 1

)ν
(
1 +O

( √
ν

(ν − x)3/2

))

if x ≤ ν − Cν
1
3

O(ν−
1
3 ) if |x− ν| ≤ Cν

1
3

√
2√

π 4
√
x2 − ν2

{
cos

(√
x2 − ν2 − ν arccos

(ν
x

)
− π

4

)
+O

( √
ν

(x− ν)3/2
+

1

ν

)}

if x ≥ ν + Cν
1
3 .

(10.2)

Here the implied constant in each “big-O” depends only on C, i.e. it
is independent of ν and x. The bound in the case |x − ν| ≤ Cν

1
3 may

be complemented by the following fact: There exist absolute constants
C1, C2 > 0 such that

Jν(x) ≫ ν−
1
3 , ∀ ν ≥ C1, x ∈ [ν − C2ν

1
3 , ν + C2ν

1
3 ].(10.3)
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Remark 10.2. As will be seen in the proof, for x < ν we have

e
√
ν2−x2

(
ν
x
+
√

(ν
x
)2 − 1

)ν = exp

{
−ν

(
arctanh

(√
1− x2

ν2

)
−

√
1− x2

ν2

)}
,

and using this format in the first case in (10.2) we see that the propo-

sition implies that Jν(x) ≪ |x+ν|− 1
4 |x−ν|− 1

4 whenever |x−ν| ≥ Cν
1
3 ;

thus in particular Jν(x) ≪ ν−
1
2 whenever x ≥ 1.01ν or x ≤ 0.99ν. By

contrast, in the comparatively small interval |x− ν| ≪ ν
1
3 the function

Jν(x) is of order of magnitude ν−
1
3 , i.e. much larger than elsewhere!

Remark 10.3. The result(s) of Proposition 10.1 can also be derived
using other methods, such as steepest descent. Cf., e.g., [3, Exercises
7.17, 7.18] and [16, Ch. 4.9].

Proof of Prop. 10.1. We apply (10.1) with t = x/ν. Let us first assume

x ≤ ν − Cν
1
3 . Then t < 1, and we note that for all 0 < t < 1 we have

ζ(t) ≫ 1 − t (cf. Figure 2 and Section 10.3); hence our assumption

ν − x ≥ Cν
1
3 implies that ζ(t) ≫ ν−x

ν
≫ ν−

2
3 (here and in the rest of

the proof, the implied constant in any ≪, ≫ or big-O depends only
on C) and therefore ξ = ν2/3ζ ≫ ν−

1
3 (ν − x) ≫ 1, i.e. ξ is bounded

from below by a positive constant which only depends on C. Hence by
(10.1) and (9.15) we have

Jν(x) = ν−
1
3

( 4ζ

1− (x/ν)2

)1/4

· 1

2
√
π
ξ−1/4e−

2
3
ξ3/2

(
1 +O(ξ−

3
2 + ν−1)

)

=
e−

2
3
ξ3/2

√
2π 4

√
ν2 − x2

(
1 +O

( √
ν

(ν − x)3/2
+ ν−1

))
.

The error term may be simplified by using the fact that
√
ν

(ν−x)3/2
> ν−1.

(It may appear that our treatment of the error term was wasteful in the
case of t near 0, since in this case ζ(t) is of higher order of magnitude

than 1 − t. However note that in this case we anyway have
√
ν

(ν−x)3/2
≍

ν−1, i.e. the error term in (10.2) matches the error term in (10.1), i.e.

we have not been wasteful.) Finally to express e−
2
3
ξ3/2 in terms of x, ν,

note that

−2

3
ξ3/2 = −2

3
νζ

3
2 = −ν

(
arctanh

(√
1− (x/ν)2

)
−

√
1− (x/ν)2

)

= −ν log
(

ν
x
+
√

(ν
x
)2 − 1

)
+
√
ν2 − x2.

Hence we obtain the formula in (10.2), in the case ν − x ≥ Cν
1
3 .

Let us next assume x ≥ ν + Cν
1
3 . Then t > 1. Note that if 1 <

t ≤ 2 then −ζ(t) ≫ t − 1 (cf. Figure 2 and Section 10.3) and thus

our assumption x − ν ≥ Cν
1
3 implies that −ζ(t) ≫ x−ν

ν
≫ ν−

2
3 and

−ξ = −ν 2
3 ζ ≫ ν−

1
3 (x − ν) ≫ 1. In the remaining case t > 2 we
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have −ζ(t) ≫ 1 so that certainly −ξ ≫ 1 again. Thus our assumption

x ≥ ν + Cν
1
3 implies that −ξ is bounded from below by a positive

constant which only depends on C. Hence by (10.1) and (9.16) we
have

Jν(x) =
1√
π
ν−

1
3

( 4ζ

1− (x/ν)2

) 1
4 |ξ|− 1

4

(
cos

(
2
3
|ξ|3/2 − π

4

)
+O

(
|ξ|− 3

2 + ν−1
))

=

√
2

π

1
4
√
x2 − ν2

(
cos(2

3
|ξ|3/2 − π

4
) +O

( √
ν

(x− ν)3/2
+

1

ν

))
,

where the form of the error term is clear from the previous discussion
in the case 1 < t ≤ 2, while in the case t > 2 it holds since |ξ| =
ν

2
3 |ζ | ≫ ν

2
3 , thus |ξ|− 3

2 ≪ ν−1. Finally to express cos(2
3
|ξ|3/2 − π

4
) in

terms of x, ν we note that

2
3
|ξ| 32 = 2

3
ν|ζ | 32 = ν

(√
(x/ν)2 − 1− arctan

(√
(x/ν)2 − 1

))

=
√
x2 − ν2 − ν arccos(ν/x),

and we again obtain the formula in (10.2).

Finally assume |x − ν| ≤ Cν
1
3 . Then |t − 1| = |x−ν|

ν
≤ Cν−

2
3 , and

hence if ν ≥ (2C)3/2 we have |t − 1| ≤ 1
2
and thus |ζ(t)| ≪ |t − 1|

and |ξ| = ν
2
3 |ζ | ≪ 1 and using this (10.1) is seen to imply Jν(x) =

O(ν−
1
3 ). Finally this bound is extended to ν ∈ [1, (2C)3/2] by using the

continuity of Jν(x) (in both variables) and the fact that the set

{(ν, x) : ν ∈ [1, (2C)3/2], |x− ν| ≤ Cν
1
3}

is compact. The lower bound (10.3) can be proved by a similar discus-
sion, using the fact that Ai(ξ) ≫ 1 for all ξ sufficiently near 0. (We
leave out the details.) �

10.2. Comparing the uniform and the non-uniform asymp-
totics. Let us now compare the non-uniform asymptotics (9.11) with
the uniform asymptotics in Prop. 10.1. Note that (9.11) with N = 1
implies that for all ν > −1

2
and x ≥ 1,

Jν(x) =
( 2

πx

)1/2
{
cos

(
x− 1

2
νπ − 1

4
π
)
+Oν(x

−1)

}
,(10.4)

where we write “Oν” to stress that the implied constant depends on
ν. Let us from now on keep ν large. By comparing with Prop. 10.1
(the case x ≥ ν + Cν

1
3 ) we can now determine how large x has to

be (depending on ν) for the asymptotic formula (10.4) to be at all
relevant.
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Figure 4 – Graphs of the functions x 7→ Jν(x) (red) and

x 7→
(

2
πx

)1/2
cos

(
x− 1

2νπ − 1
4π

)
(blue) for ν = 5.

Figure 5 – Graphs of the functions x 7→ Jν(x) (red) and

x 7→
(

2
πx

)1/2
cos

(
x− 1

2νπ − 1
4π

)
(blue) for ν = 10.

Clearly a necessary condition for the approximation in (10.4) to be
anywhere close to Jν(x)

36 is that the amplitude in the formula (10.4)

is near the amplitude in the formula (10.2), i.e. that
4√x2−ν2√

x
is near one,

say
4√x2−ν2√

x
> 0.99. This is seen to imply x > 5ν. Next, note that the

difference between the two cos-arguments, i.e. between x − 1
2
νπ − 1

4
π

and
√
x2 − ν2 − ν arccos(ν

x
) − π

4
, tends to 0 as x → +∞ for any fixed

ν. Through differentiation w.r.t. x we see that this absolute difference

36Not just ’sporadically’, but ’for all x-values in a neighborhood of the x-value
under consideration’.
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equals
∫∞
x
(1−

√
1− (ν/x′)2) dx′; in particular it is a strictly decreasing

function of x for fixed ν. Clearly another necessary condition for (10.4)
to be relevant for all x ≥ x0 = x0(ν) is that this difference is small (i.e.
less than some fixed small positive constant) for x = x0. Recall that
we have already noted that we must have x0 > 5ν. Using the fact that
1−

√
1− t2 = 1

2
t2 +O(t4) for 0 < t ≤ 1

5
we obtain

∫ ∞

x0

(1−
√
1− (ν/x′)2) dx′ =

∫ ∞

x0

( ν2

2x′2
+O

( ν4
x′4

))
dx′ =

ν2

2x0
+O

(ν4
x30

)
.

Hence if x0 = ν2 and ν is sufficiently large (i.e. larger than a certain
absolute constant) then the above expression is ∈ [0.49, 0.51]; and thus
for such large ν the difference under consideration is ≥ 0.49 for all
x0 ≤ ν2, i.e. we must have x0 > ν2 for the formula (10.4) to be relevant!

On the other hand for x0 > Cν2 with C a not too small constant
C > 1, the same type of analysis shows that the asymptotic formula
(10.4) really is starting to be relevant...

Of course, for x sufficiently large (as depends on ν), the error term
in (10.4) is better than the error term in Prop. 10.1! In order to say
something more precise, note that it is certainly possible to keep track
on the dependence on ν in the computations leading to (9.11), and one
result from such an analysis is the following (cf. [11, (B.35)]37): For all
ν ≥ 0 and all x ≥ 1 + ν2 we have

Jν(x) =
( 2

πx

)1/2
{
cos

(
x− 1

2
νπ − 1

4
π
)
+O

(1 + ν2

x

)}
,(10.5)

where the implied constant is absolute. For large ν the error term here
is better than the error term in Prop. 10.1 iff x/ν3 is sufficiently large!

10.3. Appendix: Some more details regarding (10.1). We here give some
comments on how to extract (10.1) from Olver [16, Ch. 11.10].

Olver’s statement is much more complicated than (10.1) for three reasons: (1)
he considers general complex argument in the J-Bessel function; (2) he is interested
in allowing to extract numerical bounds on the error term; (3) he actually gives an
asymptotic expansion of Jν(νt), of which (10.1) is just the main term!

Let us first derive our formula for ζ(t). Olver’s definition is (for t ∈ C) [16,
(10.05)]:

2

3
ζ3/2 = log

(1 +
√
1− t2

t

)
−
√
1− t2,(10.6)

37This reference just gives a statement without a proof or precise reference; I
have not yet checked the statement carefully, or located a reference containing a
proof. Note however that the statement seems quite reasonable in view of the
format of (9.11)–(9.13) (considering higher terms in the expansion).
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where the branches take their principal values when t ∈ (0, 1) and ζ ∈ (0,∞), and
are continuous elsewhere. Thus for t ∈ (0, 1) (and also for t = 1) we have

2

3
ζ3/2 = arctanh

(√
1− t2

)
−
√
1− t2 = arccosh(t−1)−

√
1− t2.

To study the behavior of this function as t → 1− we use arctanh z − z = 1
3z

3 +
1
5z

5 + 1
7z

7 + . . . (true when |z| < 1) and (writing t = 1 − w, with w > 0 near 0):√
1− (1− w)2 =

√
2− w

√
w =

√
2w(1− 1

4w − 1
32w

2 − . . .) to conclude:

2

3
ζ(1 − w)3/2 =

2
√
2

3
w

3
2 +

3
√
2

10
w

5
2 +O(|w| 72 ).

Hence since ζ(t) is analytic at t = 1 and positive for t < 1 near 1, we must have

ζ(1 − w) = 2
1
3w + 3·2

1
3

10 w2 + . . ., i.e.

ζ(1 + w) = −2
1
3w + 3

10 · 2 1
3 · w2 + . . .(10.7)

for all w ∈ C near 0. Now consider (10.6) for t > 1; we wish to determine which

branches to use for the various functions appearing; to start let’s assume
√
1− t2 =

εji
√
t2 − 1 where ε1, ε2 ∈ {1,−1} are for the first and the second appearance of

“
√
1− t2”, respectively. Note that t−1(1 + ε1i

√
t2 − 1) has absolute value 1 and

real part t−1; from this we conclude (since we are using the branch of log which
tends to 0 as its argument tends to 1):

log
(1 + ε1

√
t2 − 1

t

)
= iε1 arctan

(√
t2 − 1

)
= iε1 arccos(t

−1).

Hence:
2

3
ζ3/2 = iε1 arctan

(√
t2 − 1

)
− iε2

√
t2 − 1.

Now arctan z+ z = 2z+O(|z|3) but arctan z− z = − 1
3z

3+O(|z|5) as z → 0; hence

since we know that the right hand side above must behave like w
3
2 when t = 1+w,

w → 0+, we conclude that ε1 = ε2; thus

2

3
ζ(1 + w)3/2 = iε1

(
−2

√
2

3
w

3
2 +

3
√
2

10
w

5
2 +O(|w| 72 )

)
.

Comparing with (10.7) we see that we can take either ε1 = 1 or −1, so long as we
take the corresponding correct branch when raising to 2

3 ; either way we obtain

ζ(t) = −
(
3
2

(√
t2 − 1− arctan

(√
t2 − 1

)))2/3
for t > 0.

This completes the proof of the formula for ζ(t).

Now to get (10.1) we apply [16, (10.18)] with n = 0, noticing that Olver’s “A0(ζ)”
equals 1:

Jν(νt) =
1

1 + δ1
ν−1/3

( 4ζ

1− t2

)1/4{
Ai(ξ) + ε1,0(ν, ζ)

}

(where we use our notation ξ = ν2/3ζ). Here |δ1| ≪ ν−1 by [16, (10.20) and p.
422], and from [16, (10.20) and p. 395] we get

|ε1,0(ν, ζ)| ≪ ν−1M(ξ)

E(ξ)
≪ ν−1 e

− 2
3
(ξ+)3/2

(1 + |ξ|)1/4
(this may be improved for t near 0). Hence for ν larger than a certain absolute
constant we have

Jν(νt) = ν−1/3
( 4ζ

1− t2

)1/4
{
Ai(ξ) +O

(
ν−1 e

− 2
3
(ξ+)3/2

(1 + |ξ|)1/4
)}(

1 +O(ν−1)
)
.
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Finally the last factor (1 + O(ν−1)) can be multiplied into the expression using
(9.15) and (9.16), and we obtain (10.1).

(Note that the above was obtained for ν being lager than a sufficiently large
absolute constant C > 0. In order to treat the remaining case of ν ∈ [1, C] (if
C ≥ 1) one may refer to the easier asymptotic formulas for Jν(x) when x→ 0 and
x→ ∞ for ν in a compact set.)
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