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Abstract

The Lorentz gas is one of the simplest and most widely-studied models for
particle transport in matter. It describes a cloud of non-interacting gas particles
in an infinitely extended array of identical spherical scatterers. The model was
introduced by Lorentz in 1905 who, following the pioneering ideas of Maxwell and
Boltzmann, postulated that in the limit of low scatterer density, the macroscopic
transport properties of the model should be governed by a linear Boltzmann equa-
tion. The linear Boltzmann equation has since proved a useful tool in the description
of various phenomena, including semiconductor physics and radiative transfer. A
rigorous derivation of the linear Boltzmann equation from the underlying particle
dynamics was given, for random scatterer configurations, in three seminal papers by
Gallavotti, Spohn and Boldrighini-Bunimovich-Sinai. The objective of the present
study is to develop an approach for a large class of deterministic scatterer con-
figurations, including various types of quasicrystals. We prove the convergence of
the particle dynamics to transport processes that are in general (depending on the
scatterer configuration) not described by the linear Boltzmann equation. This was
previously understood only in the case of the periodic Lorentz gas through work of
Caglioti-Golse and Marklof-Strombergsson. Our results extend beyond the classical
Lorentz gas with hard sphere scatterers, and in particular hold for general classes
of spherically symmetric finite-range potentials. We employ a rescaling technique
that randomises the point configuration given by the scatterers’ centers. The lim-
iting transport process is then expressed in terms of a point process that arises as
the limit of the randomised point configuration under a certain volume-preserving
one-parameter linear group action.
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CHAPTER 1

Introduction

The Lorentz gas describes the dynamics of a cloud of point-particles in an array
of spherical scatterers in R? (d > 2), each of radius p > 0, which are centered at a
given infinite point set P. Each particle moves with constant speed along straight
lines in between scattering events. The point particles do not interact with each
other, and their interaction with the scatterers is defined by specular reflection (as
in Lorentz’ orginal setting) or by scattering potentials. The main challenge posed
by Lorentz’ 1905 paper [40] is, whether or not in the limit p — 0 the dynamics of a
macroscopic particle cloud is approximated by a solution of the linear Boltzmann
equation.

Since the gas particles are assumed to be non-interacting, the problem is equiva-
lent to the study of the one-particle dynamics. In this framework the initial particle
density in phase space is interpreted as the probability density of the random initial
condition of the single particle. Although the dynamics is governed by Hamilton’s
equations and therefore deterministic, the random initial condition means that the
particle trajectory is now expressed as a random flight process, the Lorentz pro-
cess. The question is, under which assumptions on the scatterer configuration the
Lorentz process converges, as p — 0, to a limiting process. This of course requires
a suitable rescaling of time and space units in terms of the mean collision time and
free path length, respectively. The Kolmogorov forward equation (Fokker-Planck-
Kolmogorov equation) of the limiting process describes the macroscopic transport
of the initial particle cloud, and the key question is whether this equation coincides
with the linear Boltzmann equation, as postulated by Lorentz.

There are two non-trivial instances where the problem is fully understood.
The first is the case when P is a fixed realisation of a Poisson point process. Here
Boldrighini, Bunimovich and Sinai [12] proved that the Lorentz process converges
to a limit that is consistent with the linear Boltzmann equation. Their work is pre-
ceded by two important papers by Gallavotti [29], who established convergence on
average over the point configuration, and Spohn [58], who considered more general
random point configurations (still on average) and scattering potentials. Although
the paper [12] is restricted to dimension d = 2 and hard sphere scatterers, we will
show here that its results generalise to general dimensions and “soft” potentials.

The second instance is when the scatterer configuration P is given by a Eu-
clidean lattice £ of full rank, for example P = Z¢. Here Marklof and Strémbergsson
[43], [44), [45], [46] proved convergence of the Lorentz process to a random flight pro-
cess which, perhaps surprisingly, is independent of the choice of £. The limit process
is Markovian only on an extended phase space which, in addition to position and
momentum, also includes the impact parameter and distance to the next collision.
The corresponding transport equation is in particular not consistent with the linear
Boltzmann equation. This new transport equation was obtained independently in
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2 1. INTRODUCTION

dimension d = 2 for P = Z? by Caglioti and Golse [17, [18], subject to a heuristic
assumption that was proved (in any dimension) in [44]. The fact that the linear
Boltzmann equation must fail in the periodic setting already follows from the heavy,
power-law tail of the distribution of free path lengths [19}, 13|, B2] 16, 11}, [46], as
pointed out by Golse [30}, BT]. In the periodic setting, the limit transport process
in fact satisfies a superdiffusive central limit theorem [51], with a mean-square dis-
placement proportional to ¢logt (where ¢ is time measured in units of the mean
collision time), rather than the standard linear scaling which appears in the case of
random scatterer configurations.

In the present paper we develop a general framework which, under suitable
hypotheses on the scatterer configuration P (see Section [[1]), allows the proof of
convergence to a limiting transport process. The latter will in general depend on
the choice of P. Admissible choices of P include the Poisson and lattice setting
discussed above, as well as new examples including more general periodic point sets
and certain classes of quasicrystals. Our theory applies not only to the classical
case of hard sphere scatterers (Section[[.2]), but also radial potentials with compact
support (Section [[L3). The assumption of compact support is crucial for our work,
as is the assumption that there are no external force fields, which ensures that
in-between collisions the particles move along straight lines. We refer the reader to
Section for a survey of open questions that naturally follow on from this study.

1.1. Outline of assumptions on the scatterer configuration

The scatterers are centered at the points of a locally finite subset P of R¢ . We
assume that P has constant asymptotic density ¢p > 0. This means that for any
bounded subset B ¢ R? with boundary of Lebesgue measure zero,

. #(PNTB)
(1.1) E e
Rather than following the particle trajectory in a coordinate system in which the
environment (i.e., the scatterer configuration) remains static, we will use the par-
ticle’s coordinate frame in which the particle is at rest at the origin, with direction
of travel along the first coordinate axis, and the environment is changing. As we
will see, lengths in the direction of travel are naturally measured in units of p'~¢
(which is proportional to the mean free path length); the natural length scale per-
pendicular to the direction of travel is p, the radius of a scatterer. Let S‘li_1 be the
unit sphere in R? centered at the origin. If ¢ € R? and v € S‘li_l are the particle
position and direction of travel in physical space, then in the particle frame the
scattering configuration appears as the translated, rotated and rescaled point setll

(1.2) (P —q) R(v) D,
with the diagonal matrix
Dp = diag(pdiapilu U 7p71) € SL(d7 ]R)

= cp vol(B).

providing the required rescaling of length units, and a map R : Sffl — SO(d)
which rotates the direction of travel v to the unit vector e; = (1,0,...,0) ; that
is vR(v) = e; for all v € S¢7!. We furthermore assume that R is continuous
when restricted to Sffl minus one point; the choice of R is otherwise arbitrary

ywe identify points in R? with row vectors, and linear transformations are represented by
matrix multiplication from the right.
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but will remain the same in all subsequent statements. We write w := volga-1 for
1

the Lebesgue measure on S9!, and w; := w(S{™) "' w for the uniform probability
measure on S971. We also let P, (S¢™1) be the space of Borel probability measures
on S‘li_1 that are absolutely continuous with respect to w.

Our proof will require the understanding of the point set (L2) for g € P (this
corresponds to the case when the particle has just hit a scatterer at position q),
and v randomly distributed according to a Borel probability measure A on S‘li_1
which is absolutely continuous with respect to the uniform measure on Sffl. The
point set ([L2)) is therefore a random point set, and a natural assumption is that it
converges in distribution for p — 0 to a limiting random point setf The limit will
in general depend on q, and we need to require some regularity in its dependence
on q, as well as some uniformity in the convergence.

To this end we equip P with a marking as follows. Let ¢ be a map from P to
a compact metric space ¥, and set

X=R'x%,  P={(ps(p):peP}CX.

We refer to ¢ as a marking, and 3, P as the corresponding space of marks and
marked point set, respectively; P will be called the underlying point set.

In order to provide a first intuition for the concept of marking, let us already
here mention some key examples: If P is a realisation of a Poisson point process
with constant intensity, then the marking can be taken to be trivial, i.e. ¥ can be
taken to be a singleton set (cf. Section [B.I]). The same is true if P is a Euclidean
lattice; however, if P is a more general periodic point set in RY, i.e. a finite union
of translates of a fixed lattice £, then it is typically necessary to use a nontrivial
marking, and the natural choice is to let the space of marks ¥ contain one element
for each translate of £, with the marking of each point ¢ € P indicating which
translate of £ it belongs to (cf. Section[0.2]). Finally, in the more general case when
P is a quasicrystal of cut-and-project type, the natural choice is to let ¥ equal the
closure of the window set used in the cut-and-project construction; see Section [5.3]
below for details.

For x € R, T € R and A € GL(d,R) we extend the natural action on R? to
X by setting (w,<) + z = (w + x,<), T(w,s) := (Tw,s) and (w,s)A := (wA,s).
Thus in particular

PA+z = {(pA+z,<(p)) : p€P}.

For q € P, we furthermore define (P — q)* = {(p,<(p)) : p€ (P —q)\ {0}}.
The main assumption on the scatterer configuration P in the present work is
that there is a marking ¢ and a Borel probability measure m on ¥ such that:

[P1] Uniform density: The marks of the points in P are asymptotically equidis-
tributed in (3, m). That is, for any bounded B C X with ux(0B) = 0, we
have

. #(PNTB)

9 R
where TB = {(Tw,s) : (w,s) € B} and px = vol xm. Relation (L3]) thus
generalizes ([LT]).

2We will provide a precise framework for the notion of random sets and their convergence
via the theory of point processes in Section

= cpux(B)



4 1. INTRODUCTION

[P2] Spherical equidistribution: There exist a subset £ C P of asymptotic density
zero, and a continuous family {Z¢ : ¢ € X} of random marked point sets, such
that for any ¢ € P\& and A € P, (S¢71), the sequence ((P—q)* R(v) D,) >0,
with v random according to A, converges in distribution to Z¢4) as p — 0;
the convergence is uniform for q in a ball of radius Tp' ~? for any fixed T > 1.

[P3] No escape of mass: For every bounded Borel set B C R,

lim limsup [vol xw]({(q,v) € B x 841 . (P - p'~iq) R(v) D,N3:=0})=0,

§—=0  p—0

with the open cylinder 3¢ = {x = (z1,...,24) : 0 < 21 < & 23+ -+22 < 1}.

Among these three assumptions [P1-3], the key assumption is [P2]. It postu-
lates, in a more precise form, the convergence discussed above; namely, the conver-
gence in distribution for p — 0 of the random point set in (L2). This condition
[P2] is also the one which, by far, is the most difficult to verify, at least for every
example of P satisfying [P1-3] which we are aware of.

Note that in [P2] we allow a subset £ C P of “exceptional” points for which
the convergence may fail. We remark here that if P is a periodic point set in R,
then [P2] in fact holds with & = @, and the same is true if P is a quasicrystal
of cut-and-project type (cf. Sections E2HE3)). However, if P is a realisation of a
Poisson point process with constant intensity, then [P2] does not hold with £ = 0,
but we will prove in Section BEdlthat [P2] holds when £ is chosen as the set of points
q in P which, in an appropriate sense, lie exceptionally near some other point in P
(cf. Proposition [5.0] and Remark [G.1]).

The condition [P3] will be used in one single, important, step of our de-
velopment, namely in the derivation of a macroscopic analogue of the spheri-
cal equidistribution [P2], i.e. a version of [P2] for initial conditions of the form
(q,v) = (p'~%¢’,v) with (q’,v) random according to a probability measure on
T (R?) which is absolutely continuous with respect to Liouville measure, vol xw

(cf. Section 2H]).

We will furthermore require the following invariance and regularity assumptions
on Z. Denote by Z! the underlying random point set in R?. B4(x, R) denotes the
open ball of radius R centered at @, and we use the notation SO(d — 1) for the
subgroup of K € SO(d) such that e; K = e;.

[Q1] SO(d — 1)-invariance: Z¢ and Z¢K have the same distribution for every K €
SO(d —1).

[Q2] Coincidence-free first coordinates: For every ¢ € X, the probability that [=]
has two (or more) points with the same first coordinate] is zero.

[Q3] Small probability of large voids: For every € > 0 there exists R > 0 such that
the probability that [E. has no point in B%(x, R)] is less than e, uniformly

for all x € R and ¢ € 3.

The above hypotheses will be restated in a more concise measure-theoretic form
in Section In the following, a locally finite set P C R? is called admissible if
there exists a marking such that [P1-3] and [Q1-3] hold. Examples of admissible
sets include realisations of Poisson point processes, locally finite periodic point sets,
and Euclidean model sets. These examples are discussed in detail in Section
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1.2. The Lorentz process for hard sphere scatterers

The setting of the classical Lorentz gas is that of a point particle moving with
constant velocity v € R?\ {0} in an array of hard-sphere scatterers of radius p,
where the scattering is given by specular reflection: The incoming and outgoing
particle trajectories are contained in the same two-dimensional plane through the
center of the scatterer, and the angle of incidence equals the angle of reflection.
The scattering map is independent of the particle speed ||v]|, and a simple scaling
argument shows that we therefore may assume without loss of generality that ||v|| =
1. With this convention, the scattering process is defined by the map

(1.4) U:S. =S84, (v,b) = (v4,b) = (v—2(v-b)b,b),
with the set of incoming data
S :={(v,b) eS¢t xS{™ : v-b<0}

describing the velocity and position (measured in units of the radius p) with which
the particle enters the interaction region, and the corresponding set of outgoing
data
Sy :={(v,b) eS¢ xS w.b>0}.
Note that
b= 2tV
vy — vl

Let l’:v’f*1 be the open umit ball in R%~! centered at the origin. The impact
parameter w € Bf‘l is defined as the projection of b onto the hyperplane perpen-
dicular to the incoming velocity v. The differential cross section o(v,v) is defined
as the Jacobian of the inverse of the map

BI~t - sdt, w— vy (v fixed),
so that dw = dvol(w) = o(v, v ) dv,, where dv, := dw(v,). The total scattering

cross section is thus given by the volume vq4_1 = Vol(Bf_l) of the unit ball in R%~1,
In the present setting we have the explicit formula

1 _
(1.5) o(v,v4) = Z||U—”+H3 <
see (340) below.
The configuration space for the dynamics is given by
(16) ’CP:Rd\ U Bd(pvp)v
pEP

where B%(p, p) denotes the open ball with center p and radius p. For definiteness,
at the time of any collision, we will consider the particle to be in outgoing position,
i.e. belong to the set

TY(OK,)out := {(g,v) €K, x ST' : VpeP : |lg—p|l=p=(g—p) v >0}
If two or more balls overlap then it is often unclear how to continue the particle
path if it hits an intersection point. In this situation we agree that the particle
gets trapped and stays motionless for all future time. Let ®; = <1>§P ) be the billiard
flow on T'(K,) := K, x S{7* thus defined. It is standard to verify that the set

of initial conditions in T'(K,) for which the particle at some time point either
in the past or in the future collides with an intersection point of two or more
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scatterer boundaries, has measure zero with respect to Liouville measure, vol xw.
Furthermore, for a dispersing billiard such as the Lorentz gas considered here, the
number of collisions in any finite time interval is finite [15, Thm. 1.1]@.

Set

(1.7) w(p) = TH(K5) U TH(Kp)ous;

this is the set of points that are not trapped. Indeed, by our conventions, if (g, v) €
w(p) then ®;(q,v) = (g + tv,v) for all sufficiently small ¢ > 0, whereas if (g,v) €
T'(K,) \ ro(p) then ®;(q,v) = (g, v) for all ¢ > 0.

For (qy,vo) € w(p), let 71(qy,vo; p) be the first time at which the particle
starting at (g, vo) hits a scatterer, i.e.

(1.8) T1(qg, vo; p) = inf{t >0 : gy +tvy ¢ K,}.

Note that 71 may equal oo, and we also define 71 (g, vo; p) = oo for all trapped
points, i.e. for all (gy,vo) € T*(K,) \ w(p). For j > 1 we denote by

(g;,v5) = (q;(q0, v0; p), v;(o, v0: p)) € TH(IK,)out
the position and outgoing velocity of the particle at the jth collision, and let 741 =

7j+1(qo, vo; p) be the time which it travels between the jth and the (j+1)st collision.
Thus

(ijvj) = ‘I)n(qj,l,vj,l;p)(qj;pUj—l) and  7j11(qo, vo; p) = Tl(qjvvj;p)'

If 7;(q, vo; p) = oo for some j (meaning either that (q;_;,v;-1) € THK,) \ w(p)
orelse q;_; +tvj_1 € K, for all £ > 0) then for definiteness we set 711 = 712 =
-+ =00, and also g; = q;_1 and v; = v, for all i > j.

Let us denote by ny = nt(qy, vo; p) the number of collisions within time ¢, i.e.,

(1.9) ng=max{n €Zso: Ty <t},  Tpi=) 7
j=1

Note that for all ¢ > 0 such that ®.(q,,vo) € w(p), we have
(I)t(QO7 UO) = (qnt + (t - Tnt)vnmvnt)'

It will be convenient to extend the billiard flow trivially to all of T'(R%) by also
taking all points in T'(R%) \ T'(K,) to be trapped, i.e. by defining

®(qy,v0) = (gg,v0) if (gg,v0) € T'(R?) \ w(p).

This is purely for notational reasons, since the relative measure of points not in
w(p) tends to zero as p — 0.

Let us now describe the Boltzmann-Grad limit of the particle dynamics, where
the point set P describing the scatterer configuration is fixed, and the radius p
of each scatterer tends to zero. As we will explain in more detail in Section B.3]
the mean free path length, i.e. the mean time between consecutive collisions, is
asymptotically given by £p'~% with
1

Vq—1Cp

(1.10) &=

This implies that, in order to see non-trivial dynamical phenomena emerge as p — 0,
a rescaling of length and time units is necessary. The Boltzmann-Grad scaling,

3This theorem applies to our situation since P is locally finite.
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which we consider in this paper, considers length and time in units of the mean free
path length. That is, we consider the rescaled flow

(1.11) b = 5,000, 05!
where
(1.12) s, THRY) — TH(RY), sp(q,v) = (0¥ 'q,v).

In this scaling, one expects a random flight process in the limit p — 0. This is
confirmed by our central result which is stated below as Theorem [T On larger
time and spacial scales one would expect diffusive or indeed superdiffusive limits.
Currently this is only understood in the case of random and lattice scatterer con-
figurations, when taking first the Boltzmann-Grad limit p — 0, and then the long
time limit [51].

For the purposes of the present study, we define a random flight process as a
stochastic process of the form

(113) O:t— @(t) = (qO + Z §jvj_1 + (t — Tnt)'vntu'vnt>
n=1

with random (gy,vo) € T*(R%), (€)521 € (R>o U {oo})Y and (v;)52, € (S¢=1)N,
The quantities n;, T, are defined as in (L9) with 7; replaced by &;. We do not
assume any independence in the above. With this, we may view

(1.14) 0w 1t — 0@ (1) = 3 (q,,v0)

as a random flight process, for random (g, vo) distributed according to a fixed Borel

probability measure on T*(R%), and the random processes <€](p)>;.;1 and <v;p)>3‘?‘;1

are defined through the deterministic functions §§p ) = p¢ 17 (pt~4qq, vo; p) and
v; = v;(p'~%q,,vo;p) of the random initial data (g, vo). This means they are
highly correlated but nevertheless well-defined point processes.

We denote by Pa.(T*(R%)) the space of Borel probability measures on T*(R?)
that are absolutely continuous with respect to Liouville measure, vol xw.

THEOREM 1.1. Let P be admissible. Then, for any A € Py.(T'(R?)), there is
a random flight process © with P(&; = oo) = 0 for all j, such that 0 converges
to © in distribution, as p — 0.

The key step in the proof of Theorem [[.1]is to establish the joint limit distri-
bution for

(1.15) (7j(p" a0, v0; p), v (P40, v0: ),

with (g, vo) random according to A. One of the central outcomes of our study
is that we obtain the Markov property for the limit distribution, if we consider
the joint distribution of (LI5) and the sequence of markings (g;(p'~?qq, vo; )32 -
Here ¢;(p'~%qq,vo;p) = s(p;) € ¥ is the marking of the centre p; € P of the
scatterer involved in the jth collision; if this is not well-defined because scatterers

overlap, choose any marking.
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THEOREM 1.2. Let P be admissible, and suppose A € Pao(TH(R?)). If (qy, vo) €
TY(R?) is distributed according to A, then the random process

N — (Rsg U {+00}) x & x §§~*
= (07175 (01 a9, w03 £), <5 (0" a0, w03 £), v (P Y40, v0: )
converges in distribution to the second-order Markov process

(1.16) 3 (&555v5),

where for any Borel set A C R>¢ x X x Sffl,

B((615v0) € A] @0,00)) = [ plonié s, ) de dm(s) do.

A
and for j > 2,

P((&.550) € A (@ v0), ((Ersivv0))) )
:/Apo(’vjfz,§j71,vj—1;§7<7v)dﬁdm@)dv-

The functions p, po are defined in Section[3.F; they depend on P but are independent
of A, and for any fized vy, s, v both p(vy; -) and po(vo,s,v;-) are probability densities
on Rsg x X x S¢71. In particular P(&; = o0) = 0 for all j.

This theorem is restated in non-probabilistic notation and for general scattering
maps as Theorem below. As we will see, the extension of the state space to
include marking is in generaﬂ necessary to obtain the Markov property.

The collision kernels p, pg can be written as

(117) p(v;§,§+,v+) = O'(:(;ij’l-’_) kg(é-? (’LU,§+))7
(1.18) po(vo, s, v;€, ¢4, v4) = Mk((w’,c),g, (w,s4)),

Vd—1

where k& and k are transition kernels that quantify the probability of hitting the
next scatterer at distance £ with impact parameter w (which is a function of v and
v4). The kernel k8 corresponds to the case of generic initial data, and k((w’,<), -)
to the case of an initial condition relative to previous scattering event with marking
¢ and exit parameter w’. The exit parameter can be viewed as the time-reversed
impact parameter and thus is a function of vg and v. The transition kernels are
central to our work and will be discussed in detail in Section[3l The collision kernels
have the following important properties:

(119) p(vK;€,§+,'U+K) :p(v;§,§+,v+) VK € SO(d)a

(120) pO(UOKagavK;€7§+av+K) :po(UOagav;§a§+av+) VK € So(d)v

411 the case of random (resp. periodic) scatterer configurations considered in previous studies,
the process j — (§;,v;) is first-order (resp. second-order) Markovian and an extension of the state
space as in ([LI6) is not necessary.
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(1.21)
p(va 57 S+ ’U+) =cCcp / U(,UOv ’U) Po (’Uo, S, ;5 5/5 S+ 'U+) dgl dm(g) d’l}o,ﬁ
[5,00)><E><Sf71
(122) p(v;§7§+7v+) <cp 0'(’07’1)+), pO(”ngvv;§7§+7v+) <cp 0’(’07’U+)7
and
(1.23) p(v; 0, <+,v+) = 5liir(l)p('v;f, Sy 'v+) =cpo(v,vy).

Relations (LI9)—-(T21I)) follow from the corresponding properties of the transition
kernels, and are established in Section The bounds in ([22) follow directly
from definitions ([B3]) and B8], and identity (23] from Corollary 3241

We can furthermore extend © to a Markov process 5) by settingﬁ
(1.24) 6t B(t) = (q(t), v(t), (1), (1), v (1)),

where

Tt
q(t) =qy + Z Evjo1 + (t— Ty, )vn, (position at time t),

n=1
v(t) = vy, (velocity at time t),
&) =Th,41 -t (distance at time ¢ to next scattering),
S(t) = Snypt1 (marking of next scatterer),
v4(t) = Vp, 41 (velocity after next scattering).

Recall that T, = & + ...+ &,. The Markov property of O follows from the Markov
property of (LI0), see Section for details.

1.3. The Lorentz process for potentials

In addition to the classic setting of hard spheres, our results will also apply
to “soft” scatterers described by a Hamiltonian flow with a compactly supported
potential. The Hamiltonian is

H(q,€) = 5ll€]1* + V,(a)

with position ¢ € R, momentum £ € R?, and potential

(1.25) V=Y W(?),

peP°

which is a superposition of translated and scaled copies of a single potential W &
C(R?\ {0}) which vanishes outside the unit ball. Here P° = P°(p) is an arbitrary
choice of a maximal subset of P subject to the property that ||g — q’|| > 2p for all
q#q €P°.

We use P° in place of P in (L28]) for simplicity of presentation, as this en-
sures that the flow ®; introduced below is well-defined without having to exclude
any singular trajectories, for example trajectories for which the particle escapes

5This relation requires that angular momentum is preserved (or reversed) by the scattering
map, which is the case for specular reflection and potential scattering, but which need not hold
for the more general scattering maps which we introduce in Section [3:4] (cf. Remark [3.7).

6The Markov property of © holds for Poisson scatterer configurations, but fails for all other
examples discussed in this paper, including the periodic setting.
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to infinity in finite time. We will see that the probability of the particle hitting
a scatterer which is not separated from all other scatterers tends to zero in the
Boltzmann-Grad limit; cf. Remarks 1] and 3] below. Therefore our main re-
sults hold independently of which convention is used to define the flow ®; for such
particle trajectories.

We assume that W is spherically symmetric and define (by a slight abuse of
notation) W € C(Rsg) by W(q) = W(r) with » = ||q||; we will always assume
liminf, o 72W () > 0 and that the restriction of W (r) to (0,1] is C*; however we
allow W’ (r) and W”(r) to have discontinuities of the first kind at the point r = 1.
The Hamiltonian flow is defined through Hamilton’s equations

(1.26) q=VeH,  €=-V,H.
The total energy H(q, &) = E is a constant of motion, and by adjusting the potential
by a scalar multiplier, we may assume without loss of generality that £ = %; this

corresponds to a particle speed [|£]| = 1 outside the support of V,. Under this
constraint, the accessible phase space is

(127)  {(q.€) € T(RY) : [[¢]* +2V,(q) = L and [¢ = 0 = VV,(q) # 0]},
where T(R?) = R? x R? is the tangent bundle of R?. Let us also assume

1
lim sup W(r) # =.
r—0 2
Now for any initial data (gq¢, &) in (IL.27), the solution to (L.26) is well defined for

all times. For € # 0, define the direction of travel by

v =€) = (1-2V,(q) V%,

and the accessible phase space of position and direction by
(128) ®(p) = {(q,v) € T'(R') : V,(q) < 4 or
[Vo(q) = 3 and — VV,(q) € Rg - v]}.

The map £ — v provides a bijection from (L27) onto w(p), and the Hamiltonian
flow induces a flow on ®(p) which we denote by &, = ®”’[1 As in the classical
Lorentz gas, we extend its definition to T'(R%) by setting ®;(q,v) = (q,v) if
(g,v) ¢ w(p), and again define the rescaled flow by

(1.29) & (q,v) = 5,00, 05,7,

with s, as in (LI2). For random initial data (g,v) € T*(R?) distributed according

to A € Po(T*(RY)), the quantity ©®)(t) = cﬁ’” (g,v) defines a continuous-time
random process

In our theorem we need to impose further conditions on the potential W, which
ensure that the scattering map is dispersing; we discuss these in Section 5.4l The
following counterpart of Theorem [[Ilshows that in the Boltzmann-Grad limit, ©()
converges, as in the case of the classical Lorentz gas, to a random flight process.

"The last condition in (28)) means that, by convention, we select the outgoing position when
the speed is zero; this means that the orbits of ®; are right continuous but not necessarily left
continuous. However a discontinuity can only occur in the case when a particle hits a scatterer
with exactly vanishing impact parameter.

8Note that the typical orbits of ©(P) are continuous curves in T* (R%). This stands in contrast
to the random flight process in ([LI4]).
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THEOREM 1.3. Let P be admissible, and assume that the potential W is dispers-
ing in the sense of Definition[51) in Section[5.4} Then, for any A € Pa(T'(R%)),
there is a random flight process © such that ) converges to © in distribution, as
p— 0.

The proof of Theorem reduces to a statement analogous to Theorem [[.2]
where the elastic reflection (4] is replaced by a map S- — Sy defined by the
scattering at the given potential W. We will in fact establish Theorem for a
more general class of scattering maps, which include elastic reflections as well as
potential scattering. Relations (LITT)—(T23) for the collision kernels p, pp remain
valid in the present context. Note in particular that the transition kernels k%, k are
independent of the choice of scattering process, and therefore the only dependence of
the collision kernels on the choice of scattering potential (within the class considered
here) is via the differential cross section in (LI7) and (LIX).

1.4. The linear Boltzmann equation and generalisations

Let us now explain how the existence of the limiting random flight process ©
yields information on the macroscopic time evolution of an initial particle density
fo € LH(TH(R?)). We will use the shorthand notation dg = dvol(q) for ¢ € R?
and, as before, dv = dw(v) for v € S‘li_l. For fixed p > 0, the evolution of the
microscopic density under the rescaled flow 5,5’) ) i given by the linear operator

L LY(T (RY)) — LY(T"(R?)) defined by

(1.30) [ 080 dgdo= [ fota.v)dgao
A 20} (4)
for every fo € L'(T'(R%)) and every Borel set A C T'(R?). To justify this defini-

tion, one should note that the flow <T>§” ) preserves the measure a-vol xw on T*(R%),
where a = 1 in the case of hard sphere scattering, while

_ d-2)/2 . _ ~
_ G-V d(I))( 2 (ptdq,v) € w(p),
a(g,v) = .
1 otherwise,

in the case of potential scatteringﬁ. Now since the two measures a - vol xw and
vol xw are equivalent, it follows that push-forward by <T>§” ) preserves the family of
signed Borel measures on Tl(Rd) which are absolutely continuous with respect to
vol Xw; and the content of (I30) is that L,Ep ) fo equals the density (wrt. vol xw) of
the push-forward by 5? ) of the measure fo-vol xw. In fact Lgp ) f5 can be expressed
by the following explicit, pointwise formula:

Lgp)fo =a- ((%) o‘fi)(,pt))

Note also that |L\” folli: = || follis for all fo € LY(T(RY)).
The following corollary of Theorem [[T] and Theorem [[3] affirms the weak con-
vergence of L§p ) %o a limit L.

9This is closely related to the fact that EISEP) is a time change of the geodesic flow on the unit
tangent bundle of the region {g € R? : V,(p'~4q) < %} equipped with the Riemannian metric

% — Vp(pl’dq))l/2 ds; cf. [, p. 247].
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COROLLARY 1.4. Let P be admissible. There is a family of linear operators
Ly : LYTYRY)) — LYTHR?)) such that for any fo € L*(T'(R?)), A ¢ THR?)
bounded with boundary of Lebesque measure zero, and t > 0,

lim Lgp)fo(q, v)dqdv = / Lifo(q,v) dq dv.
A A

p—0

To see why this holds, assume (without loss of generality) that fo > 0 and
that it is normalized as a probability density. Then, with the choice A(dqdv) =
folg,v) dg dv we have

/ L fo(q,v) dgdv = POW(1) € A), / Lifo(q, v) dg dv = P(O(1) € A),
A A

and the statement follows from Theorem [[T] (resp. Therem [[3). Since © is in
general not Markovian, we cannot expect the limiting operators L; to form a linear
semi-group, and thus L; fo cannot be written as the solution of a transport equation.
This issue is resolved by considering the Markov process O in (C24). There exists
a corresponding evolution operator K; : L'(X) — L'(X) on the extended phase
space X = TH(R?) x Rug x X x S¢71 such that

[ Kefala.v.¢.c.01) dgdvdg dms) doy = PO € A)
A
for functions of the form
fo(qa v, 55 Sy 'U+) dq dv = A(dq d'U) p(va 57 Sy ’U+)-
Since ©(t) is Markovian, the family (K;)>o forms a semigroup, and the function
f(t7 q,v, 57 S, v-‘r) = tho((b v, 57 S, ’UJ,-)
is the solution of the Cauchy problem (see Section for details) for the forward
Kolmogorov equation (or Fokker-Planck-Kolmogorov equation) of O,

(131) (3t+v~Vq—3g)f(t,q,v,§,g,v+)

:/ a1 f(t,q,'vo,O,g’,v)pg(’vo,gl,’v;ﬁ,g,v+) dm(g/) dea
ExSTT

subject to the initial condition

f(07q7v7§7<7v+) = fo(q,v,ﬁ,g,v+).

The particle density f(¢,q,v) = Lifo(qg,v) in the original phase space is recovered
by integrating over the auxiliary variables, i.e.,

fav)= [ ftawés e ddn(s)dos.
Rsox D x84~

We note that, in view of (L2I) and (L23), a stationary solution of (31 is given
by
f(t,q,’l),g,(,’l)+) = p(’l);g,(,’l)+).
Let us suppose for a moment that the limiting process has exponentially dis-
tributed flight times &, i.e. the collision kernel is of the form

——1 Y
po(vo,gl,v;§,§,0+) :g pO(vOaglvv;gav+)e £/£7
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with ¢ the mean free path (LI0). Then the ansatz

—1 =
flt.gv, &) =€  f(t,qv,c,v4)e /S

reduces (L31)) to
(132) (3,5 +'U'Vq+gil)f(t;qatvvgvv+)

—1
= g f(t,q,'vo,g’,’U)po(’vo,g/,v;g,’mr) dm(g/) de'
Exs¢!

In case of a Poisson scatterer configuration, we have in fact that

o(v,v

po(vo, <, vis,v1) = olw,04)
Vd—1

In this case (IL32)) reduces further, with the ansatz

f(tv q, vv<7v+) = ’U;—llf(ta q,’l})O’(’U,’l}+),
to

(&g +v-Vg+ E—l)f(t, q,v) =cp /SGF1 f(t, q,v9) o(vg, v) dvo,

1
which can be written in the standard form of the linear Boltzmann equation,

(133) (at +v- Vq)f(t, q, 'U) = Cp /d ) (f(ta qvvo) - f(tv q, 'U)) O'(’Uo, 'U) de'
sd-

This illustrates that the transport equation (L3I may indeed be viewed as a gener-

alisation of the linear Boltzmann equation (L33]). In contrast to random scatterer

configurations, we will see that other examples discussed in this study lead to trans-

port equations of the form (3T that do not reduce to (L33) or even (32).

1.5. Outline of the paper

The assumptions on the scatterer configuration P are stated above in terms
of convergence properties of random point sets. Section 2] provides the measure-
theoretic background for a rigorous formulation of these assumptions. In particular,
we explain how to identify point sets in R? with counting measures, i.e., locally
finite Borel measures that are superpositions of Dirac masses. The space M (X) of
locally finite Borel measures on X' (with X = R? in this instance) is equipped with
the vague topology, which in turn allows us to define Borel probability measures
on M(X), and thus define the notion of a random counting measure, which is
synonymous with random point process. This, as well as the extension to marked
point sets and point processes (where X = R? x ¥ in the above), is explained
in Section 2.2 following a technical discussion of uniform convergence properties
of families of general Borel probability measures in Section 21l Section 2.3 then
proceeds to translate the assumptions of Section[[.Ilon the scattering configuration
P into the language of random counting measures. Section [Z4] provides a number
of immediate consequences of the assumptions made in Section 2.3 through a series
of technical lemmas. The assumptions on P are stated in terms of point processes
=, that are constructed relative to points g € P. Section 2.5l constructs a new point
process = relative to almost all points ¢ € R, which will be relevant for the particle
dynamics in the case of macroscopic initial conditions (in contrast to microscopic
initial data on or near a scatterer). The properties of = are further analysed in
Section
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Section [3 provides the first milestone in understanding the Boltzmann-Grad
limit of the Lorentz process. It establishes limit theorems for the time and loca-
tion of the first collision for a particle with random initial velocity, and a given
(deterministic) initial point either (a) on or near a scatterer (Theorem [B6]), or (b)
in generic position outside a scatterer (Theorem [BI4). The preparatory Section
311 defines the transition kernel, which provides the joint limit distribution of the
first hitting time and impact parameter. The limit theorems are stated and proved
in Section Invariance properties and relations between the transition kernels
for on-scatterer vs. generic initial data are derived in Section B3l The discussion
then turns to the velocity after the first collision, which of course depends on the
choice of scattering map at an individual scatter. Our hypotheses on the scattering
map include spherical symmetry and differentiability, and are listed in Section [3.4]
They are sufficiently general to allow for elastic hard-sphere scattering (specular
reflection) as in the orginal Lorentz gas, but also scattering by a general class of
spherically symmetric potentials, which are discussed in detail in Section 5.4l The
limit distribution for the post-collision velocities are expressed in terms of collision
kernels, which are defined in Section and further analysed in Section The
corresponding limit theorems are stated in Section [3.7] as Theorems and [3.33]
for near-scatterer and macroscopic initial conditions, respectively. In preparation
for the proof of the convergence of the full Lorentz process, we furthermore need
to bound the probability of near-grazing collisions and other singular trajectories.
This is carried out in Section [3.8

The key results of this work, the convergence of the Lorentz process to a ran-
dom flight process, are stated and proved in Section @l We first establish the
corresponding results in the discrete-time setting, where time is measured in terms
of the number of collisions. This is captured in Theorem ] in Section A1l with
Section d.21and Section 3] dedicated to its proof. Theorem [ Il assumes initial data
near a scatterer, and the analogous result for macroscopic initial conditions, stated
as Theorem .6 is derived in Section [£.4] as a consequence of Theorem Il The
extension of these results to the continuous-time setting follows from a number of
technical estimates, which are given in Section This completes the proof of
the main results of this work, which are stated in the introduction as Theorems [Tl
and [[3] Section 6] shows that the limiting random flight process has a Markovian
extension, and that the transport equation (.37 is indeed the forward Kolmogorov
equation of that Markov process. Theorem H.IT] states the existence and unique-
ness of the solution to the Cauchy problem, under the assumption that the collision
kernel is continuous.

The final part of this paper, Section [B provides a detailed discussion of point
sets for which the assumptions on the scatterer configuration P (as stated in Sec-
tion [2)) are satisfied. Section [B.] explores the case when P is the realisation of a
Poisson process with constant intensity. Even in this classic setting, checking the
validity of the required assumptions is not straightforward. Section[5.2] confirms the
required assumptions in the case of general locally finite periodic point sets P. The
convergence of the Lorentz process was, in the periodic setting, previously known
only for Euclidean lattices. The most interesting new examples to which the results
of the present study apply, are Euclidean model sets (also known as cut-and-project
sets), which are discussed in Section Model sets are point sets which are often
aperiodic, and they serve as mathematical models for quasicrystals. Section [5.4]
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discusses the relationship between the scattering potential and the scattering map
and differential cross section. In particular Lemma [5.24] describes a general class of
repulsive potentials for which the assumptions in Section [3.4] are satisfied. Section
gives an outline of how the methods of Sections 3] and ] can be extended to
deal with more general potentials, for which the scattering map does not satisfy
the assumptions in Section [34l Finally, Section comprises a selection of open
questions and directions for future work.

Acknowledgment. We would like to thank the referee for carefully reading the
paper and valuable suggestions on improvements of the exposition.






CHAPTER 2

Point sets, point processes and key assumptions

The aim of this section is to state and discuss the list of assumptions on the
point set P in a more precise and general form, compared to the outline in Section
[LIl We will require a notion of uniform weak convergence of random point sets. The
most natural framework for this is to identify point sets with counting measures,
and define a random counting measure (point process) in a suitable probability
space. We thus need to deal with probability measures on spaces of locally finite
Borel measures and their convergence. Section 2] explains the concept of uniform
weak convergence on general topological spaces, which we then specialise to point
processes and marked point processes in Section 2.2l The main assumptions of this
paper are stated in full generality in Section 2.3l They are explored in detail in
Section 224

2.1. Uniform convergence of families of probability measures

For S any topological space, we write P(S) for the set of Borel probability
measures on S, equipped with the weak topology. From now on we will always
assume that S is separable and metrizable. Then P(S) is also metrizable [7, pp.
72-73].

An important notion for us will be a certain general version of uniform conver-
gence in P(S). The setting is as follows.

Let J be a fixed index set, and let C' be a compact subset of P(S). For each
0 < p<1,let J(p) be a subset of J, and let {15 ,};c(,) be a family of probability
measures in P(S). Let {v;},es be a family of probability measures contained in C.
Then we say that

(2.1)

j,p converges weakly to v (uj, - vi) as p — 0, uniformly over j € J(p),
if, for some metric d on P(S) realizing the weak topology, we have
(2.2) Ve >0 :3pg e (0,1) : YVpe (0,p0) : Vi€ J(p) : d(pj,p.vj) <Ee.

Note that this definition is independent of the choice of d: If ([22) holds for
one metric d realizing the weak topology of P(S), then it holds for all such metrics.
This is a consequence of the following lemma.

LEMMA 2.1. If dy,ds are two metrics on a set M inducing the same topology,
and C C M is a compact set with respect to that topology, then for any e > 0 there
is some €' > 0 such that

Vee M, yeC : di(z,y) <& = da(x,y) <e.

PROOF. Let € > 0 be given, and assume that there does not exist any cor-
responding € > 0. Then there are sequences x1,x2,... in M and y1,92,... in C

17
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such that di (z,,y,) — 0 but da(zn,y,) > € for all n. By passing to a subsequence
we may assume that there is y € C such that y, — y. This notion is indepen-
dent of the choice of metric, i.e. we have both dy (y,,y) — 0 and da(yn,y) — 0.
Now dy(Zn,yn) — 0 and di(yn,y) — 0 imply di(z,,y) — 0, i.e. z,, — y, and
thus da(zn,y) — 0. Combined with da(yn,y) — 0 this implies da(zn,yn) — 0,
contradicting the fact that da(zy,,y,) > € for all n. O

We next give some criteria for the uniform convergence in (Z1)) to hold.

LEMMA 2.2. The uniform convergence in [2.1I) holds if and only if the following
condition is satisfied: For any sequence P = {p,} C (0,1), p, — 0, and any choice
of j(p) € J(p) for p € P, if there is some v € C such that vj,) — v as p — 0

through P, then also )., 5 v as p— 0 through P.

PROOF. The uniform convergence in (2.1)) clearly implies the stated condition
(by using (2:2]) and the triangle inequality). Now assume that the stated condition
holds, but the uniform convergence in (2.I)) does not hold. Then there exist ¢ > 0,
a sequence P = {p,} C (0,1), p, — 0, and for each p € P some j(p) € J(p), such
that

(2.3) d(j(p),p> Vi(p)) > € for each p € P.

Since vj(,) € C for all p € P, after replacing P with an appropriate subsequence we
may also assume that there is some v € C such that v;(,) 5 v as p — 0 through

P. Hence by our assumption we must also have ;) , 5 v as p — 0 through
P. These together imply d(i;(p),p,Vj(p)) — 0 as p — 0 through P, contradicting

@3). O

LEMMA 2.3. The uniform convergence in (ZI) holds if and only if, for every
fized f € Cy(S), we have p; ,(f) = v;(f) as p — 0, uniformly over j € J(p).

Here “u;,(f) = v;(f) as p — 0, uniformly over j € J(p)” is the standard
notion of uniform convergence in R: Ve > 0: 3pg € (0,1): Vp € (0,p0): Vj € J(p):
s () —vi(f) <e.

PROOF. Assume that for every fixed f € Cy(S) we have p; ,(f) — v;(f) as
p — 0, uniformly over j € J(p). Consider any sequence P = {p,} C (0,1), p, = 0
and any choice of j(p) € J(p) for p € P such that v, 5 v e Cas p— 0 through
P. Then for every fixed f € Cy(S) we have v;,)(f) = v(f) as p — 0 through P,
and combined with our assumption this implies 1, ,(f) = v(f) as p — 0 through
P. Hence pj(,),, 5 v as p — 0 through P, and in view of Lemma it follows
that (21) holds.

Conversely, assume now that there is some f € Cy(S) for which p; ,(f) — v;(f)
does not hold uniformly over j € J(p) as p — 0. Then there exist ¢ > 0, a sequence
P ={pn} C(0,1), p, — 0, and for each p € P some j(p) € J(p), such that

(2.4) 150y, (f) = Vi (f)| > ¢ for each p € P.

Replacing P with an appropriate subsequence we may also assume that there is
some v € C such that v;,) — v as p — 0 through P. Then v;,)(f) = v(f) as
p — 0 through P, and together with (2.4) this implies that ;. ,(f) # v(f) as
p — 0 through P. Hence we do not have p;(,),, 5 v as p — 0 through P, and by
Lemma 2.2] (21]) does not hold. O
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REMARK 2.1. The proof of Lemma immediately extends to show that if
21) holds, and if f: S — R is a bounded Borel measurable function whose set of
discontinuities has measure zero with respect to each v € C, then p; ,(f) — v;(f)
as p — 0, uniformly over j € J(p). In particular, letting f be a characteristic
function, it follows that if B C S is any Borel set satisfying v(0B) = 0 for all
v € C, then p; ,(B) — v;(B) as p — 0, uniformly over j € J(p). The reverse
implication is covered by the following lemma.

LEMMA 2.4. In the above setting, let B be a family of Borel subsets of S such
that v(0B) =0 for all B € B, v € C, and also, for any sequence v1,va,... € P(S)
and any v € C, if v,(B) — v(B) for every B € B then v, — v. Then a sufficient
condition for the uniform convergence in [Z1)) to hold is that for every B € B, we
have 1 ,(B) — v;(B) as p — 0, uniformly over j € J(p).

PROOF. Let d be a metric on P(S) which induces the weak topology. Assume
that for every B € B we have p; ,(B) — v;(B) as p — 0 uniformly over j € J(p),
but that the uniform convergence in (2.1]) does not hold. Then there exist ¢ > 0,
a sequence P = {p,} C (0,1), pp, — 0, and for each p € P some j(p) € J(p), such
that

(2.5) d(1j(p),ps Vi(p)) > € for each p € P.

Since vy, € C for all p € P, there exist v € C and an infinite subsequence

P' C P such that v, % v as p — 0 through P’. Hence for every B € B we
have v;(,)(B) — v(B) as p — 0 through P’, since v(0B) = 0 [35] Thm. 4.25];
and combining this with our assumption we conclude i, ,(B) — v(B) as p — 0
through P’. Because of the convergence determining property of B assumed in the
statement of the lemma, this implies Hi(p),p =y v oas p — 0 through P’. Now
Vitp) 5 v and Ii(p).p — v together imply that d(1j(p),psVi(p)) — 0 as p — 0
through P’, contradicting (Z3]). O

2.2. Point processes and marked point processes

Given a locally compact second countable Hausdorff (lcscH) space X, we let
M (X) be the set of locally finite Borel measures on X'. Recall that a Borel measure
pon X is said to be locally finite if uB < oo for every relatively compact Borel
set B C X. We equip M(X) with the vague topology. Then M(X) is a Polish
space (i.e. separable and has a complete metrization). We write M for the Borel
o-algebra of M(X). We let N(X) be the set of counting measures in M (X), and
let Ny(X) :={v € N(X) : sup,crv{z} < 1} be the subset of simple counting
measures. Then N(X) is a closed subset of M (X') (hence also Polish), and Ng(X) is
a Borel subset of N(X). Define N = {BNN(X) : B € M}, which yields the Borel
o-algebra of N(X). The elements of Ns(X) may be identified with the family of
locally finite subsets of X’ through v + supp(v). The inverse map is {z;} — >, 0z,
We will use this identification between point sets and simple counting measures
throughout this work, often using the same notation for point set and counting
measure.

A point process is, by definition, a random element & in (N(X),N). It is called
simple if £ € N4(X) almost surely. We identify P(Ns(X)) with the set of probability
measures v € P(N (X)) with v(Ns(X)) = 1. Then a point process ¢ is simple if and
only if its law is in P(Ns(X)). The intensity measure of £, EE, is the Borel measure
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on X given by (E§)B = E((B) for any Borel set B C X. By abuse of notation,
for v € P(N(X)), we call “the intensity of v” the intensity measure of any point
process whose distribution is v; i.e. the Borel measure B — fN(X) nBdv(n) on X.

From Section onwards we will make the choice X = R? x X, with ¥ a
compact metric space. A point process £ in X = R? x ¥ can be thought of as
a marked point processes with locations in R? and marks in ¥. Let p; be the
projection map X — R%. Note that since ¥ is compact, the “ground process”,
p1:€, automatically becomes a point process in R%. We call € simple as a marked
point process if the ground process p1.& is simple. We refer the reader to [20, Ch.
6.4] for further background.

The following lemma gives a criterion for uniform convergence of sequences in
P(Sx N(X)), for S a lescH space, which will be useful for us. We will need it later
in the case S = S¢7%. Let J be a fixed index set, and for each 0 < p < 1, let J(p)
be a subset of J,

LEMMA 2.5. Let S be a lescH space, let 8" = S x N(X), and let C be a compact
subset of P(S"). Define

(2.6)
Fro) = [ apn(P)duto.n) (1 € Ce2). g € ColS x R). € P(S')

Let {10} jes(p) and {v;}jes be families of probability measures in P(S"), such that
v; € C for all j € J. Then the following two conditions are equivalent:

(a) pj, — v; as p — 0, uniformly over j € J(p);

(b) for any f € Co(X) and g € Cc(S X R), Frg(ujp) — Frgv;) as p — 0,
uniformly over j € J(p).

PrOOF. For f € C.(X) we define the map Ty : " — S x R by T¢(p,n) =
(p,n(f)); then Fyg(u) = p(g o Ty) for any g € Cyp(S x R), p € P(S'). The map
T} is continuous; hence g o Ty € Cy(S’) for any f,g. Now the implication (a)=(b)
follows from Lemma 23]

Conversely, assume (b). In order to prove (a), by Lemma it suffices to
prove that for a given sequence P = {p,} C (0,1) with p, — 0, and given v € C
and j(p) € J(p) (p € P) subject to v, — v as p — 0 through P, we have

Lj(p).p — v as p — 0 through P. For any f € C(X) and g € C.(S x R) we have
Vit (goTy) = v(goTy) as p — 0 through P; combined with (b), this implies that
Wip).p(g0oTy) = v(goTy), as p— 0 through P. But g is arbitrary in C.(S x R);
hence we conclude Ty, (1(,),,) — Tr«(v) as p — 0 through P (cf., e.g., [28| Prop.
3.4.4]). The fact that this holds for all f € C.(X) implies, via a simple extension
of [35, Thm. 16.16 (ii)=>(i)], that p;(,), — v as p — 0 through P. Hence (a)
holds. g

LEMMA 2.6. Let C be a compact subset of P(Ns(X)) such that every v € C has
the same intensity i (a fived locally finite Borel measure on X). Let {15} e 1(p)
and {v;}jes be families of probability measures in P(N(X)), such that v; € C for
all j € J. Assume that, for any relatively compact Borel set B C X with i(0B) =0
and any r € ZT,

wi,({n€ N(X) : nB>r}) = vj({n € N(X) : nB >7r})
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as p — 0, uniformly over j € J(p). Then u;, = v; as p — 0, uniformly over
i€ J(p).

PROOF. Let S = N(X) and let B be the family of Borel subsets of S of the
form A ={n €S : nB > r}, where r € Z* and B is a relatively compact Borel
subset of X with (0B) = 0. Note that 04 C {n € S : n(0B) > 1}; thus
v(0A) < [¢n(0B)dv(n) = [i(0B) = 0 for each v € C. Furthermore, if v € C and
B is a relatively compact Borel set in X satisfying n(0B) = 0 for v-a.e. n € N(X),
then also [1(0B) fN(X (0B)dv(n) = 0. Hence by [35, Thm 16.16 (iv)=-(i)], for
any sequence v1,vs,... € P(S) and any v € C, if v,(A) — v(A) for every A € B
then v,, — v. Hence Lemma [Z4] applies, and shows the desired implication. [

2.3. The list of assumptions

As in Section [T} let P be a fixed locally finite subset of R¢ (d > 2) with
constant asymptotic density cp. Recall also the definitions of X = R? x ¥, pux =
vol xm and

P={(ps(p) : peP}C X
from Section [LJl Furthermore, for any q € R%, v € Sfl and 0 < p <1, we setl

[P\ {(as@)} (a€P)
27 Fa= {P (a¢P)

and
(2.8) Q,(q,v) = (Pq — @) R(v) D,.

Given any A\ € P(S{71), if we take v random in (S{~*,\) then Q,(g,v) be-
comes a random point set. We write ,u()‘) € P(N,(X)) for the distribution of the
corresponding point process. In other words, ug),‘,l is the push-forward of A by the
map

ST NW@), vl > b
peQ,(q,v)

The following are our hypotheses on P. These will generalise and make precise
the outline assumptions from Section [[I] (we will use the same labelling).

Our standing assumption is that there exists a continuous map ¢ — pc from X
to P(N (X)), a Borel probability measure m on ¥ with the following properties:

[P1] Uniform and zero density: For any bounded B C X with ux(9B) = 0, we
have

. #(PNTB
(2.9) Thjgo % = cppx(B).
[P2] Spherical equidistribution: There exists a subset £ C P of asymptotic density

zero such that for any fixed 7> 1 and A € P,.(S¢71), we havd]
(2.10) ,u(’\) — fie(q) as p— 0, uniformly for g € Pr(p) :==PnN B%pl,d \ €.

n the notation of the introduction, Pgq — q = (P — q)*.

2For uniform convergence in P(N (X)), use @I)-(32) with g, P, Pr(p) in place of j, J, J(p).
Indeed, {pc : ¢ € ¥} is a compact subset of P(N (X)), since it is the continuous image of the
compact set X.
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[P3] No escape of mass: For every bounded Borel set B C RY,
lim limsup [vol xw]({(q,v) € B x S Q,(pt g, v) N (3e x X) = 0}) =o0.

§—=0  p—0
We will explain the assumption [P3] further in Section [2Z5] where we prove the
existence of a limit of Q,(p'~?g, v) for (g,v) random in T*(R?) with respect to an
arbitrary absolutely continuous probability measure.
Furthermore, we impose the following assumptions on the limiting distributions
Mg+
[Q1] SO(d — 1)-invariance: For every ¢ € X,

te is invariant under the action of SO(d — 1) := {k € SO(d) : e1k =e;}.
[Q2] Coincidence-free first coordinates: For every ¢ € X,
pe({v € N(X) : 321 €R st v({21} x RTIx X)) > 1}) = 0.

[Q3] Small probability of large voids: For every € > 0 there exists R > 0 such that
for all c € ¥ and « € R? we have
pe({v € N(X) : v(B4z,R) x X) =0}) <e.

Note that the assumption [Q1] is content-free for d = 2. For general d, [Q1] is
equivalent to requiring that the convergence in [P2] does not depend on our choice
of the map R : Sffl — SO(d); cf. Remark 2.4 below. We will denote by Z. a
point process in X with distribution pc. =¢ corresponds precisely to the family of
random sets in the list of assumptions outlined in Section [[Il Assumption [Q2]
says that almost surely, the points of Z. have pairwise distinct e;-coordinates. In
particular = is simple as a marked point process, viz., the ground process p1.(Z¢)
in R is simple. The assumption [Q3] says that the probability of Z. having empty
intersection with a large ball, at arbitrary position, is uniformly small.

2.4. First consequences of the assumptions

We here derive some first consequences of the assumptions imposed on the
point set P in Section 23
The following is an immediate consequence of [P1].

LEMMA 2.7. Let f : X — R be a bounded measurable function of compact
support whose set of discontinuities has measure zero with respect to ux. Then

(2.11) lim 74 Z f(T7y) = cP/deuX.

T—o0 <
yeP

PROOF. Take R > 0 so that supp f C Xr := B% x ¥, where B% is the open
ball of radius R centered at the origin. For T > 0, let Ny = #(P N B%,);
then T=¢Ny — cpux(Xg) as T — oo. For T > 0 large (thus Ny > 0) we let
Xr := T~ 'y where y is chosen uniformly at random among the Np points in
PN Xrr; then X7 is a random point in X, and using T~?N7y — cpux(Xg) and
[P1] it follows that

: px(B)
lim P(Xr € B) = ——+~
A P(Xr € B) px(Xr)
for any B C B% x X with px(0B) = 0. Hence if we let X, be a random point in X

with distribution MX(XR)_1MX|XR then X7 tends in distribution to X, as T' — oo,
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and so by the Portmanteau Theorem, limp_,o Ef(X7) = Ef(Xs). Again using
TNy — cpux(Xr), the last relation is seen to be equivalent with (Z.1T]). O

From now on we fiz, once and for all, a choice of a subset & C P as in [P2].
We also set

(2.12) ¥ ={s(q) : geP\E}
This is clearly a closed subset of X, hence compact. Once the basic results of the

present section are established, it will transpire that we may assume without loss
of generality that ¥/ = X; cf. Remark 2.6] below.

LEMMA 2.8. m(¥X') = 1.

PROOF. Assume the opposite, i.e. m(U) > 0 where U := ¥\ ¥'. Let d be the
metric in 3. Then there is some open ball B = Bx(s,7) = {¢' € ¥ : d(¢',¢) < r}
satisfying B C U and m(B) > 0. Take 0 < v’ < r so that also m(Bx(s,7’)) > 0.
Note that the boundaries dBs(s, ") for " € [r/,r] are pairwise disjoint; hence
there is some r” € (r',r) with m(0Bx(s,r”)) = 0. Set B’ := Bx(s,r”); thus
B’ c U, m(B’) > 0 and m(0B’) = 0. Hence, by [P1],

Jim R™#(P N (BL x B')) = ¢p vol(BH)m(B') > 0.
—00

Using also the fact that £ has asymptotic density zero (cf. [P2]), it follows that
{ge PNBL\E : <(q) € B’} must be nonempty for all sufficiently large R. In
particular ' N B’ # (), contradicting B’ C U = X\ /. O

LEMMA 2.9. For every s € ¥/, uc is invariant under the action of D,., for all
r > 0.

PrOOF. Fix 7 > 0. Take any sequence (g,,) C P \ &€ such that <(g,) — ;
then take (pn,) C (0,1) such that p, — 0 and g, € Pi(pn) for each n. Fix
any A € Po(S¢7'). Then u%{pn 5 pe as m — oo, by [P2]. We also have
g, € Pr(rp,) for each n, where T' = max(1,7¢71), and hence Hszi)mpn - pe as
n — oo. But note that Q,,(q,v) = Q,(q,v)D,, and hence u%),rpn = uff;{pn oD,
where “D 17 denotes the continuous map Y ~— Y D! from N4(X) to itself. Hence
uéi)7Tpn 5 pco D7t as n — oo, and so pe o DY = pe. (]

Next we will show that since our key convergence assumption, [P2], is required
to hold for all A € Poc(S971), it can in fact be upgraded to a convergence state-

ment concerning the joint distribution of v and Q,(q,v). Given A € P(S{™1), we
write ﬁffg € P(S{7* x N(X)) for the distribution of (v, Q,(g,v)) for v random in
(87750,

LEMMA 2.10. Let T > 1 and X € Poo(S$™Y). Then ﬁffg 5 A X fig(q) as p — 0,

uniformly over all g € Pr(p).

PROOF. Let f € C.(N(X)) and g € C.(S¢™! x R) be given. By Lemma 23 it
suffices to prove that Ffﬁg(ﬁg):,),) — Frg(A X pig(q)) — 0 as p — 0, uniformly over all
q € Pr(p). Let € > 0 be given. Since g is continuous with compact support, there
is a partition of S‘li_1 into Borel subsets Si,. .., S, such that for each j € {1,...,7}
we have

(2.13) lg(v,y) —g(v',y)l <e,  VyeER, v, €S
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Let J be the set of j € {1,...,7} with A(S;) > 0. For each j € J we set \; =
AS;) A8, € P(S¢7Y), fix a pomt v; € S, and define g; € C.(R) through g;(y) =
g(vj,y). Applying [P2] for \;, together with Lemma (with S as a “dummy”

singleton set), we see that Ff g (NE;;)) — Fyq,(e(q)) — 0 as p — 0, uniformly

over all g € Pr(p). (Here Fyrg, (1) = [y 2y 95(n(f)) dpa(n) for any pin P(N(X)).)
Hence there is some pg € (0,1) such that

(2.14) |, (10d)) = Frg, (@) <2, Yo < po, a € Pr(p),j € J.
Now note that by definition,

Fr.oy (45" )>—/Sj9<”jv > ) i)

y€Q,(q,v)
~ )\j
Fra@?) = [ oo
Sj

hence using (ZI3)) we have
~(X;)

}Ff,g] MSJ ;?)) — Frg(liq,p )‘ <e.
Multiplying this inequality by A(S;) and addlng over all j we obtain

(2.15) ’nyg AN) = STA(S)) Frg, ( >)’ <e,  VYpel(0,1), geP.
JjeJ

and

) ) ax (o)

y€Q,(q,v)

By a similar argument we also have

(216) | Frg(d < ) = 30 AS)Frg, (1)
jeJ

Using (Z14), 2I8) and (ZI6]), we conclude that
|Frg(igy) = Frg(A % pog)| <36, ¥p < po, ¢ € Pr(p).

Since € > 0 is arbitrary, this establishes the desired uniform convergence. O

<e, VYp e (0,1), c € X.

REMARK 2.2. Let us take A to be normalized Lebesgue measure, i.e. A =w; =
w(S‘f_l)_lw. In this case, Lemma [2.10] says

(2.17) ﬁfl‘*”;) s wy He(q) as p — 0, uniformly over all g € Pr(p).

Let us note that the convergence stated in Lemma ZI0 for a general A € Pac(S¢™1),
is in fact a simple consequence of the special case (ZI7): it follows from the fact
that C(S¢71) is dense in L' (S{ ™%, w). Of course also the convergence in Lemma 210
implies the convergence assumed in [P2]. Hence (ZI7) is an equivalent reformulation
of the assumption [P2].

For later use, we will next prove that the convergence in Lemma can be
upgraded by including a “@-shift”. For any open subset U C S‘li_l, we let Cy (U, R?)
be the space of all bounded continuous functions 3 : U — R¢, provided with the
supremum norm. For any q € P, B € Cyp(U,R?), v € U and 0 < p < 1, we set

(2.18) Q,(q,8,v) = (Pq — ¢ — pB(v)) R(v) D,.

Thus Q,(q,3,v) gives the scattering configuration when viewed in the particle
frame of a particle at the point g + pB(v) in direction v (cf. the discussion at
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the beginning of Section [[I)). We will ultimately be interested in the case when
B(v) € $¢7! and B(v) - v > 0 for all v. In this case, considering a fixed q € P and
random v means that we are considering a particle which is just about to leave the
boundary of the scatterer g + Bg in a random direction, with 8 specifying how the
exact starting position depends on the random direction.

Given A € P(S{™1) with A(U) = 1, let us write ,u('a)‘ € P(S¢7! x N(X)) for
the distribution of (v, Q,(q,3,v)) for v random in (S 1)) (equivalently, for v
random in (U, A;y)). We define the projection map @ +— @, on R? by

(2.19) x) :=(0,22,...,24) for ® = (z1,20,...,2q4) € R

The limit of Q,(g,3,v) as p — 0 will turn out to be the point process =, —
(B(v)R(v)) L, with v random in (S¢7*, \) and independent from Z,. Let pP™ e
P(N(X)) be the dlstrlbutlon of this point process, and let 7°™ € P(S¢7 1 x N(X))
be the distribution of (v,=Z. — (B(v)R(v)),). Thus for any measurable function
f>00nS%t x N(X),

'5)\ 'U v v
(2.20) /SHN( rape - [ /N Y~ (BOIRE@)L) () X,

and in case f(v,Y) is independent of v this also equals | N(X) f dugﬁ’”. In particular
E. — (B(v)R(v))L is a simple (marked) point process, just as Z¢. It will be useful
for us to prove a limit statement which is uniform both over @ in compacta and
over g in Pr(p).

LEMMA 2.11. Let U be an open subset of ST, and let A € Pae(S4™") be such

that N(U) = 1. Then for any T > 1 and any compact subset K C Cy(U,R?), we
(ﬁ A BN g p — 0, uniformly over all ¢ € Pr(p) and all B € K.

have [iq, BN o(q)

REMARK 2.3. The uniform convergence in the lemma takes place in P(S{™! x

N(X)), recall 21). Note that {N(ﬁ)‘ : ¢ € 3,8 € K} is a compact subset of
P(S{™" x N(X)), since it is the continuous image of the compact set ¥ x K; cf.
footnote 2

PROOF. Take vy € S¢! so that R is continuous on S9!\ {wy}. Note that
AU\ {vo}) = MU) = 1, since X is absolutely continuous with respect to w; thus
we may replace U by U \ {vg} without affecting the content of the statement of
the lemma. Hence from now on we may assume that R is continuous on U. Let

€(0,1), q,, € Pr(pn), B, € Co(U,RY) for n = 1,2, ..., and assume that p,, — 0,

s(g,) — sand B, — B asn — oo, with ¢ € ¥ and 8 € K. We then claim that

A 8,
:u’é?wpn) _—_) :u’(la Y

imply the lemma.
We extend 3 and each 8, to all S¢~! by setting B(v) = 3,,(v) = 0 (say) for
all v € S¢71\ U. Consider the maps

Fp, ST X Ny(X) = S¥1 x Ny(X),  Fu(v,Y) = (v,Y — pB,(v)R()D,,)
and
F ST Ny(X) = ST x Ny(&X),  F(v,Y)=(v,Y — (B(v)R(v)).).

as n — o0o. By the same argument as in Lemma 22] this will

Using A(U) = 1 we have ﬁflif‘,;n) Mgf},,,n oF, ! and ;72‘“) = (Axuc)oF~1. Now for
any points (v,Y), (v1, Y1), (va, Y2), ... € S¢71 x N,(X) subject to (v, Y;) — (v,Y)
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and v € U, we have F,(v,,Y,) = F(v,Y) as n — oco. Furthermore ﬁg’:)ypn s
A X pe, by Lemma 210 Hence ﬁ%{pn oF; 1 Y Axpu)oF~1asn — oo (cf. [35,
Thm. 4.27]), and the lemma is proved. O

The following lemma shows that, in the presence of [Q1], the assumption [P2]
is independent of the choice of the map R.

LEMMA 2.12. Suppose that R: Sffl — SO(d) is any map satisfying the same
conditions as R, i.e. vﬁ(v) = e for allv € Sﬁl*l, and R is continuous when
restricted to ¢~ minus one point. Define Ep(q, v) = (Pg —q) R(v) D,, and write
ZZSJ):; € P(N(X)) for the distribution of ép(q,v) for v random in (S$™',\). Then
for any fized T > 1 and A € Pae(S%71), we have ﬁEIA,), - Ue(q) as p — 0, uniformly
over all g € Pr(p).

PROOF. Define K : S¢7! — SO(d) by K (v) = R(v)"'R(v). Then e, K (v) =
e1, i.e. K(v) € SO(d —1) for each v € S¢~!. It follows that K (v) commutes with
D,, and so

Ep(q7 ’U) = Qp((L ’U) K(’U)
We introduce the map
F:S9 X Ny(X) = Ny(X), F(v,Y)=YK(v),
and note that iy ) = fig) o F~1.

Let p, € (0,1) and q,, € Pr(p,) for n = 1,2,..., and assume that p, — 0
and ¢(q,,) = ¢ € ¥ as n — oo. We then claim that ﬁéi),pn 5 ue as n — oo.
This will complete the proof of the lemma, by the same argument as in Lemma
We have ﬁs{l),pn 5 X X puc, by Lemma ZI0 By the assumptions on R and
R, there exist points vg,v) € S§~* such that K is continuous on S§~*\ {vg, v}}.
Now for any sequence of points (v,Y), (v1, Y1), (v2,Y2),... € Sil*l X N (X) subject
to (vp,Y,) = (v,Y) and v ¢ {vg,v(}, we have F(v,,Y,,) = F(v,Y) as n — cc.
Hence by [35, Thm. 4.27], ﬁy,), = /751)‘2, oF 1 s (Ax pg)oF~'as n — oo. Finally
(A x pe) o F~1 = pc by [Q1], and the proof is complete. O

REMARK 2.4. Note that Lemmal[2.I2]was proved using only the key convergence
assumption [P2] together with the assumption that each Z¢ is SO(d — 1)-invariant,
[Q1]. Conversely it is easy to see that assuming Lemma 212 the SO(d — 1)-
invariance [Q1] follows as a consequence, for each ¢ € 3.

The next lemma is a simple variant of the previous one.

LEMMA 2.13. Let T > 1 and let v be the (left and right) Haar measure on
SO(d), normalized to be a probability measure. Let jiq,, € P(Ns(X)) be the distri-
bution of (75(1 —q)KD, for K random in (SO(d),v). Then pq,, —> pic(q) asp — 0,
uniformly over all q € Pr(p).

PRrROOF. Let p, € (0,1) and q,, € Pr(p,) for n = 1,2,..., and assume that
pn — 0 and <(q,) — < € ¥ as n — co. We then claim that g ,, — pe as
n — o0o; as usual this will complete the proof of the lemma. Let f € Cy(Ns(X)).
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For any K € SO(d — 1) we have
(2.21) - F((P, 2, — 4n)R(W)KD, )dwi(v) = p(f), as n — 0o,
1
by Lemma [ZT2 (or directly from [P2] and [Q1], using KD, = D,K). Let v1 be the

normalized Haar measure on SO(d — 1). By Lebesgue’s Dominated Convergence
Theorem, it follows from (Z21]) that

Lo (P, - ) R@ED,, ) den(@)dn(K) = (1), a5 o
SO(d—1) JS7

However here the left hand side equals g, ,,(f), since the push-forward of the
measure wy X v; on S¢7! x SO(d — 1) under the map (v, K) — R(v)K equals v (cf.,
e.g., [37, Thm. 8.36]). Hence the proof is complete. O

A symmetry related to the SO(d — 1) invariance is the following.
LEMMA 2.14. Fiz K € SO(d) with e1K = —ey. Then for each s € ¥/, ¢ is

K -invariant.

PROOF. Let ¢ € ¥ be given. As in the proof of Lemma 20 take sequences
(g,,) € P\ & and (pn) C (0,1) so that q,, € P1(pn) for each n, and p, — 0
and ¢(q,) — ¢ as n — oo. Fix any A € Po(S{™ 1). Define A € P(S471) by
A(B) = A(—B) for any Borel set B C S¢~!, and define R : $¢~! — SO(d) through

R(v) = R(—v)K. Also let uEl g be the distribution of (P, —q)R R(v )D,, for v random

in (S‘f_l,A), as in Lemma 2121 Now for each n, and for any Borel subset A C
Ny (X), we have, with ¢ = q,,, p = pn,

AN(A) =A{v €SI : (Py — q)R(v)D, € A})
=M{ves{™! : (P —qR(WKD, € A})
=\{veS{" : (Pq—qR(v)D, € AK™'}) = u{)(AK ™).

Hence ,uff‘n),pn = u$) . o K1 for each n, where “K 1" denotes the map N,(X) —

Ng(X), A AK~1. We have uff;{pn 5 pie, by [P2], and thus ﬁgi‘ipn s peo KL
On the other hand, ﬁgi),pn 5 41, by Lemma 2120 Hence p, o K1 = p. d

Next we prove that the intensity measure of =¢ is bounded above by cppx.

LEMMA 2.15. For any ¢ € X' and any Borel set B C X, qu(X)#(Y N
B)duc(Y) < cppx(B).

REMARK 2.5. The proof of Lemma 2.5 should be compared with the first half
of the proof of the Siegel-Veech formula in [49, Thm. 5.1]. Cf. also Veech, [60].

PROOF. Let ¢ € 3’ be given. It suffices to prove that for any given f € C.(X),
f >0, we have

(2.22) /N(X > fl@)dp(Y <C7>/ fdux.

qEY
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Take sequences (q;) C P\ € and (p;) C (0,1) so that g; € P1(p;) for each j, and
pj — 0and ¢(q;) — ¢ as j — oc. By further shrinking each p; if necessary, we may
also assume that

3_d _

(2.23) p2 > lgll+ Y. la—gqlt
qep\{qj}
lall<2lia;

By Lemma R.13] we have pugq, p; 5 4 as j — oo, and hence since F : Y —
>_qey f(@) is a nonnegative continuous function on Ny(&X) (unbounded if f # 0),
pe(F) < liminf;_, La;.p; (F). In other words, writing v for the normalized Haar
measure on SO(d),

y) dpg(Y) < lim inf > f(y) dv(K)
I JS0(d) ~

s(X
) yEY yG(qu 7qj)KDPj

Vimde

= lim inf GZ./So(d)f((y_qj)KDpj)du(K)

d(d—1 _
(2.24) = liminf o @V by (007 Ylg - gyl s(a)),
aeP\(g,}

where h, € C.(R>¢ x X) is given by
(2.25) hy(r,) == p*d<d*1>/ ( )f(p“d?“elKDp,c) dv(K).
so(d

Set B = supy f and take R > 0 so that supp f C B_‘}% x ¥. Then for each
€ (0,1), the support of h, is contained in [0, R] x X. Writing = e; K in (2.25)

we have
hp(ru <) = p_d(d_l) ‘/Sdfl f(r(xla p_dx27 ceey p_dxd)7 C) dwl (CB)
1

It follows that

(2.26)
hp(r,s) = ho(r,s) ==

G )Z Sy, dy,  as p—0,
1 se{1, R

with uniform convergence over all (r,<) € [, R] x %, for any fixed n € (0, R). Note
that ho by definition is a continuous function on R~ x ¥ with support contained in
(0, R] x X. Note also that p‘j_lqj — 0 as j — oo; cf. (Z23). Using [P1], Lemma[21]
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and the uniform convergence just pointed out, it now follows that for any n € (0, R),

. d(d—1 _ _
lim pfY ST 1102 gl > ) e, (02 g — g, < ()

j—o0

q€P\{q,}
. d(d—1 — —
=l A5 S0 TSl = ) ho(ef g 4y 5(9))
qep\{qj}
. d(d—1 — —
= lim pf ™S 1165l = ) b all s (0)
qeP

= CP/XI(HCCH zn) ho(lll, <) dux (2, <)

) / / ho(r,<) 4= dr dm(s) = cp / fdux.
2 Jn X\((—=n,m)xRd—1x¥)

To handle the contribution from r € [0, 7], note that

hp(r,s) < Bpid(dil)/

d—1
Sl

(7l (@1, 073, .., p~ )| < R) duor (=)
d—1

< CB(E) ,
’

where C' > 0 only depends on d. (This bound is accurate for (R/r)p? small,

otherwise wasteful.) It follows that

timsup ol ST 1108 gl < ) o, (02 g — a5, <(q))
Jmree q€P\{q;}

< limsup C'BRdilpg_1 Z llq — qj‘”kd
I q€P\{q;}

lgll<ne;~¢

< lim sup 2‘1_1(Z'B]~2”l_1p?_1 Z lq|*~2 < C'n,
Jj—o0 qeP
2llq; I <llqll<np;~*

where C’ is a constant which only depends on P, B, R. Here we used [2.23) in the
second inequality, and for the third inequality we used [P1] and a dyadic decom-
position of the relevant annulus. Adding the two bounds it follows that the right
hand side of ([2.24)) is bounded above by c¢p [ fdux + C'n. This is true for each
1 € (0, R); hence we conclude that (Z22)) holds, and the lemma is proved. O

Next we will prove a lemma saying that for p small, each point in Pr(p) is well
separated from all other points in P, when measured in the length scale of p. For
q € R? we set

(2.27) dp(q) =inf{[[p—q| : p€P\{q}}.

LEMMA 2.16. For any T > 1, the quantity infgep,.(,) dp(q)/p tends to oo as
p— 0.

PROOF. Assume the opposite; then there exist a constant C' > 0 and sequences
(pn) and (g,,) such that p, — 0, q,, € Pr(pn), and dp(q,,) < Cp,, for all n. Passing
to a subsequence we may also assume ¢(g,,) — ¢ € ¥’. Fix any A € Pc(S¢™1). Then
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;Lg,i\b),qn 5 e as n — oo, by [P2]. For e > 0 set B: = (—¢,¢) x BL ' x 5. Then
pix(0B:) =0, and thus [y o #(Y NOB:)duc(Y) = 0, by Lemma ZT5 Hence
(2.28) plM

7%({}/ € Ny(X): YNB. = (Z)}) — ug({Y € Ny(X) : YNB, = (Z)})

But for each n there is some p,, € P\ {q,,} with ||p,, —q,,|| < Cpn; hence if Cp? < ¢
then (p, — g,)R(v)D,, € (—&,¢) x B& ! for all v € S{1. Tt follows that the left
hand side of (Z28) is zero for all large n; hence also the right hand side must be
zero, and so fNS(X) #Y NB:)duc(Y) > 1 for all e > 0. For ¢ small this yields a

contradiction against Lemma [2.15] ([l

The following lemma will be used later to show that the scatterers centered at
the points in the exceptional set £ C P play a negligible role in the the Lorentz
process for the scatterer configuration P, as p — 0.

LEMMA 2.17. Let T > 1, X € PaC(Sffl), and let B C R? be a bounded Borel
set. Then

(2.29) A{ves{" : En(g+BD,'R(v)™") #0}) =0
as p — 0, uniformly over all g € Pr(p).

PRrROOF. Enlarging B, we may assume B = B% for some R > 1. Also by
a standard approximation argument, it suffices to prove ([2.29) for those A which
have a continuous density with respect to w; and thus in fact it suffices to prove
(ZZ9) for the single case A = wy, normalized Lebesgue measure on S{~*.

Let T > 1 and £ > 0 be given. Take 0 < r < 1 so small that cp vol(B?) < e.
Using then Lemma [ZT5] [P2], and the same line of reasoning as in the proof of
Lemma 2.T6] it follows that for each 77 > 1 there is some py € (0, 1) such that
(2.30)

A{v €SI 1 Q,(q,v) N (BLx %) £0}) <2, Vpe (0,p0), a € Prlp).

Set k = 2R/r > 2, T' = k% 'T, and B = BfD,;l. Replacing p by kp in
(Z30) and using the definition of Q,(qg,v) it follows that for all p € (0, po/k) and
q € Pr(kp) = Pr(p) we have

(2.31) A{vesi{™ : Pn(g+BD,'R(v)™")\ {q} #0}) < 2.

Recall B = B%; one verifies that |z, > k := (r/2)2R*% for all & € B\ B, and
hence

(2.32) (B\B)D,' C Alp) =B -a \BL pa,  Yp>0.

Now for any p € (0,p0/k) and g € Pr(p) we have, using 231)), 232) and £ C
P\ 1},
(2.33)

AM{veS{! : £n(g+BD,'R(v)™!) #0})
<2+ Y A{vest':peq+BD,'Rw)}).
PEEN(q+A(p))

Butif p € g+ BD;lR('U)_1 then p has distance < Rp from the line g + Rv; and
if also p € g+ A(p) then the angle (v, p — q) between the vectors v and p — g
satisfies sin p(v, p—q) < (R/k1)p?. The measure of the set of such points v € S9!
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with respect to A = w; is bounded above by C p?4=1 where C, depends on d, R,
but not on p or p. Hence [2.33) is

< 2+ #(EN(q+ Biy-a)) - Crp™ ™Y <26+ #(ENBlpy pypn-a) - Crp™7Y,

and using the fact that £ has asymptotic density zero (cf. [P2]), this number is seen
to be < 3¢ for all sufficiently small p. O

REMARK 2.6. It follows from Lemma [ZT7] that our key assumption, [P2], re-
mains valid if we change the marking of the £-points in an arbitrary way in the
definition of Q,(q,v). In precise terms, if ¢’ is any map P — X which has the same
restriction as ¢ to P\ &, and if

P ={(p,<'(p)) : pEP}, Py=P \({a} x%), Q)(q,v)=(P,—q)R(v)D,,

and if Hiz(,);\)) € P(N;(X)) is the distribution of Q},(g,v) for v random in (841N,
then

(2.34) ;(72) — fig(q) as p— 0, uniformly over all g € Pr(p).

The same statement also holds if we remove some or all £-points in the definition
of ’ﬁt’l

In particular, we may choose ¢’ so that ¢'(p) € ¥’ for all p € £. Then in fact we
have ¢'(p) € ¥/ for all p € P, i.e. ¢’ can be viewed as a map from P to ¥’. In this
case, using Lemma 2.8 and ([Z34) we see by direct inspection that all the assump-
tions in Section [Z.3 remain true if we replace (P,%,¢,m,&) by (P,X',¢',m;s, E).
Note also that X' = {¢’(q) : g € P\ £}, since ¢'(q) = <(q) for all g € P\ E. In
other words, after having replaced (P, X, ¢, m, &) by (P, %', ¢, ms/, £), the following
condition is satisfied:

(2.35) Y=%={clq) : geP\E&}.

In view of Remark 2.6l we may assume without loss of generality that ([2.35])
holds. We will make this assumption in Sections — A4 in addition to the
hypotheses [P1-3] and [Q1-3] as stated in Section 23]

2.5. A limiting process for macroscopic initial conditions

As a complement to our key limit assumption [P2] we also need to understand
the limit of Q,(p'~?q,v) when (q,v) is taken random in T'(R?) with respect to
an arbitrary probability measure A € P,.(T*(R?)). We will show in Theorem
that this limit exists and is independent of A. To simplify notation, we will in the
following use the shorthand dg = dvol(q) and dv = dw(v).

We start by defining, in ([Z37) below, the limit process, which is an explicit
function of the point processes =.. The construction depends on the choice of a real
constant ¢ and a nonempty bounded open set ® C R%~! with boundary of Lebesgue
measure zero; we consider these to be fixed once and for all in the following. The
fact that the limit process which we define in ([2Z37) is independent of ¢ and ©
is far from obvious, but will follow from the proof of Theorem 2:T9 where ¢ and
© are used in the construction of a certain decomposition of the distribution of
Qp(pl_d(L v)'

For 7 > 0, let €, be the open cylinder

Cr=(c,c+1)xD
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in R% For any fixed ¢ € ¥ and & € R? we write Z; := Z; U {(0,5)}, let i, be the

distribution of Z, and let ﬁé"”) be the distribution of =, + . Thus for any Borel

subset A C N,(X) we have ﬁgm) (A) = pc({Y : Yz € A}), where
Yo = ¥ +2)U{(z,9)}.

From now on and throughout the rest of the paper, it will be convenient to
allow the following abuse of notation: For any subsets A C R? and B C X, we write
“ANB” or “BNA” for BN (A x X). In particular in the following proposition,
“Y'Ne&,” denotes Y N (€, x ).

ProroOsITION 2.18.
(2.36) cP// /@ﬁgc”’b)({YeNs(X) 1 Y NeE, =0})dbdrdm(s) = 1.
X JOo

The proof of the proposition is given below. We remark that the integrand in
(230)) is a continuous function of (¢, 7,b) € ¥ x Ry x D; cf. Lemma 2.21] below
(applied with f =1).

We now define p € P(Ns(X)) by setting, for any Borel set A C Ng(X),

(2.37)
p(A) =cp /Z /Ow/i)ngcw({y ENY(X) : YNE =0andY € A}) dbdr dm(s).

By Proposition[2.18) p is indeed a Borel probability measure on N (X'). We denote
by = a point process in X with distribution p; we will call 2 the macroscopic limit
process. In Proposition 2:27] in the next section we will deduce from (2.31) that =
is compatible with the microscopic limit processes Z. in the sense that the Palm
distributions of = are given by the distributions of the appropriate translates of the
2s.

The following is the main result of this section. For A € P(T!(R%)), let uEJA)
be the distribution of Q,(p'~%q, v) for (g,v) random in (T*(R%), A).

THEOREM 2.19. Let A € Poo(T (R). Then p&Y =2 4 as p — 0.

The rest of this section is devoted to the proof of Proposition[2.I8 and Theorem
219 We start by explaining the main ideas in the proof of Theorem Let
A € Poo(T'(R%) be given, and let A’ € L'(T'(R?)) be the density of A with
respect to dgdv. Our task is to prove that for any fixed f € Cp(Ns(X)), the
integral

239 [ 1@ e ) Kl v)dg e

=t [ [ F(@ ) N g.0) dgdo
1 R

tends to fNS(X) fdp as p— 0. In (Z38), we wish to express Q,(q,v) in terms of
Q,(q’,v) for some appropriate choice of a point g’ in P, since we will then have a
hope of applying [P2] to get hold of the limit as p — 0. The point ¢’ must of course
depend on q.

Our way to define ¢’ is similar to the free path length problem for the Lorentz
process, but working with the flat scatterer —p({0} x D)R(v)~! (this is a relatively
open set contained in the orthogonal complement of v, of size proportional to p),
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and starting at the point g + c¢p'~%v instead of q: For each ¢ € R? and v € Sffl,
we define
(2.39)  7,(g,v):=inf{{>0: g+ (c+&)p' " weP—p({0} xD)R(v)"'}.

This is a well-defined number in Rso U {+00}. For generic ¢ and v we have 7 =
To(g,v) < 00, and there exist unique points ¢’ € P and b € © such that g + (c +
T)p' =% = q' — p(0,b)R(v) "1, or equivalently,

(2.40) gq=¢q —(c+7,b)D, "R(v)"
Let us write
Q,(g,v) = (P — q) R(v) D,

(Thus 9,(q,v) 2 Q,(q,v), with equality unless ¢ € P.) Now for any g and ¢’
related by (Z40), if ¢ ¢ P then

Qp(‘]a 'U) = @p(q, ’U) = (P - q) R('U) DP = @p(q/, 'U) + (C + T, b)7
and one verifies that in the above construction, q' € P arises from a given point
g € R if and only if Q,(q',v) + (¢ + 7,b) is disjoint from €,. Hence, using
[240) to replace the integration variable ¢ by 7 and b, and ignoring effects from

overlapping scatterers and the possibility that 7,(g,v) = oo, the integral in (Z38)
can be rewritten as

(2.41)

pd(dl/ // qu7 (c+7-,b))ﬁ€7:(2))
si™' gep

q
X f(@p(q/7v) +(c+T, b)) AN (p?1q,v)dbdr dv.

With this, we have achieved the goal of expressing the integral using only point sets
Q,(¢',v) with ¢’ in P. Now, after moving the integration over v to the innermost

position in (24I]), and recalling the above definition of TSNS P(Ns(X)), [P2]
heuristically suggests that for p small, (241)) should be approximately equal to
(using also p¢~1q ~ p¢~1q' — (c + 7)v):

S [T,y T =0 00 )

q'eEP
x A(p?~'q' — (c+ T)v) dbdr

with A de 1 A'(y,v) dv. Finally, moving the summation over q’ inside the
first two 1ntegrals Lemma 2.7 suggests that as p — 0, the above expression should

tend to
/ N / cp / / I(YN&, =0) f(Y)dat™? (V) dm(s) dbdr.
0 D 2 JNs(X)

This equals [, (xy f du, the desired limit!

It remains to make the above discussion rigorous. We will start by proving
several auxiliary results.
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For ¢ € R% and \ € P(S{71), let ﬁfﬁ,})‘) be the distribution of Q,(q,v) + x for
v random in (S¢71, ). Given any f € Cp(N4(X)) and 7 > 0, define the function
f): Ny(X) — R through
(2.42) fON) =1y ne, =0) f(Y).

Note that with this definition, the integrand in ZZI) equals £ (Q,(q’,v) + (c +
7,b)).

LEMMA 2.20. Let T > 1 and A € Pao(S¢71); let C be a compact subset of R?,
and let f € Cy(Ny(X)) and & > 0. Then gy (f7) = ) (F7) = 0 as p = 0,
uniformly over all g € Pr(p), x € C, 7 € [0,&].

REMARK 2.7. In particular the lemma (applied with 7 = 0) implies that

(2.43) ﬁfl i LN u((;) as p — 0, uniformly over all g € Pr(p) and x € C.

It would be easy to give a more direct proof of (2.43); however in our proof of
Theorem [2.19] we need the more delicate convergence statement of Lemma [2.20]

PRrROOF. Note that ﬁgmpA)(f(T))_ﬁEZ)(f(T)) = 0—0 = 0 whenever © € €,; hence
from now on we assume x ¢ €.. By a standard subsequence argument, it suffices
to prove that given any p, € (0,1), q,, € Pr(pn), 7 € [0,&1] and , € C'\ €,
(n=1,2,...) such that lim, . pn, = 0 and such that the limits

¢:= lim ¢(q,) € %, 7:= lim 7, € R, z:= lim z, € C Cc R?
n— oo n—oo n—o0
all exist, then
(2.44) uq'“:"l;i)(f(” ) — E?;))(f(“‘)) -0 as n — oo.

Using @, € C \ €., and the definitions of ﬁfff,;)‘) and ﬁ?’), @44)) is seen to be
equivalent to
(2.45) Héi),pn (fn) = ts(a,)(fn) =0 as m— oo,

where

Fa¥) = IV +20) N &, = 0) f (Yian s(a,)-
Define F' : Ny(X) — R through
FY) = I((Y +2) N €, = 0) f(Vias).
Note that for any Y, Y7, Y5, ... € Ns(X),ifY,, = Y, (0,¢) ¢ Y and (Y +x)N0o¢, = 0,

then f,,(Y,,) = F(Y) as n — oo. Hence, using also Mgff,,,n 5 pe (cf. [P2]) and the
fact that

e ({Y € Ny(X) : (0,6) ¢ Y and (Y +2)N0C, =0}) =1

by Lemma [2Z.T5] it follows that u%),pn (fn) = pe(F) as n — oo. (Indeed, apply [35
Thm. 4.27] and then consider the expected value.) Similarly, using (g, ) = e,
we also have pic(q y(fn) = e (F) as n — oo. Hence (2.45) holds, and the lemma is
proved. ([l

LEMMA 2.21. Fiz f € Cy(N(X)) and define f7) as in @42). Then (s, z,T)
ﬁﬁ”(f“)) is a continuous function on {(s,z,7) € L x R? x Rs¢ : = ¢ &, }.
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PRrROOF. This is an immediate modification of the proof of Lemma [2.20 (I

In the following proposition, we will prove the desired limit statement for the
following truncated version of the expression in (2.38):

(2.46)
T =0 [ [ Haa.) < 1) (9,0 0) " g, 0) dq v,
gd-1 JRd

for any fixed T7 > 0.

PROPOSITION 2.22. For any A € Poo(T'(R?)), f € Cy(Ny(X)) and Ty > 0,
(2.47)

T
i 7,7 =en [ [ [ D€ = 0O T ) b ()

PrOOF. Without loss of generality we may assume A’ € C.(T'(R%)), since
C.(TH(RY)) is dense in L'(T!(R9)).

Let us note that the definition of 7,(q,v), (239), can be equivalently expressed
as

7p(q,v) =inf{& >0 : Q,(q,v)NCc #0}.

Thus for any (q,v) € T'(R?) satisfying 7 = 7,(g,v) < oo, there exists a point
p € P such that (p — q)R(v)D, € {c+ 7} x ©. If this point is unique, we call it
z,(g,v). In the remaining cases (viz., when 7 = co or there are at least two points
p € P with (p—q)R(v)D, € {c+ 7} x D) we take z,(q,v) to be undefined. Thus
for each p € (0,1) we have defined a function z, from T'(R?) to P U {undef}.

Let Sp be the set of v € Sffl such that the inner products p-v for p € P
are pairwise distinct. Then w(S{™*\ Sp) = 0, and for every v € Sp we have
z,(q,v) € P for all ¢ € R? with 7,(g,v) < oo (since v € Sp implies that the
points (p — q)R(v)D, for p € P have pairwise distinct e;-coordinates). Also

Q,(q,v) = 9,(q, v) for almost all (g, v). Therefore,
(2.48)
Jp(f. 1) = pd=D /d 1/ (15(q,v) < Ty and z,(q,v) = q')
a'cP
x f(Qp(a,v)) N'(p*'q, v) dg dv.
Recall here that z,(q,v) = ¢’ implies that there is some b € ® such that (¢’ —
q)R(v)D, = (c+ 7,b) with 7 = 7,(q, v), or equivalently:
(2.49) g=4q — (c+m, b)D;lR(v)*1 =q — (p" "% (c+7),pb)R(v)"".

Conversely for any given ¢ € P, v € Sp, b€ D, 7 >0 and p € (0,1), if ¢ is given
by (249) then the two relations 7,(g,v) = 7 and z,(g,v) = ¢’ hold if and only if
Q,(q,v) N €, = . Hence, using also det D, ' R(v)~' = 1, it follows that

(2.50) T (f, Ty) = p™*=D Y /Sd I/Tl/ 1(Q,(q,v =0)

q'eP

X f(QP(qvv)) Al(p B q,'U) dded’U,
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with g as in ([249). Note here that
Q,(a,v) = Qy(q',v) + (c+7,b).
Take R > 0 such that supp A’ C B‘]’l% x 3, and set
T:= R+ |c|+ T+ sup ||b]|.
be®

Note that Z49) implies ||q' — q|| < (|c+ 7| + suppep ||b]|)p' ~¢; hence every g’ € P
which gives a nonzero contribution to the sum in ([Z50) satisfies ||q'|| < Tp*~<.
Using the fact that £ has asymptotic density zero (cf. [P2]), we then see that
restricting the sum in ([Z50) to ¢' € Pr(p) gives an error which tends to 0 as
p — 0. Furthermore, p?~'q = p?~'q' — (c + 7, p?b)R(v)~! has distance < p?¢
from p?~1q’ — (c + 7)v; hence using #Pr(p) < p~ 4?1 (cf. [P1]) and the uniform
continuity of A’, and writing q in place of q’, we obtain

(2.51)
T
— d(dfl) fo) v C+T. =
s = [ f /Sflu@,,(q, )+ (T B)NE, = 0)

q€Pr(p)
x f(Q,(q,v) + (c+7,b) N (p*'q— (c+7)v,v)dvdbdr + o(1).
Here o(1) denotes a term that tends to zero as p — 0.

Given any q € Pr(p), 7 € [0,T1] and b € D, we set y = p?~'q, x = (¢ + 7, b)
and & = ¢+ 7; then the innermost integral in (Z51) can be expressed as

(2.52) /Sdl F(Q,(q,v) +z) N(y — &v,v) dv,

with f((Y) := I(YNe, =0) f(Y) as in Lemma 220 For any y € R? and £ € R

we write

Di(y,§) := /Sdil A (y — &v,v) dv.
1
Then if Dp(y, &) > 0, the integral in ([Z52) equals Dy (y,¢) ﬁff,é’\)(f(ﬂ)a with \ €
P(S471) given by

(2.53) d\(v) := D(y, &) 'A (y — &, v) dv.
Hence by Lemma 220, for any fixed y € R? and ¢ € R, we have
@51) [ J7@Q(av) +2) Ny — v,v)dv — Daly. 77y (/7)) =0

as p — 0, uniformly over all ¢ € Pr(p), ¢ € [c,c+ T1] x D and 7 € [0,Ty].
Of course this convergence holds also when Dy (y, &) = 0, trivially. By a standard
compactness argument, using A’ € C., the same convergence statement is upgraded
to also hold uniformly over all y € R? and ¢ € [¢,c+ T3]. Using this fact in ([2.51)),
and again using #Pr(p) < p~ 4= we conclude

(2.55) Jo(fT) = o(1) + p% D S F(pilq,o(q)),
a<€Pr(p)
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where F': X — R is given by

T
F(y,<)=/ /DA(y,CJrT)ﬁgc”’b)(f(ﬂ)dbdf
0 D

It follows from Lemma [2Z2]] that F is a continuous function on X. Also F has
compact support since A’ has compact support; in fact, using supp A’ C B¢ x X it
follows that supp F' C B% 7, X%, and hence the sum in (2.55) remains unchanged if
we replace the summation range by P\ &; and since £ has asymptotic density zero,
we can change this further to P at the price of an o(1) error. Hence by Lemma 2.7

(2.56) lim J,(f,Th) = Cp/ Fdux.
p—0 X

Finally, using fstli—l Jpa N dydv = 1 it follows that [, Da(y,&)dy = 1 for every
& € R. Hence

T
CP/ Fdpx :CP// /ﬁECH’b)(f(T))ddedm(Qa
x sJo Jo

and the proposition is proved. ([l

The following lemma is a simple consequence of the assumption [P3].
LEMMA 2.23. For any bounded Borel set B C R?,
(2.57) lim lims(tle [vol xw]({(q,v) € B x St Q,(pt g, v)NEe = 0}) =o0.
p—

E—o0
ProoF. Fix y € R%™! and » > 0 so that © contains y + B4~!, and set & =
(c,y) € R% Then € contains = + (0,£) x B4~1. Noticing also Q,(q,v) — = =
Q,(q + D' R(v)~', v) it follows that the set considered in (Z57) is a subset of

{(g,v) e BxS{™" : Q,(p' g+ 2D, R(v)"",v) N((0,€) x BE ) =0}

Here ||zD, ' R(v)~!|| < p'~¢||z||; hence by Fubini the measure considered in ([Z57)
is bounded above by

M(p,§) := [vol xw]({(q,v) € B' x St 9, (pt g, v) N ((0,€) x BT = 0}),

where B’ is the ||z|-neighbourhood of B; this is still a bounded subset of R€.
Now note (0,&) x BI™! = 3,a-1,D;?, and Q,(q,v)D, = O,,(q,v). Hence the

assumption [P3] implies lim¢ o limsup,_,o M (p,§) = 0, and the lemma is proved.
O

PROOF OF PROPOSITION I8 Fix any A € P(T*(R%)) having a density A’ €
C.(T*(R%)) with respect to dq dv. By Proposition 2222 the left hand side of (2.30)
equals limyp, o0 lim, o J,(1,71). Also by Lemma [Z23]

(2.58) Tlim lim sup pH4—1) / I(1,(q,v) > TY) N (p?1q,v)dgdv =0,
170 p—0 T!(R4)
and hence recalling (2-46G]) we have

lim lim J,(1,7}) = lim pd(d_l)/ AN (p?1q,v)dgdv = 1.
=0 T (RY)

Ty —o00 p—0
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PRrROOF OF THEOREM [2:T9] It suffices to prove that for any given f € Cp(N, (X)),

,uE,A)(f) — u(f), or in other words,

(259)  lim pi@D / £(Q,(g,0)) N (g, ) dq dv = u(f).
p=0 T(RY)

Without loss of generality we may assume A’ € C.(T*(R%)). Now ([2359) follows by
taking 77 — oo in Proposition 2.22] and changing the order of limits; this is justified

by (2358). (]

REMARK 2.8. We used assumption [P3] for the derivation of Theorem 219 cf.
Lemma 2231 On the other hand, let us note that if the statement of Theorem
holds for some fixed u € P(N4(X)), ie. MEJA) 5 pwas p — 0 for each fixed
A € Poo(TH(RY)), and if furthermore u({#}) = 0, then the condition [P3] must hold.
Indeed, p({0}) = 0 implies that for any € > 0 there exists R > 0 such that

(2.60) p({Y : YN ((-R,R) x BL ' x 2) =0}) <e.

Also Theorem [ZT9limplies that p is invariant under translations and under {D; },~
(cf. the proof of Proposition [Z24] below); hence from (Z60) it follows that

(2.61) w(Ag) <e  with Ae ={Y : YN (3c x %) =0}, £ =2R%
But A is a closed subset of Ng(X); hence uEJA) — p implies lim sup,_,o ,uE,A) (Ae) <
11(Ag) < e. Applying this for A = (vol xw)(B)~*(vol Xw)|z and € — 0, it follows
that [P3] holds.

2.6. Properties of the point process =

In this section we prove some important properties of the point process = with
distribution p defined by ([Z37). Our first result is that p is invariant under the
group generated by translations, {D,} and SO(d — 1).

PROPOSITION 2.24. For any Borel subset A C Ny(X), * € R%, r > 0 and
ke SO(d—1),
1(A) = p(A +x) = n(AD;) = p(Ak).
PrROOF. To prove translation invariance we prove that for any f € Cy(Ns(X))
and & € R, if f,(Y) := f(Y + @) then u(fs) = p(f). Take any A € P(T*(RY))
with A’ € C.(T*(R%)); then by Theorem 2T,

p(fz) = lim F(Qu(p'q,v) + ) A'(q,v) dg dv.
P20 S ()

Writing z, = (z1,p%s,...,p%2q) we have Q,(p*~q,v) + = = Q,(p'~%(q —
x,R(v)~!),v) for almost all (g, v); hence we get

nife) = lim - F(Qp(p*~%q,v)) N(q + z,R(v)~*,v)dg dv,
= lim - F(Q,(p' g, v)) A'(q + z1v,v) dgdv = u(f),

where the second equality follows using lim, .oz, = z1e; and A’ € C., and the
third equality follows by again using Theorem [2.19
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The invariance under { D, } is proved by a similar argument using Theorem 219
and
Qp(pl_dq7 v)DT = QTP(pl_dqv ’U).

Finally let k£ € SO(d — 1) and let A be a Borel set in N, (X). It follows from
Theorem that the measure p does not depend on the choice of ® and c¢. In
particular, taking ¢ = 0 and replacing ® by Dk~! in ([Z.37), we have

n(A) = 07»/ / / DY Y n((0,7) x Dk =P and YV € A})
sJo Jog-!
x dbdr dm(s).
It follows from [Q1] and the definition of ) that ﬁgm)(B) = ﬁ(mk)( BE) for all
Borel sets B C Ng(X) and all ¢ € 3, & € R%. Hence the integrand in the previous
expression can be replaced by

AT ({Y Y Ne, =and Y € Ak}),
and substituting now b = byewk ! we obtain u(A) = u(Ak). O
Also the property [Q2] extends to E:
LEMMA 2.25. u({Y € Ny(&X) : F2; € R s.t. (Y N ({21} x RI7L)) > 1}) = 0.

PROOF. Let A = {Y : Jz; € Rs.t. (Y N ({z1} x R¥1)) > 1}. Then by
231), applied with ¢ = 0 for simplicity, it suffices to prove that & _(T b)(A) =0 for
all¢ € ¥, 7 >0, b € ®. However it follows from the definitions of A and ﬁgT’b) that

TP (A) = p ({Y : Y €A or YN ({0} x R x 5) ¢ {(0,9)}}).

Hence EET’ )(A) = 0 follows as a consequence of [Q2] and Lemma 2.17] (applied with
B = {0} x R x ¥\ {(0,6)}; recall also ¥/ = ¥; cf. (Z35)). O

Next we prove that the probability of = having empty intersection with a large
ball is small (just as for Z; cf. [Q3]).

LEMMA 2.26. For every e > 0 there is some R > 0 such that, for every € € R?,
p({Y € Ny (X) : Y NBYx,R) =0}) < e.

PROOF. By the translation invariance of p (cf. Proposition 2.24)), it suffices to
prove the claim for & = 0. Now by (231, our task is to prove

(2.62) hm// /—<C+T”> {Y eNy(X) : YNE& =0and Y NBE = 0})

R—o0

x dbdr dm(s) = 0.

However it follows from the definition of ﬁgm) and [Q3] that the integrand in the

last expression tends pointwise to 0 as R — oco. Hence (2.62)) follows by Lebesgue’s
Dominated Convergence Theorem, using the majorant coming from Proposition

2.1 O

Let N be the Borel o-algebra of N(X). The next proposition shows (when
applied with A = N,(X)) that the intensity measure of = equals ¢p - px, and
furthermore that the function X x A" — [0,1], ((z,s), A) — ﬁgm)(A) gives the Palm
distributions of = (cf. [34] Ch. 10]).
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PROPOSITION 2.27. For any Borel sets B C X and A C N4(X),

[#OnBauy) =cr [ EE) dedm(s)
A

(z,)EB

Proor. By ([2.37), applied with ¢ = 0, we have

/ £(Y 1 B) du(Y)

e / / / / — 0)#(Y N B) da™¥) (Y) db dr dm (<)

(2.63) = C7>/ / / I(Yig,) € A) I (Vi) N €y = 0)
2 JRooxD JN(X)

X #(Y(m,c) N B) dpg(Y) d dm(s).

Now assume B C (0,7) x © x X for some n > 0. Set ®' := D — D (this is an
open bounded subset of R4™1), and E,, := {Y € Ny(X) : Y N ((—n,0) x D) = 0}.
Then for every (x,¢) € B and Y € E,, if Y(5 ) € A then the integrand in the last
expression in (ZG3) is > 1. Also uc(Ey) > 1 — cpnvol(D’), by Lemma 20 (and

238)). Hence

/#YﬁB ) du(Y >C7)/ / (Yizo) € A) duc(Y) dx dm(s)
(x,5)eB JE,
> 079/ (ug({Y : Yiwo) € A}) — Cpnvol(i)')) dz dm(s)
(x,5)€EB

>cp / ™) (A) dz dm(s) — chn? vol(D') vol(D).
(xz,5)EB

On the other hand, for any € Ryg x ©, ¢ € ¥ and Y € N,(X), note that
(2.64) 4(Yiae) N B) < I((@,5) € B) + #((Y + @) B).

Using B C (0,1) x © x ¥ we see that every point in the intersection (Y + ) N B
must come from a point y € Y with 0 < y1 + 1 < n and (y2,...,yq) € D'. If the
integrand in ([2.63]) is non-zero then for this point y we also have y +x ¢ €,,; thus
Y+ x € B\ &,,, which forces 0 < z1 < 7. Hence

/#Y“B du(Y <C7>/ / (V) € A) dpg(Y) da dm(s)
(z,c)eB JNs(X)
+07>/ / #((Y + )N B) duc(Y) dz dm(s)
(0,m)xDxE J N,y (X)

< 07;/ 7™ (A) dz dm(s) + cn? vol(D)?,
(z,5)EB

where we again used Lemma [2.15]
Let us write

5(A, B) = /A H(Y 0 B)du(Y) — cp / 7 (A) de dm(s).

(z,5)EB
We have proved above that if B C (0,17) x © x ¥ then
(2.65) |6(A,B)| < c5n? vol(D) vol(D').
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However from the definition of ﬁé’”’ and the fact that p is translation invariant (cf.
Prop. 2:24), it follows that for any Borel sets B C X and A C N4(X), and any

x € R?,

(2.66) d(A+x,B+x)=6(A,B).

Using this relation it follows in particular that (2.65]) holds whenever B C (¢, c+n) X
D x ¥ for some ¢ € R. Furthermore §(A, B) is additive in the second argument, i.e.
d(A, UleBj) = Z?:l 0(A, B;) whenever By, ..., By are pairwise disjoint. Combin-
ing the last two facts one shows that for any n > 0 and k € ZT,if B C (0,kn)xDx%
then

(2.67) |6(A, B)| < kcpn? vol(D) vol(D).

Now given any Borel sets B C (0,1) x ® x ¥ and A C N4 (X), applying (Z67)
with n = 1/k and k — oo we conclude that §(4, B) = 0. Finally this relation is
extended to hold for general B, again using (Z.66]) and the additivity of 6(A, B)

with respect to B (which also holds for any countable collection of pairwise disjoint
sets By, Ba,...). O






CHAPTER 3

First collisions

As a first step in our proof of a limiting Markov process and limiting evolution
equation, we will prove a result on the limiting joint distribution of the free path
length, impact parameter and the mark of the scatterer which is hit when starting
from random initial conditions. The precise statement is given in Theorem [3.6 in
Section below.

Throughout this section we assume the hypotheses [P1-3] and [Q1-3] stated in
Section 2.3} we fix once and for all, a choice of a subset £ C P as in [P2], and we
furthermore assume, without loss of generality, that (2.35) holds.

3.1. The transition kernel

Our first goal is to define the transition kernel, which is the limiting density
function appearing in Theorem .6l We will identify R¢~! with the subspace {0} x
RI~1 of RY; in particular for x = (21,...,74) € R? we view interchangeably the
point @ (cf. @I9)) as (0,z2,...,24) or (z2,...,24). We extend ¢ — T, to a
map on X through (z,¢) — (2,¢)1 = (x1,s). Thus X; can be identified with
RI~1 x 3. We set

Q=BT x¥CAy
We endow X | with the measure
1
(31) Ho = —— VOle—l xXm,
Vd—1

where vg_1 = Vol(Bf_l). Note that uq restricts to a probability measure on Q. We
introduce the reflection map
(32) 1: X > X, Wz, z,5) = (21, —2,9) (r1 €R, z e R ceX).
Note that ¢ preserves X and €, and using our identifications we have i(x,¢) =
(—z,¢) for (x,¢) € X. Recall that 3 = (0,€) x B{™!, where in the following
¢ € (0,00]. Recall also the convention introduced in Section 25 that for A C R?
and B C X, we write “ANB” or “BNA” for BN (A x X). In a similar vein, we
may often speak of a point in X referring just to its R%-component; for example,
for (z,<) € X we may call the number x - e; “the ej-coordinate of (x,¢)”.

We now define the map
(3.3) z: Ng(X) = A:= (Rsg x Q) U {undef}

as follows. Given ¥ € Ny(X), let z = z(Y) be that point in ¥ N 3o which
has minimal e;-coordinate; if there does not exist a unique such pointEl then let

1i.e., if Y N 300 is empty or if there are two or more points in Y N 30 with minimal e-

coordinate.

43
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z(Y) = undef. Here “undef” is a dummy element not in R x Q and we provide A
with the disjoint union topology. The motivation for the definition of the map z is
that when working in the particle’s coordinate frame described at the beginning of
Section[IIl as p — 0, the scatterers are thin ellipsoids which approach codimension
one unit discs orthogonal to e, centered at the points of Q,(q,v). Hence, formally,
in the limit p — 0, the point z(Q,(g,v)) corresponds to the center of the scatterer
which the particle will next collide with.

LEMMA 3.1. The map z is Borel measurable, and puc({Y € No(X) : z(Y —x) =
undef}) = 0 for all z € R? and s € X.

PRrROOF. For any Borel subset B C RyoxQ and 0 < r < s, we set 3,5 := 35\ 3
and

Alr,s,B] == {Y € Ny(X) : Y N3, =0 and #(Y N 3,..) = #((Y N B)N3,.) = 1}.

Then 2~ 1(B) = UF_; N2y U, A[E kL B] which is a Borel subset of N(X).
Also z71({undef}) = N4(X)\ 271 (R x Q). Hence the map z is Borel measurable.
Next, using 30 + @ O BY(Rey + xD3', R)Dr (VR > 0) together with [Q3], (Z35)
and Lemma [Z9] it follows that u ({Y : (Y — )N 3. = 0}) = 0 for any = € R?

and ¢ € X. The second statement of the lemma follows from this fact and [Q2]. O

LEMMA 3.2. The distribution of the random point z(E. —x) in Rso % Q depends
continuously on (xz,s) € X, .

PROOF. Let C be the set of all Y € Ng(X) which satisfy z(Y) # undef and
Y N 030 = 0. Using Lemma Bl Lemma and (2.38), it follows that uc({Y :
Y —x e C}) =0 for all (x,¢) € X . Furthermore one verifies that the map z is
continuous at each point in C| i.e. 2(Y,) — z(Y) holds whenever Y,, = Y in N, (X)
with Y € C. In view of these observations, the lemma follows from the generalized
continuous mapping theorem, [35] Thm. 4.27]. O

Given w' = (x,5) € X, let us write xk(w’;-) for the distribution of the random
point ((z2(Ec — x)) in Rsg X §; thus for any Borel set B C Rsq x €,

(3.4) A((@,<); B) == i ({Y € Ny(X) 1 (=(Y — ) € BY).

By Lemma 25 and 2.30), (w'; B) < cppx(B) = cpvg—1 [ d€ dua(w) for every
Borel set B C Rsg x Q. We define k(w',-,-) to be the corresponding probability
density; that is, we define the function

(35) k:X| x R>0 X Q= [O,vadfl]

so that for each w’ € X, k(w’,-,-) is uniquely defined as an element in L'(Rsq x
Q,d¢é dpg), and k(W', B) = [ k(w',§,w) d€ duo(w) for all Borel sets B C Rxq x Q.

LEMMA 3.3. We have s(w';[§,00) X Q) = 0 as & — oo, uniformly over all
w' e X.

PRroOF. Using B¢(Re; + wD;zl,R)DR C 39pe + & (VR > 0) together with
[Q3], Lemma 29 and [238), we have uc({Y : (Y —x)N3:=0}) = 0 as £ — oo,
uniformly over all z € R% and ¢ € ¥'. O
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LEMMA 3.4. Let Cp(Rso % §2) be the space of bounded continuous functions on
Rso X Q, equipped with the supremum norm. The integral

(3.6) / Hwr(sdy)

depends continuously on (W', f) in X1 x Cp(Rsg x ).

PRrOOF. By Lemma[3.2 the integral in (3.6]) depends continuously on w’ for any
fixed f € Cp(Rso x Q). Now the desired conclusion follows by also noticing that for
fixed w’, the expression in ([B.6]) is a bounded linear functional of f € Cp(Rs¢ x §2)
of norm at most 1. (|

REMARK 3.1. In terms of k, Lemma 3.4 says that the integral
[ fewk &w) ¢ dunw)
RsoxQ

depends continuously on (w’, f) in X x Cp(Rsg x Q).

We next introduce the corresponding notions for the macroscopic limit point
process = introduced in Section Recall that we write pn € P(Ng(X)) for the
distribution of Z. The result of Lemma [3.1] carries over to the present situation:

LEMMA 3.5. We have u({Y € Ng(X) : z2(Y) = undef}) = 0.

ProOF. Using 3., O BY(Re1, R)Dg (VR > 0) together with Lemma 226 and
Prop. it follows that u({Y : YN 3. = 0}) = 0. The lemma follows from this
fact and Lemma 225 O

Let us write k& € P(Rs x §2) for the distribution of the random point ¢(2(Z))
in Ryg x 2. (The “g” stands for “generic initial condition”.) Thus for any Borel
set B C Ry x £,

(3.7) k&(B) := u({Y € Ns(X) : «(2(Y)) € B}).
By Proposition 2.27] (applied with A = N (X)),

K(B) < cppn(B) = cpvacs [ d€duaw)
B
for every Borel set B C R+ x (2. Hence as before, we can consider the corresponding
probability density
(38) kS : R>Q x Q — [0, Cp’l)d_l],
so that k&(B) = [ k8(£,w) d€ dua(w) for all Borel sets B C Ry x Q. Note that
k& is uniquely defined as an element in L'(Rsq x Q, d€ dug).

3.2. Limit theorem for the first collision

From now on, we will say that a scatterer B%(q,p) (q € P) is separated if
llg’ — q|| > 2p for all ¢ € P\ {q}. Recall that

w(p) = TH(K9) U T (OK))out-

Let to(1;p) be the set of those initial conditions (q,v) € w(p) which lead to a
collision with a separated scatterer in finite time, viz., those (q,v) € w(p) which
have 71(q,v;p) < oo and for which g 4+ 71(q,v;p)v lies on the boundary of a
separated scatterer. For (g, v) € w(1;p) we write ¢/ = ¢V (q, v; p) for the center
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of the scatterer causing the first collision, and let w; = w,(q,v;p) € B{~! be the
normalized impact parameter, defined through w; := (u; R(v)) 1, where u; € S9!
is the point given by q + 71(g, v; p)v = g™V + puy. We then set:

w1 = wi(q,v;p) == (wi,s(qM)) € Q.

Let U be an open subset of S‘li_1 and B € Cy(U,R%). For g € P and v random
in U, we will consider a point particle starting at the point

(3.9) q(v) = q,5(v) =g+ pB(v).

To avoid pathologies, we assume that U, 3 are chosen such that (3(v)+Rsov)NB{ =
() for all v € U. We set

(3.10) wh  ={vel : (q,5(v),v) ew(l;p)}.

The following theorem gives the joint limit distribution of wi(g(v),v;p) and the
normalized free path length p¢=17 (q(v), v; p).

THEOREM 3.6. Let U be an open subset of S‘f_l; let K be a relatively compact
subset of Cp(U, R?) such that (B(v) +Rsov)NBE =0 for all B € K, v € U, and let
A € P (S971) be such that NU) = 1. Then for anyT > 1 and f € Cy(U xRsoxQ),

(3.11)
/mﬁ f(v,p4 7 71(g,,5(v), v p), wi(g, 5(v), v; p)) dA(v)

— /U/O /Qf(’v,f,W)k(((ﬁ(v)R(v))J_7g(q)),§7w) dpia(w) d€ dA(v)
as p — 0, uniformly over all q € Pr(p) and B € K.

REMARK 3.2. Taking f =1 and using [; o k(W' & w)d{dpa(w) =1 (V')
one sees that the theorem implies in particular that )\(mf; p) — 1 as p — 0, uniformly
over all ¢ € Pr(p) and B € K.

REMARK 3.3. Let K be as in Theorem [3.6, and let K be the closure of K in
Cp(U,R9); this is a compact subset of Cy(U,R?), and clearly every 3 € K satisfies
(B(v) + R=gv) N B{ = for all v € U. Hence when proving Theorem 3.6 we may
just as well replace K by K from the very beginning. Thus, in the following we
will assume that K is compact.

To prepare for the proof of the theorem, we introduce a slightly modified version
of the map z from Section Bl Let 0 < p < 1. For each € 3, we set

(3.12) &o(x) =inf{€ € Rso @ @ € e1 + BID,} € Rao.

Note that BgDP is the ellipsoid {(z1/p%)? + 23 + -+ + 2% < 1}; hence we indeed
have &,(x) € R>g for each & € 3, with {,(x) = 0 if and only if € 3 ﬁB_gDp.

DEFINITION 3.1. The map

(3.13) 2, Ny(X) = A = (Rog x Q) U {undef}
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is defined as follows. For given Y € Ng(X), if Y N3 ﬂB_gDp = () and if there exists
a unique point (x,¢) in ¥ N (35 x X) which minimizes {,(x), and if furthermore
this point satisfies

(3.14) Y N (z+ By,D,) = {x},
then set z,(Y) := (x,¢); otherwise set z,(Y) = undef.

We prove in Lemma B8 below that z, is measurable. The motivation for the
definition of 2, is that both 71(q, g(v), v; p) and wi(g, g(v), v; p) can be expressed
as simple functions of z,(Q,(g, B, v)), where we recall that the point set Q,(q, 8, v)
was defined in (2I8). The precise statement is as follows.

LEMMA 3.7. Let B € K,qe P,v €U, pe(0,1), and assume that dp(q) >
(1+||6||)p and (mvg) = ZP(QP(quvv)) 7£ undef. Then v € m'g,pa pdilTl(qp,ﬁ('v)a ’U,p) =
5,7(13) € Rxo, and wl(Qp,ﬁ(v)vv; p) = (—x1,5).

Recall that we have provided C, (U, R?) with the supremum norm; thus || 3| =
supyey [|B(w)-

PROOF. The assumptions (B(v) + Rxov) N Bf = ) and dp(q) > (1 + ||8])p
imply that either q(v) € K, or else g(v) lies on the boundary of the scatterer

B%(q, p), which is separated, so that q(v) € T'(9K,)out. Hence (g(v),v) € w(p).
Set Y = Q,(q,B,v), so that (z,¢) = 2,(Y) € Ry x Q. Also set

q:= mD;lR(v)_l + q(v).

Then g € P\ {q} and ¢(q) = ¢, since (z,5) € Y = Q,(q, 3, v); cf. 21I3). It follows
from z,(Y) # undef that the line segment {e; : & € [0,&,(x)]} is disjoint from
all the open ellipsoids =’ + BgDP for (x',¢") € Y, but {e; € ¢ + BgDp holds for
each £ > &,(x) which lies sufficiently near ,(x). Applying the affine linear map
y = yD,'R(v)! 4 q(v), using also (8(v) + Rsov) N B =0, it follows that

ri(q(v),vip) = p' %, (x) and  gM(q(v),v;p) =q.

Similarly, (3:14) implies that the scatterer associated to q is separated, i.e. ||g—p|| >
2p for all p € P\ {q}. Hence v € mgp. Also q(v) + v = ¢V + puy implies
wy = p~ (v — fBD;lR(”)_l), and so w1(q(v),v;p) = (w1 R(v)) L = —x . O

LEMMA 3.8. For each 0 < p < 1, the map z, : Ns(X) — A is Borel measurable.

PRrROOF. For n € ZT and m € Z% we let Cpm C R? be the cube Chm =
n~Y(m + [0,1)%), and set C¥h = Cpom + B4,D,. For any bounded Borel set
V C RY, let
S V) = U, Ny Nyneza{Y € No(X) : YNV NCrm =0 or

#Y NV N Crm) =#Y NCYL)}.
This is clearly a Borel set in Ny(X'), and one verifies that Y lies in S (V) if and
only if Y N (y + ngDp) = {y} for every point y € Y N'V. Next for any Borel set
B CRypxQand 0 < r < s, we set 38 = {z € 30 : &p(x) <1}, 3575) :32”)\35”),
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and
APr s Bl :={Y e Ny(X) : Y N3¥ =0,
AY N3 =#(YNB)N3Y) =1,  and Y € S (30)}.

Then z;l(B) = U Ny UzozlA(”) [%, %,B] Hence z;l(B) is a Borel set in

Ny(X). Also z,'({undef}) = N (X) \ z,'(R>o x Q) is a Borel set. Hence the
lemma is proved. ([l

For 0 < p < 1, define the map F, : A — A through

Fy(z) = {L(é.p(z)vzl) if z€Rsgx§

(3.15) }
undef if z = undef.

Let U, B, A be given as in Theorem 3.6l For v random in (U, A7), we let nf,f’,;” €
P(U x A) be the distribution of (v, [F,02,](Q,(g,3,v))) and let nPN ¢ P(UxA)
be the distribution of (v, [t 0 2](E¢ — (B(v)R(v))L)), with E¢ independent from v.
The key step in the proof of Theorem is to show that nf p’)‘) converges weakly

BN s p — 0, uniformly over g € Pr(p) and 8 € K. We will establish this in

<(q)
Lemma [3T11 As a first step, we verify in the following lemma that ngﬁ A depends

continuously on ¢ and 3.

ton

LEMMA 3.9. The map ¥ x Cp(U,R?) — P(U x A), (s,3) — 0P is contin-
uous.

Proor. This is a consequence of Lemma B2l Indeed, given sequences 3,, — 3
in Cy(U,R?) and ¢, — ¢ in ¥, and a function f € Cy(U x A), our task is to prove
that
(3.16

)
/"j/ f (0, [0 2(Y = (B, (v)R®)) 1)) dpe, (Y) dA(v)
U JN.(x)

—>/U/S(X)f(v,[Loz](Y—(ﬁ(v)R(v))L)) dpc(Y) dA(v) as 1 — oo

Call the inner integral in the left hand side g, (v), and the inner integral in the right
hand side g(v); then Lemma implies that g,(v) — g(v) for each fixed v € U.
Furthermore |g,,(v)| < sup|f| and |g(v)| < sup |f] for all n and v. Hence (3.10)
follows by Lebesgue’s Dominated Convergence Theorem. O

In the proof of Lemma [3.11] we will apply the continuous mapping theorem for
the maps F, o z, : Ng(X) — A with p — 0. For this application we will need the
following continuity fact.

LEMMA 3.10. Let Y,Y1,Ys,... € Ns(X) and p1,p2,... € (0,1) be given such
that Y, = Y and p, — 0 as n — oo. Assume furthermore that z(Y) # undef,
YNO03o =0, andy-e1 # z(Y)- ey forally e Y\{z(Y)}. Then F, (2,,(Yn)) —
(z(Y)) in A.

PROOF. Let £ = z(Y) - e; > 0. Because of the assumptions, there is some
€ > 0 such that

YN (7 xE) = {=(V)},
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with
V= ((—4e, & +4e) x B U (€ —4e, £+ 4e) x B{).

Since V is open and z(Y') € V x X, it follows that #(Y,, N (V x X)) = 1 for all large
n, and furthermore if z,, is the unique point in ¥;, N (V x X) then 2z, — 2(Y) as
n — oo. It follows that for n sufficiently large we have z,, (Y;,) = 2, (here the fact
that V contains (£ — 4e,& 4 4¢) x B{ ™! is used to guarantee that z,, satisfies the
condition [BI4)). Hence F, (z,,(Yn)) = F,, (2n) = t(2(Y)) as n — oc. O

LEMMA 3.11. We have né o A v, 77(? ))
and B € K.

as p — 0, uniformly over all q € Pr(p)

REMARK 3.4. Recall that we assume that K is a compact subset of Cy(U, R%);
cf. Remark B3} thus {77('6’ : ¢ € X, 3 € K} is a compact subset of P(U x A),
being a continuous image of the compact set ¥ x K (cf. Lemma [B9). Hence the
general notion of uniform convergence from 2I)-(2.2]) applies.

PROOF. Let p, € (0,1), q,, € Pr(pn), B,, € Co(U,R?) for n = 1,2,..., and
assume that p, — 0, ¢(g,,) — ¢ and 8,, — B as n — oo, with ¢ € ¥ and 8 € K.
We then claim that 771(12753) = 7755 M as n = 0. By the same argument as in
Lemma (using also Lemma [39]), this will imply the lemma.

Consider the maps
Hn : Sfil X NS(X) — Sfil X A’ Hn(’”’ Y) (v Fpn (zpn (Y)))
and
H:S{T X Ny(X) =891 x A, H(w,Y) = (v,u(2(Y))),

and note that 77((12,,,3) = Uszn,pn) o H;! and n(ﬁ)‘) = ﬁ( A o H~1, after extending

by zero from P(U x A) to P(S¢7' x A). We have u(57pi) s ﬁgﬁ”\) by Lemma
211l Let C be the set of all Y € N,(X) satisfying z(Y) # undef, Y N 93, = 0,
and y-e; # z(Y)-e; for all y € Y\ {2(Y)}. Then by Lemma BI0 for any
v,V1,Va,... € S‘li_1 and Y,Y1,Ys,... € Ns(X) subject to Y € C and (v,,Y,) —
(v,Y) as n — oo, we have H,(v,,Y,) = H(v,Y) as n — oo. Furthermore, using
the definition of u('B’ ) together with [Q2], [Q3] and Lemma 215 one verifies that

éﬁ ) (C) =1 (ct. also the proof of Lemma B)). Now the desired convergence
follows by the continuous mapping theorem, [35] Thm. 4.27]. O

We noted in RemarkB.2that one consequence of TheoremB.Glis that A(f ) —
1 as p — 0, with uniformity in g and 3. Still, it is convenient to prove this particular
fact before completing the proof of the theorem:

LEMMA 3.12. A(w# ) = 1 as p — 0, uniformly over all ¢ € Pr(p) and B € K.

PROOF. Set B = U x {undef}. Then ngﬁ)‘) (B) = néﬁ”\)((?B) =0 for all ¢, by
Lemma B} hence 77('6 )‘)( B) — 0 uniformly as p — 0, by Lemma [B.TT] and Remark
2.1l Let C :=supge ||B]); this is a finite number since K is compact. By Lemma
216 for all sufficiently small p we have dp(q) > (1 + C)p for all g € Pr(p). Now
the desired conclusion follows via Lemma B.7 O
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PROOF OF THEOREM Let f € Cp(U xR x Q) be given. We extend f to
be zero on U x {undef}; then f € Cp(U x A). By Lemma BIT and Lemma 2.3 we

have néﬁ;)‘) (f)— né?q;)(f) — 0 as p — 0, uniformly over all g € Pr(p) and 8 € K.

Here

BN (f) = / £ (0, [Fy 0 2,)(Qu(g, B,0))) dA(v).
U

Now as in the proof of Lemma BI2 A({v € U : 2,(Q,(q,B,v)) # undef}) — 1,
uniformly as p — 0; and for p sufficiently small, z2,(Q,(q,3,v)) # undef implies
v ew?  and

[F, 0 2,](Q,(q, B,v)) = (p* ' 1(q(v), v; p), w1 (q(v), v; p)).
Hence we conclude

/m L . p" 7 n(a(), v p) wi(g(v). vi p)) dA®) =0 () = 0,

a;p

uniformly as p — 0. Also,

0PN () = / / f(v, [0 2)(Y — (B)R()) 1)) dyss (Y) dA(v)
U JNs(X)

- / / / 0,6 )R ((B)R©)) 1<), £,w) dE dugy(w) dA(v),
UJQJo

by the definition of the transition kernel k(w’, £, w) in Section Bl Hence we obtain
G11). O

We next give a corollary to Theorem which will be useful later when we
prove that the transition kernel k(w’, £, w) possesses a time reversal symmetry; cf.
Proposition below. In order to extract information about k(w’,&,w) from
Theorem [3.6] it is convenient to choose 3 to be the function

(3.17) Bu(v) = uR(v)™" + (1 - ul*)"/?v,

where u € B! is fixed. Note that B, (v) € S{™! and (8, (v) + Rsov) N B¢ = )
Ba,
a,

for all v € S‘f_l. To simplify notation, we set q,, ,,(v) = 4,3, (v) and oy , = 1og%.

COROLLARY 3.13. For any fized f € Co(X x BI™! x S§7! x Rug x Q) and
A e P (S¢7Y),

S [ 6 (@) w0 (0 0:0). 010 (0). )

qeP
xdA(v) du

01 e [ [ [ S ks g )
Xdpig(w) d€ dN(v) du dpx (p)
as p — 0.

PROOF. Take vy € S9! so that the function R is continuous on U := S§~1\
{vo}. Then K = {B,py : u € B{~} is a compact subset of Cp(U,R?) and
(B(v) + Rugv) N B = () for all B € K and v € U. Furthermore, using f €
C., the family of functions {f(p,u,-,-,-) : p € X, u € B{'} is a compact
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subset, of Cb(Sﬁl*1 x Rsp x Q), and by restriction we obtain a compact subset of
Cp(UxR5xQ). By a standard subsequence argument the convergence in Theorem
is seen to be uniform also over such a compact family of test functions. Hence,
using also (3,,(v)R(v))1 = u, we obtain

(319) /u f((pd_l(bg(q))?uvvvpd_lTl(qp,u(v)vv;p)vwl(qp,u(v)vv;p)) d)‘(v)

Lo s, ) K s(@), ) din () d d(0) 0.

as p — 0, uniformly over all ¢ € Pr(p) and w € B{~'. This holds for any fixed
T; we apply it with T so large that the support of f is contained in B4 x ¥ x
B{7t x 8§71 x Rog x Q; then the left hand side of (3IJ) is identically zero when
llgll > Tp'~?; hence the convergence in (B.19) is in fact uniform over all g € P\ €.
Using also sup |f| < oo, [P1], and the fact that £ has asymptotic density zero (cf.
[P2]), it follows that up to an additive error which tends to zero as p — 0, the left
hand side of (BI8) equals

ey | . / . | [ asta) uv g kus(@).0)

qeP
xdpg(w) d€ d\(v) du.

Using here Remark B0l and Lemma 277, we obtain the limit stated in 8I8). O

3.2.1. Macroscopic initial conditions. The following is the analogue of
Theorem for macroscopic initial conditions. Let us write 20(1; p) for the set
ro(1; p) in macroscopic coordinates, i.e. 2(1; p) = {(q,v) € T(R?) : (p'~?q,v) €
w(1;p)}.

THEOREM 3.14. For any A € Poo(TH(RY)) and f € Cp(TH(R?) x Ry x Q),

lim fa,v,p" ' ri(p' g, v p), wi(p' g, v;p)) dA(gq,v)

P=0 Jam(15p)

. — e d d€ dA .
(3.20) / - | fav gt (€ ) dune) d dni.v)

REMARK 3.5. In particular the theorem implies that A(20(1;p)) — 1 as p — 0.
(Indeed, take f =1 in (3.20).)

The proof of the theorem follows the same lines as the proof of Theorem [3.0]
with the key input being the macroscopic limit result of Theorem[2.19 In particular
we use the same maps z, z, and F), as in the previous proof. The following is the
analogue of Lemma [3.7] for start from an arbitrary point in K5 (cf. (LG)).

LEMMA 3.15. Let p € (0,1), g € K, v € S4=1 and assume that (z,5) =
2,(Q,(q,v)) # undef. Then (q,v) € w(l;p), p? '7i(q,v;p) = &(x) > 0, and
wi(q,v;p) = (—L,5).

PROOF. Very similar to Lemma [3.7] O

Let A be as in Theorem B.14] and let = be the macroscopic limit point process
defined in Section 5. For (g,v) random in (T*(R?), A), let n,(,A) € P(TY(RY) x A)
be the distribution of (g,v, [F, 0 2,](Q,(p' ~%q,v))), and let n*) € P(T'(R?) x A)
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be the distribution of (g, v, [t0z](Z)), with E independent from (g, v). The following
is the analogue of Lemma B.11]

LEMMA 3.16. We have n,(,A) W) as p— 0.

PRrROOF. This is similar to the proof of Lemma BIIl For (gq,v) random in
(T*(RY), A), let ﬁf,A) € P(T'(R%) x X) be the distribution of (g,v, Q,(p'~%q,v)).
Then Theorem 219 implies (via a decomposition argument, similar in flavor to the
proof of Lemma 2.10) that

ﬁgA) s Axp o as p—0.
Consider the maps

H,: T'(R?) x Ny(&x) — T'R?) x A, H,(q,v,Y) = (q,v,F,(2,(Y)))

and

H:THRY) x Ny(X) - THR?Y) x A, H(q,v,Y) = (q,v,u(2(Y))),

and note that néA) = ﬁE)A) o Hp_1 and ) = (A x p) o H='. Let C be the set of
all Y € N,(X) satisfying 2(Y) # undef, Y N 93 = 0, and y-e; # 2(Y) - e1
for all y € Y\ {z(Y)}. Then by Lemma BI0 for any ¢,¢,ts,... € T'(R?) and
Y, Y1,Ys,... € Ny(X) subject to Y € C and (¢,,Y,) — (¢,Y) as n — oo, we have
Hy,(t,,Y,) = H(t,Y) as n — oo. Furthermore using Lemma 225 Lemma
and Proposition 2.27] (with A = N4(X), B = 03 X X) one verifies that u(C) = 1.
Now the desired convergence follows by [35, Thm. 4.27]. O

LEMMA 3.17. (Cf. Remark[33.) A(Q0(1;p)) — 1 as p — 0.

PROOF. Set B = T'(R?%) x {undef}. Then 5™ (B) = 0 by Lemma B35 hence
n,()A) (B) = 0 as p — 0, by Lemma B.168 and now the desired convergence follows
using Lemma [3.15 O

PROOF OF THEOREM 314l Let f € Cyp(TH(R?) x Rug x Q) be given. Extend
f to be zero on T'(R?%) x {undef}; then f € Cy(T*(R%) x A). Now by Lemma 316},

A _
77,() )(f) — W (f) as p — 0. Also A({(g,v) : 2,(Q,(p'~?q,v)) = undef}) — 1,
by the proof of Lemma BI7 Using this together with Lemma B8] the theorem
follows. O
3.3. Relations for the transition kernels
3.3.1. Symmetries.
LEMMA 3.18. For any fivzed w' € X and R € SO(d — 1), we have
k(Ww'R,§wR) = k(W' {w), k(¢ wR) =k ({ w)
for almost all (£, w) € Rug x Q with respect to the measure d€ duq(w).

PROOF. The first statement follows from the definition of k and the SO(d —1)-
invariance of u¢ (cf. [Q1]). The second statement follows from the definition of k8
and the SO(d — 1)-invariance of p (cf. Proposition [224]). O

Next we prove a time reversal symmetry for k, using Corollary B.13
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PROPOSITION 3.19. Fiz any R € O(d — 1) with det R = —1. Then
k(w' € w) = k(wR,§ w'R)
for almost all (W', &, w) with respect to the measure dug(w’) d€ dug(w).

PROOF. Let f € Co(XxBI xST xR oxQ) and A € P(S{71). Let P, be the
set of g € P corresponding to separated scatterers, i.e. P, = {g € P : dp(q) > 2p}.
Inspecting the proof of Corollary and recalling Lemma we see that the
summation in the left hand side of ([BI8) may be restricted to g € P, without
changing the limit. Using also the fact that q(l)(qpﬁu(’v), v;p) € P, forallv € oy
we obtain

im p%(d-1) u (1) N
0 S S [ (e e, and (g, 0000 = )

qcP, q'cP,
(321)  xf((p"q,5(q), w,v, p" 71(q, 0 (v), V5 p), w1(q, 4, (v), v; p)) dudA(v)

—cpvis [ [ [ [ ol 06 b €. din(w) d€ N() dun(w),
QJsi=tJo Ja
where
fo((’u,C),’U,g,W) = iy f((il), <)7 u,v,{,w) de.
Let p € (0,1) be fixed. Given q,q’ € P, and v € S{™?, we set
Ulg,q',v] ={u € B‘li_l v €y, and q(l)(qmu(v),v;p) =q'}.

Also set K, = R(v)"'R(-v). Given any u € Ulq,q,v] we set v/ :=
wl(qpﬁu('v),v;p)Kv; also write 71 = 71 (qpﬁu(v),v;p) and w; = wl(qpﬁu(v),v;p).
Then by the definition BI7), B, (—v) is the unique point in S{~* satisfying
By (—v)R(w)), = w'K_,, = wy and B, (—v) - v < 0; hence by the definition
of wy we have q,, ,,(v) +T1v = ¢’ + pB, (—v) = q, ,,,(—v), and thus also q,, ,, (v) =
q), . (—v) — mv. It follows that u' € Ulq’, q, —v], T1(q), ,,,(=v), —v; p) = 71, and

w1(q), (—v), —v;p) = (B (V)R(—v))L = (uKy) L = uK,.

The map u — u’ := wi(q, ,(v),v; p)K, from Ulg,q',v] to Ulg’,q, —v] is clearly
injective, and it follows from the above considerations that the composition of
this map with the corresponding injection u' +— wi(q, . (—v), —v;p)K_, from
Ulq',q,—v] to Ulg, q’,v] is the identity map. Hence both these maps are in fact
bijections, and inverses of each other. Note also that Lebesgue measure du corre-
sponds to du’ under the bijection. Hence the left hand side of (B2I]) equals

NS5 [ [ Aot =)

qeP, q¢'eP, 'S
(322) </ ((0"'aV,5(@D)), wiK o, v, M1, (WK -0,5(q) ) du’ dA(w),

where now ¢ = q(l)(q;)yu,(—'v), —v;p), 1 = T1(q),  (—v), —v;p) and wy =
w1(q), ., (=), —v; p). Using the fact that qV e P, forall —v € oy, , the summa-
tion over g in (3:22)) may be removed, keeping only the condition —v € mg/l) , in the
indicator function. Furthermore in the first argument of f in (3:222)), we may replace

p¥1qM by p?1(q' — mv). Indeed, using ||gV) — (¢’ — T1v)|| = p and f € C. we
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see that the error in the integrand caused by the replacement is uniformly small;
and hence by [P1] the error caused in the total expression tends to zero as p — 0.

Substituting also —wv for v, writing X for the corresponding probability measure on
S971 we conclude that [B22) equals

1 d(d—1) s d—1 d—1 .
;%p Z/d 1/u f((p qag(q))a u, v, p Tl(qp7u(’l)),’l},p),

qcP By q,p

(3.23) w1(q,,,,(v),v;p)) dA(v) du

where
F@9), w v, € (w,6)) = f (@ +6v.), Wy, v, & (WKL),

Clearly ]76 Co(X x Bf‘l X Sfl X R x Q); hence Corollary 313 applies, and we
conclude that [323)) equals

o [ [ ] e g ks 6

x dyiey (w) d€ dX(v) du dpx (p),

and integrating out the R%component of p and changing variables appropriately,
we get

(3.24)
epva 1/0/8d T A 0,60) R, K din () d d0)dn ()

Finally, note that for each v € S¢~! we have K,, = ( 0 K, ) for some K, € O(d—1)

with det K], = —1; thus R71K/ € SO(d — 1), where R is fixed as in the statement

of the proposition. Also by our identification of R4~ x ¥ with {0} x R¥™! x ¥ we

have wK, = wK] for all w € Q. Hence by Lemma B.I8 for all v and w’ we have
k(wKy, &, w' Ky) = k(wR, &, w’'R) for almost all (§,w’). Hence ([24) equals

CpUG— 1//Sd 1/ /fo w v, & w)k(wR, &, W' R) dug(w) dé dA\(v) dug(w').

Summing up, using also an obvious surjectivity property of the map f — fo,
we have proved that the last expression equals the expression in the right hand side
of (B2I)), for every fo € C.(Q X Sil*l X Rso x Q). The proposition is an immediate
consequence of this fact. O

3.3.2. Expressions in terms of Palm distributions. We will now show
that if =¢ has constant intensity measure EZ. = cpuy (as is true in all of the
examples which we consider in Section[]), then the transition kernel k can be given
explicitly in terms of the Palm distributions of =.

For any ¢ € ¥ such that EZE. = cpux, we let v be a version of the Palm
distributions of Z.. Recall that this means that v is a function X x N' — [0, 1],
where N is the Borel o-algebra of Ns(X), such that vc(a, A) is Borel measurable
in x € X for each A € NV, is a probability measure in A € N for each € X, and
for any Borel sets B C X and A € A one has

(3.25) /A 4(Y N B)due(Y) = cp /B v, (4, A) dyu (g).
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Cf. [34] Ch. 10).

PROPOSITION 3.20. Let w’' = (z/,¢') € X\ be given, and assume that E¢: has
constant intensity measure E=. = cpux. Then the relation

(3.26) k(o' & w) =va—1cp e ((& o' —x,¢), {Y € Ny(X) : YN (3e+a) =0})
holds for almost every (&, w) = (&, (x,5)) € Rsg x Q with respect to the measure
€ dpigy(w).

PrOOF. By [34] Lemma 10.1], and using our assumption that EE. = cpux,
we have for any Borel measurable function f : X x Ng(X) — R>¢, and any Borel
subset U C X,

(3.27) / > fyY)dpo (Y —%// fy, Y)ve (y,dY) dux(y).
s(X) yeuny Ns(X)

We apply this relation with U = «(B) + &’ for a given Borel set B C Rso x €, and
f as the indicator function

f,Y)=I((Y —2') N3y, =0)  (whereys =y-e1).

Then the integrand in the left hand side of [B.27) equals I(2(Y — ') € «(B)) for
each Y with z(Y — x’) # undef. In the right hand side of (B21) we substitute
= (&, —x,5) € R x R x . Using (34) and Lemma [3.1] we then get

w((@',<'): B) = epuas /B v (a2’ — ,9), Y € Ny(¥) : (Y —2') "3y, = 0})

xd€ dpg(z,<).

Using the fact that this holds for every Borel set B C R+ X €2, and comparing with
the definition of k(w’, &, w), we obtain (3.:26). O

The same technique also leads to the following formula for the “generic” tran-
sition kernel k5:

PROPOSITION 3.21. For almost every (£, (x,s)) € Rsg x Q,
KE(E, (@) = va—reppc({Y 2 Y N (3 — (€, —x)) = 0}).

PRrROOF. By Proposition 2.27, = has constant intensity cpuy, and a version
v: X xN —[0,1] of the Palm distributions of = are given by v((x,s), A) = _(m)(A).
Hence by the same argument as in the proof of Proposition [3.20] we get

kg(& (:I},C)) = Vd—-1Cp V((§7 —:I},C), {Y YN 35 = 0})
= Vq—1Cp ﬁgg’im)({y :Yn 35 = @})
=va_1cp pc({Y : Y N (3e — (&, —=)) = 0}).

PROPOSITION 3.22. For almost every (§,w) € Ry X Q,

kg(é',w) = Vg—1Cp /500 /Q k(w/7§/,w) d/LQ(w’) dé’
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PROOF. Fix R € O(d — 1) with det R = —1, and set K = (' %) € SO(d).

We then note that (3¢ — (£, —x))K = 3¢ + xR, and hence by Proposition B.21] and
Lemma [ZT4] for almost every (&, (x,¢)) € Rsg x © we have

KE(E, (2,6)) = vamiep ps({Y + (Y —2R) N 3¢ = 0})

(3.28) = V4 1C7>/ / ((xR,<),&", ') dua(w') d¢’
= Vg_1C k "W'R)d " de¢'
. mL | k(@R R) dun(e) d'

where we used the definition of k, and then used the fact that w’ — W'R is a
diffeomorphism of 2 onto itself preserving the measure pg. Now the desired formula
follows by also using Proposition [3.19] O

The following corollary shows that £ = (vg_jcp) ™! (cf. (LI0)) equals the mean
free path length for the particle dynamics in the Boltzmann-Grad limit.

COROLLARY 3.23.
/ / € k(o €, w) dpg (') dE dug(w)=
QJo Q

PROOF. We have [} [, k8(&,w) dpa(w) d€ = k9(Rso x Q) = 1. Substituting
the formula from Proposition [3.22] into this relation, the corollary follows. O

1

Vd—1Cp

~z

COROLLARY 3.24. There is a representative of k& which is continuous on all
Rsg x Q and which satisfies

k8 (0,w) := ghi% k8 (€, w) = va—1cp, Yw € Q.

PrROOF. Fix R € O(d — 1) with det R = —1. As in the proof of Proposition
we have

(3.29) k&(¢, w) = vg_1cp /£ h /Q k(wR, ¢ w'R) dug(w') d¢’

for almost all (§,w) € Rsg x 2. Now fix the representative of k& for which (3:29)
holds for all (§,w). Then k® is continuous, as follows from Lemma and the
boundedness of k (cf. (33). Using the boundedness of k we also obtain

lim kg(g, w) = Vd—1Cp / / k(wR, f/, w’R) d,ug(w’) dél = VUd—1Cp,
£€-0 Reo JQ

where the last equality holds by the O(d — 1)-invariance of ug and since k(wR, -, -)
is a probability density. (I

3.4. Scattering maps

We now describe the general scattering process which we will allow in the state-
ment of our main results on the limit distribution of the sequence 71, v1, 72, vo,. ..
(cf. Theorems@ I and A6l below). As in Section[[.2] the scattering process is defined
by a map ¥ :S_ — S, where

S_:={(v,b) € S{" xS{7" : v-b <0}
and
Sp={(v,b) €SI xS w.-b>0}
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are the sets of incoming and outgoing data, respectively. We write ¥q(v,b) €
S9=1 and Wy(v,b) € S¢7! for the projection of W(wv,b) onto the first and second
component, respectively. We assume that ¥ satisfies the following conditionsf]

(1) U is spherically symmetric, i.e., ¥;(v,b)K = U,;(vK,bK) for all K € O(d),

J=12
(ii) ¥y(v,b) and PUs(v,b) are contained in the linear subspace spanned by v and
b.

(iii) ¥ : S_ — Sy is C' and for each fixed v € S¢~! the map ¥;(v,-) is a C'
diffeomorphism from {b € S{~! : v -b < 0} onto some open subset of S{~".

As we will explain in Section [5.4] the above conditions are satisfied for many stan-
dard choices of scatterers described by a Hamiltonian flow with a compactly sup-
ported potential.

We introduce some further notation associated to the scattering map. We will
write ¢(u,v) € [0, 7] for the angle between any two vectors u,v € R%\ {0}. Using
(ii) it follows that

(3.30) Uy (v, —v) = sg - v for all v € 8¢,

where the constant sg is either 1 or —1. It then follows from (i) and (iii) that
there exists a constant By € [0,7] such that for each v € S{™*, the image of the
diffeomorphism ¥y (v, -) equals

(3.31) Vo :={ue S9! . sy - (By — o(u,v)) > 0}.

Let us write B, : Vi, — {b € S¢™! : v.b < 0} for the inverse map. Then 3,
is spherically symmetric in the sense that B, (uK) = B (u)K for all v € S{77,
u € Vy, K € O(d), and in particular 3, (u) is jointly C' in v, u. We also define

(3.32) B (u) = Uy(v, B, (u)) (v e S‘li_l, u € Vy).

The map 37 is also spherically symmetric and jointly C* in v, w. Note that for any
given v,vy € S¢7!, there exist b,b, € S{~! such that ¥(v,b) = (v,,b,) if and
only if v4 € V,, and in this case b and b, are uniquely determined, as b = 8, (v4)
and by = B (v4).

REMARK 3.6. Denote by Ry,,11 € O(d) the orthogonal reflection in the hy-
perplane {vy}+ C R If the scattering map ¥ is a diffeomorphism from S_
onto S; which carries the volume measure |v - bj dVOlstli—l('U) dVOlSLIi—l(b) on S_
to (v -b) dVOle—l (v) dVOlstli—l (b) on Sy, then

(3.33) i (v2) = =B, (v1)  or o1 (V2) = By, (V1) Rppyy -

The reverse implication is also true; see [44, Remark 2.3] for a detailed discussion. B
In physical terms, [B:33)) reflects the preservation of the angular momentum bAwv, or
its reversal, respectively. The first alternative in (3:33]) holds for specular reflection
as well as potential scattering.

2These conditions correspond to assumptions (i), (i), (iv) in [44] Section 2.2]; the fourth
assumption is not required in the present paper, cf. (3.30).

3Note that sy = —1 in [44]; however [44] Remark 2.3] applies verbatim also when sg = 1,
with the only modification that “9;(0) = 0” is replaced by “0;(0) = =”.
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It will be useful later to have a reformulation of the condition (iii) in terms of
the deflection angle of the scattering map, i.e. the angle between the incoming and
outgoing velocities expressed as a function of the length of the impact parameter. In
precise terms, for a scattering map ¥ satisfying conditions (i) and (ii), the deflection
angle is a function 6 : [0,1) — R satisfying the formula

(3.34) U1 (v,b) = (cosb(w))v + sinz)(w)w ((v,b) € S_),

where

(3.35) w:=b—(v-bvec{v}t and w=|w]|.

In the special case w = 0 (& b = —v), we require §(0) = 0 (mod ), and the

right hand side of (834)) should be interpreted as (cos#(0))v. Note that we do not
require 6 to take values in [—7,7]; in fact in the case of potential scattering the
natural definition of € is a function which can take any value in [—oo, 7], cf. (B.G3)
below.

The following lemma gives an equivalent formulation in terms of the deflection
angle of the “Uy-part” of condition (iii).

LEMMA 3.25. Given any continuous function 6 : [0,1) — R with 6(0) = kx
(k € Z), the following two statements are equivalent:

(1) The map ¥, given by B34) is C* and for each fized v € S§™* the map ¥y (v, -)
is a C* diffeomorphism from {b € SiFl : v-b <0} onto some open subset of

SIS
(2) 6:[0,1) = R is C', and for all w € [0,1) we have 6 (w) # 0 and |0(w) — k| <
.

PrROOF. The implication (1)=-(2) is straightforward, e.g. using the fact that
for all w € [0,1), cosf(w) and sinf(w) can be expressed as the scalar product of
\Ill(el, —(1- w2)1/261 + weg) with e; and es, respectively. We turn to the proof
of (2)=(1); thus assume that (2) holds. By immediate inspection, (3.34)) yields
a spherically symmetric map ¥y : S_ — S‘li_1 which is continuous, and C' on
S_\ {(v,—v)}. In order to verify that ¥; is C' on all S_, note that we can write
Uy (v,b) = g(|w]]?)v + f(w), where the maps f : Bf — R? and g : [0,1) — R are
given by

(3.36) g(u) = cosf(u'/?) and

1 .
fw) = fi(lw])w with fi(w) = {Z(O)sme(w) i Zig.
Therefore it suffices to verify f € C'(B{) and g € C'([0,1)). Both of these are
straightforward. (For f, an intermediate step is to note that f; is continuous
on [0,1) and C* on (0,1), and lim, o wf](w) = 0.) It remains to verify the
diffeomorphism statement. By spherical symmetry it suffices to verify that ¥y (eq,-)
is a C! diffeomorphism from {b € S{~* : e;-b < 0} onto an open subset of S{~*. Let
us first note that for every 0 < w < 1, the differential of the map b — ¥y (e1, b) at
b= —(1—w?)"/?e;+wey equals the linear map from Tp(S¢™) = {h € R? : h-b = 0}
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to Ty, (e,,5)(ST ") given by
(3.37)

h=(ha,- ha) = (_el(w) sin f(w) ha, 0'(w) cos B(w) ha, sin f(w)

It follows from the assumption (2) that this map is non-singular for every 0 <
w < 1. Furthermore the differential at b = —e; is seen to be scalar multiplication
with 6’(0), which is again a non-singular map. Hence by spherical symmetry, the
differential of b+ W1 (ey, b) is non-singular throughout {b € S¢~! : e, -b < 0}. Tt
also follows from assumption (2) that this map b — ¥y(eq,b) is injective. Hence
this map is indeed a C* diffeomorphism from {b € S¢~! : e; - b < 0} onto an open
subset of $¢71. O

REMARK 3.7. In the situation of Lemma [3.25] if the scattering map is also
known to preserve angular momentum b A v, then one computes that

(3.38) Uy(v,b) = —w(sinb)v + (cos)w — (v - b)¥y (v, b) ((v,b) € S_),

with w and w as in (335). Hence in this case, condition (2) in Lemma B:25 implies
that ¥ satisfies all of condition (iii). Indeed, it only remains to verify that ¥y is
C', and this follows once we note that ¥o(v,b) = —(w - f(w))v + g(|w|*)w — (v -

b)¥,(v,b), with f, g as in (336).

Next, for a scattering map ¥ satisfying conditions (i), (ii) and (iii), the nor-
malized impact parameter corresponding to incoming and outgoing velocities v
and vy, respectively, is w := (8, (v4)R(v))L, and the differential cross section
o(v,vy) is defined as the Jacobian of the map v — w with respect to the mea-
sures w = volga—1 and dw ( = Lebesgue measure on R9~1). Thus, for each fixed

1
ve s
(3.39) dw = o(v,v4)dvy (V4 € V).

Hence o is a continuous function on {(v,v,) € S{™* x S™1 : vy € V,}. In fact,

w(p)\4-2, .

—_— w if v Sy -,
(3.40) o(v,v4) = (smcp) )l 1 vy 7 sw

o (@) TR

where ¢ = p(v,v4) and w(p) = ||w]||. Note that ||w]| is indeed a function of ¢, due
to spherical symmetry. The formula (40Q) is an immediate consequence of (337 in
the proof of Lemma B.25, once we note that ¢ = +6(w) mod 27 (and 0 < ¢ < ).
In particular in the case of specular reflection, we have w(p) = sin(p/2), and
hence we recover the formula (IH). We extend o to all of S x S¢=! through
o(v,v4) = 0 when vy ¢ V,; this extension is generally not continuous. It is clear
from the above that o(vK,v4K) = o(v,v4) for all K € O(d), and furthermore
o(vy,v) =oc(v,vq).

Finally, with the scattering map in place, we now extend some definitions from
SectionB2l Recall that in Section B2l we introduced the notion of a scatterer being
'separated’; we defined w(1;p) to be the subset of initial conditions (g, v) € r(p)
which lead to a collision with a separated scatterer in finite time, and for (gq,vo) €
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o (1; p) we defined q™")(qy,vo;p), wi(qy, vo; p) and wi(qy,vo; p). More generally,
we now define to(j; p) and q(j),cj,wj,wj,qj,'vj, u; for j > 1 by the following
recursiée formulasfl Set w(0; p) := w(p). For j > 1 and any (ggsv0) € w(j —1;p)
we set

7j = 7j(qo,v0; p) = Tl(qj—la'vjfl;p)'
Then 7; € Ry U {oo}. Let w(j;p) be the subset of those (g, vo) € w(j — 1;p)
for which 7; < oo and g;_; + 7;v;-1 lies on the boundary of a separated scatterer.
Next, for (go,vo) € W0(j; p), let g) € P be the center of the unique scatterer with
q;_1 tT7vj-1 € B4 (q\9), p) and set §j = s(q); let u; € Sﬁl71 be the point such
that q; ; + 7v;-1 = ¢ + pu;, and then set

v;=U1(vjo1,u,); wy=(wRW1); gy =g+ pUa(v;_1,uy);
and finally set
wj = (wj,5) €

The sequences {7;}, {¢;} and {v;} which we have thus associated to a given
initial condition (g, vo) € w(p) generalize the corresponding sequences defined in
Section [I.2] to the case of a general scattering process, except that our present con-
ventions regarding overlapping scatterers differ from those in Section However
we have seen that the probability of hitting a non-separated scatterer in the first
collision tends to zero, and the same fact will turn out to hold for every later col-
lision. Therefore, the difference in conventions does not affect the limit result as
p — 0; cf. Remark 3] below.

3.5. Collision kernels

We now define the collision kernels; these are simple transforms of the transi-
tion kernels defined in Section[3.Il Recall from Section[3.4]the definition of the scat-
tering map V¥, the associated maps ,Bf, and the differential cross section o(v,v4).
For vg € S‘{l_l7 VE Vy,, V4 €Vy,and £ >0, € X, ¢ € X, we set

(3.41)
po(vo,s, v;&, 64, v4) = Mk((/@joR(v)(el)J_a§)7§7 (Be, (U+R(”))La<+))-

Vd—1

We extend the function pg by setting po (vo, s, v;€, 64, v+) =0 for any v, v, € Sﬁl71
with v ¢ V,, or vy € V,. More generally, given a function 8 € Cp(U, RY) where U
is an open subset of Sffl, we set

(3.42)
possls.vi6s.vs) = L0V (801 R@)10).6 (B2, (04 Rw)) 1) )

Vd—1

if v € U and v4 € V,, and otherwise pg g ((,v;§,§+,v+) = 0. We then have
(3.43) Po (0,5, 06,61, v+) =g i (S, 036,54, 04).

4All these are functions of qg, V0, p, L.e. g = q(j)(qo7 v0; p); Sj = s;(qg,vo; p), etc.
5Tt will be seen that (gg;vo0) € w(j —1; p) implies that g;_, and vj_1 have been defined and

that (g;_1,v;j-1) € w(p).
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Let us also define

o(v,v4) _
(344) p('U, 55 S+ 'U+) = T k* (55 (ﬁel (,U+R('U))L7 §+))
if vy € Vy, and otherwise p(v;f, Sty 'v+) =0.

The relation between the transition kernels and the collision kernels is captured
by the formulas in the following two lemmas. Let s_ be the diffeomorphism from
Bf_l onto the negative hemisphere {z € Sﬁl71 : 1 < 0} which is inverse to the
projection & — x , i.e.

(3.45) s_(w) = (—(1 - JJw|>)"%w), weB

Then for any v € Sﬁlil, the inverse of the C* diffeomorphism V, — B’li_l, vy
w:= (B, (v4)R(v)) L, is given by vy = ¥y (e, s_(w))R(v) L.

LEMMA 3.26. For any bounded Borel measurable function f : Rsgx XX S’li_1 —
R and any fived B € Co(U,RY), v € U, s € %, if f1 : Rug x Q — Rxq is defined
through

(346) fl(ga (wvg)) = f(fvgv ‘Ijl(elv S*(w))R('lﬂil)v
then

/0 h /Q 16 @E((B@)R®)) 1<), &, w) daw) de

(347) = /0 ~/Z v f(§,<+,v+)po,g(<,v;§,<+,'v+) d’U+ dm(g-i-)dg

LEMMA 3.27. For any v € S‘li_1 and any bounded Borel measurable functions
fiRoox 2 xS 5 R and fi : Rag x Q = Rsq subject to (3.46),

/0 /Qfl(f,w)kg(ﬁ,w)dm(w)ds
:/0 /x/vv f(& s, v )p(v;€, 61, vy ) dvy dm(sy) de.

The proof of both lemmas is immediate from the definition of the differential
cross section.

REMARK 3.8. Using Lemma B8 one sees that the formula (8:42) remains true
if in the right hand side we replace R(v) by any Re SO(d) satisfying vR = ey,
so long as both the “R(v)’s” are replaced by the same R. In other words, the
function pg g does not depend on the choice of the function R : Sffl — SO(d),
and the same is true for pg. Similarly the formula in Lemma remains valid
if we replace R by any other (measurable) function R: 891 5 SO(d) satistying
vR(v) = e for all v € S9! so long as we use the same function R in both
B40) and B4M). In particular in this way we see, via Remark B] that if f €
Cp(Rsp x £2) then the expression in ([B:47)) depends continuously on v € U, even
at the (possible) discontinuity point of the function R. The analogous statement
holds for Lemma

It will follow from Theorem [3.32] below that, for given ¢,v, the function
p0,8(s, v;€, 6+, v4) is the limiting probability density (as p — 0) of hitting a scat-
terer with marking ¢, at time p'~?¢ and in such a way that the exit velocity is
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v4, when starting at the point q + pB(v) and with velocity v, where g € P and
s =<(q).

The first part of the following lemma shows that po (s, v; &, 51, vy) is indeed
a probability density in the variables &, ¢;,v4. For the second part of the lemma,

we introduce the following notation, for any v € ¢~ and 1 > 0 (cf. (331)):
(3.48) Vi={uc S4=! . sy - (By — p(u,v)) > n} C V.

LEMMA 3.28. For any open set U C Sffl and any B € Cp(U,RY), v € U and
SEY,

(3.49) /0 / /v Po.a(s, 056,51, v4) v dm(sy) dé = 1.

Also for any € > 0 there exist C > 1 and n > 0 such that

C
(3.50) [ [ poatsviésos) oy dmisi)d > 1,
1/C Jx JV]

uniformly over all U, B,v,s as above.

PROOF. The first statement follows from Lemma B.26] and the definition of the
transition kernel k, in particular the fact that x(w,-) is a probability measure on
Rsg % Q for every w € X, ; cf. Lemma [3Il The second statement is an immediate
consequence of Lemma B3 and the fact that k(-,-,-) < Cpvg_1. O

Similarly, it will follow from Theorem that the function p(v; ¢, ¢y, vy) is
the limiting probability density (as p — 0) of hitting a scatterer with marking ¢, at
time p' ~9¢ and in such a way that the exit velocity is v, when starting with velocity
v from a generic point in R?. The following lemma shows that p(v;¢, ¢y, vy ) is
indeed a probability density in the variables &, ¢y, v.

LEMMA 3.29. For any v € Sffl,

/)w[E/va(v;s,c+,v+>dv+ dm(sy) d =1,

Proor. This follows in a similar manner using Lemma [3.27] and the fact that
k8 is a probability measure on Rsq x Q. O

3.6. Relations for the collision kernels
LEMMA 3.30. For any fived vo,v € S¢7, ¢ € ¥ and K € SO(d), we have
pO(UOKvgva;€7§+7v+K) = pO(”ngvv;€7§+7v+)7
p(vE;& sy, v K) = p(v; €, 61, v4)
for almost all (€, ,v4) € RagxEx ST with respect to the measure d€ dm(sy ) dv.y .

Proor. We have
po(voK, s, vK;& ¢y, v K)

- U(U,m)k(( :;roKR(vK)(el)J—’g)’g’ (ﬁgl(v+KR(vK))L’§+)>’

Vd—1
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and the analogous relation for p(vK; ¢, ¢4, v+ K). For fixed K € SO(d), the function
v~ R(v) = KR(vK) € SO(d) has the property that vR(v) = e;. The claim now
follows from Remark O

PROPOSITION 3.31. Assume [B.33]) holds (i.e., the scattering map preserves or
reverses angular momentum). Then, for any fized v € S'li_l,

p(va 57 S+ ’U+) =cp / 0'(’007 ’U) Po (1;07 S, U3 5/5 S+ 'U+) dgl dm(g) d1;07
[5,00)><E><Sil’1
for almost all (§,¢4,v4) € R>0><E><S‘f_l with respect to the measure d§ dm(sy) dv .

Proor. By ([B.44) and Proposition B.22] we have
p(oi6si.00) =epoto.v) [ (€ (B0 0 @)1 51 ) o) e

We now use relation ([B.41]) in combination with (8.33) to obtain
(3.51)

po(vo,<, v, ¢4, vy) = Mk((ﬂFﬁ; (voR(v))1,5),&, (Be, (v R(v)) L, <+))-

Vd—1

Now B¢, (voR(v)) = B (vo)R(v), and hence by B39), duo(w’) = vyt dm(s)
xo(v,vg) dvg. Finally, o(v,vg) = o(vo,v). O

3.7. Post-collision velocity

We now transform Theorem to obtain the limit distribution of the velocity
after the first collision. For later use, we give a result which is uniform with respect
to appropriate families of test functions f and probability measures A.

We recall some definitions from [44, Section 2.4].

DEFINITION 3.2. Given any subset U C S~ we set
(3.52) 0:U = {veS{™ : JwedU : p(v,w)<e}.

A family F of Borel subsets of S‘li_1 is called equismooth if for every § > 0 there is
some ¢ > 0 such that w(9:U) < ¢ for all U € F. Finally, a family F' of measures on
Sfl is called equismooth if there exist an equicontinuous and uniformly bounded
family F”’ of functions from S¢~' to Rso and an equismooth family F” of open

subsets of S‘li_l7 such that each i € F' can be expressed as pu = (g - w)|y for some
geF, UeF".

Given any open set U C S‘li_1 we define
(3.53) Xy = {<v0,§1,§1,01> EUXRogx D xS v e V,,O}.

THEOREM 3.32. Let T > 1; let U be an open subset of S’li_l; let Fy be an
equismooth family of probability measures on Sil*l such that A(U) = 1 for each
A € Fi; let Fy be a uniformly bounded and pointwise equicontinuous family of
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functions f : Xy — R; and let F3 be a relatively compact subset of Cy(U,RY) such
that (B(v) + Rsov) N BEL =0 for all B € F5, v € U. Then

L 7 (001 01(a,5(0).030) 60, 5(0),039). 910, 5(0). ) dA(0)

q.p

(3.54) - /X f(v,&,61,v1)p0,s(s(q), v; &1, 61,v1) dA(v) déy dm(sy) dvy — 0

as p — 0, uniformly with respect to all q € Pr(p), N € F1, f € F», B € F3.

REMARK 3.9. In the left hand side of (354), note that by definition
v1(q,5(v),v;p) = ¥i(er,s_(w1))R(v)™" with wy = wi(q, (v),v;p). In par-
ticular v, € V,.

PRrOOF. Without loss of generality we assume that R is continuous on U (other-
wise replace U with U\ {vg} where v is the unique point where R is discontinuous).
Now if Fy and F; are singleton sets, say 1 = {A} and F; = {f}, then (854) is an
immediate consequence of Theorem 3.6l applied with f; € Cp(U xR x Q) defined
by

fl(vvé.a (wvg)) = f(vvé.a S5 \111(61, S*(w))R(v)il)a

combined with Lemma The extension to uniformity over general sets F; and
F; is carried out in the same way as in the proof of [44] Thm. 2.3; Steps 2-4]. (One
uses Lemma in place of [44] (2.42)]. When proving uniformity over Fi, the
key point is to note that the set of densities of the measures in F} with respect to
w form a relatively compact subset of L'(U,w).) O

REMARK 3.10. The proof of Theorem is significantly shorter than the
proof of the corresponding result [44, Thm. 2.3]. The reason is that we have
proved the auxiliary results about convergence of point processes, Lemma 2111
with the appropriate uniformity with respect to 3, which could then be carried
over to Theorems 3.0l and B32] thereby avoiding the need of the discussion [44] pp.
241-244].

The following is the analogue of Theorem [3.32 for macroscopic initial conditions.
Set

(3.55) X ={{qv,&cv) eT'RY) xRog x Ex S{7! 1 vy €V, )
This is the extended phase space; cf. Section [[L4l

THEOREM 3.33. Let A € Poo(TH(RY)) and let F be a uniformly bounded and
pointwise equicontinuous family of functions f: X — R. Then

/( )f(q,v,pd’lﬁ(pl’dq,v;p),cl(pl’dq,'v;p),vl(pl’dq,v;p)) dA(gq,v)
W(L;p

- ‘/)( f(qu’U7§17<17’U1)p(v;§l7§17v1) dA(q,'U) dé-l dm(cl)dvl —0

as p — 0, uniformly with respect to all f € F.

PROOF. This is similar to the proof of Theorem B.32] but easier. One uses
Theorem [3.14] in place of Theorem O
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3.8. Bounding the probability of grazing a scatterer or hitting &

In the proof of our main result, Theorem 1.1l we will also need the following
two propositions, which say that most initial velocities v give rise to a “good” path
and scatterer collision, in the sense that the particle never gets very near any other
scatterer before the collision, the scatterer involved in the collision does not belong
to the exceptional set £, and the length of the impact parameter is not too close to
1.

PROPOSITION 3.34. For U, K, T, \ as in Theorem[3.8 and B € K, set
6§7p ={ve mgj’p : q(l)(qpﬂ(v),v;p) e P\ &}
Then )\(fﬁ'g’p) — 1 as p — 0, uniformly over all g € Pr(p) and B € K.

PROOF. Let ¢ > 0 be given. By Lemma we can take 77 > 1 so that
k(W' [Th —1,00) x Q) < e for all w’ € X, and then by Theorem [B.6 there is some
p1 € (0,1) such that

(3.56) AM{v e mfip : pdTin (g,5(v),v;p) > Th}) <2

for all p € (0,p1), g € Pr(p), B € K. Let C :=supge ||B]| and B = [-1,T1 +1] x
Béjrll. Then by Lemma [2.17] after shrinking p; appropriately we have

(3.57) A{vesi™ : €n(g+BD, R(v)™") #0}) <e

for all p € (0, p1), g € Pr(p). We may also assume (C + 1)p¢ < 1.
Now let p € (0,p1), g € Pr(p) and B € K be given, and consider any v € mf;p
satisfying p¢~'m, < Ty, where 7, := 7 (g, 3(v),v;p). Then the scattering center

q) = q(l)(qpﬂ(v),v; p) has distance p from q + pB(v) + 7 v, and thus
1(g" = @) R(v) — mea|| < (C + 1)p,
and using (C' + 1)p? < 1 this is seen to imply ¢) € q + BD;*R(v)~". Hence, by
BE0) and BET), we have
)\({’U € mg,p : pd71T1 (qp,ﬁ(v)7v;p) < Tl and q(l)(qp,ﬁ(v)7v;p) ¢ g}) >1- 357
and in particular A(0f ) > 1 — 3e. O

To prepare for the next proposition, recall (3.48), and define
(3.58) =B, Ve, \ VA" CB{™,  for n>0.
(Note that ([B.58)) differs from the notation in [44] (2.33)].)

DEeFINITION 3.3. For v € mgyp, we say that the particle path from g, g(v) to
q,5(v)+7(q,5(v),v;p)v is “n-grazing” if either w1(q, g(v),v; p) € thy, or if there
is some point ¢’ € P\ {q, q(l)(qp_ﬂ(v), v; p)} which has distance < (1 + 7)p from
the line segment between g, g(v) and g, g(v) +71(q, g(v), v; p)v. Let g2, be the

a.p.
ﬁ . . . .
set of those v € w{ , which give rise to n-grazing paths.

PROPOSITION 3.35. Let U, K, T, be as in Theorem [3.0 and let € > 0. Then
there exist n and po in the interval (0,1) so that (g2 ,,) < e for all p € (0, po),
q€Pr(p), BEK.
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ProoOF. Without loss of generality we assume that K is compact (cf. Remark
B3). Let us set &, := &0, U (BS1\ 8‘11:717), and note that this is a set of the form
B{TH\ Br(n) with 7(n) — 1 as n — 0. Using Lemma B3] Lemma 2T5 and [2:35]),

we have k(w’;Rsq X {ln x ¥) — 0 as n — 0, uniformly over all w’ € X, . Hence we
may fix n € (0,1) so small that

(3.59) K(w'; Rag x Sy x ) < Z, Vo' € X

Using Theorem and Remark B.2] it follows that there is some p; € (0,1) such
that

(3.60) M{vew? :wi(g,s(),vip) € Uy}) + AU \w? ) <
for all p € (0,p1), g € Pr(p), B € K. Let C := 1+ supge |8 and
K={B:BecK} with Bv):=(1+n)"'8(v)+2Cv.

Then K is a compact subset of Cy (U, R%) and (8(v)+Rsov)NBYE = for all 8 € K,
v € U, and using Theorem again we see that after possibly shrinking p;, (3:60])
holds also for all p € (0,1), g € Pr(p) and B € K. Furthermore, by Lemma 210,
we may assume that dp(g) > 5Cp for all p € (0,p1) and g € Pr(p).

Now take any p € (0, (1 +1n)~ ! p1), 4 € Pr(p) and B € K. Set p:= (1 +n)p.
Then p € (0, p1), ¢ € Pr(p) and 8 € K, and so by the above we have

)\({v € mg,p s wi(g, g(v),v;p) €Ly or v ¢ mgjﬁ or wi(q,5(v),v;p) ¢ B~ })

.1 _— =
(3.61) <2+2

€
2

Now assume that v € mf;’, , has the property that there exists some point q €
P\ {q, q(l)(qpﬁ('v), v; p)} which has distance < p from some point  on the line
segment between q, 5(v) and q, g(v) + 71v, where 71 = 71(q, g(v), v; p). Assume
also v € 1P and set ¢ = ¢V(g, 5(v),v30), @ = qV(g, 5(v),v57), and
71 = 71(q; 5(v),v;p). Note that q;5(v) = g, g(v) +2Cpv. Also dp(q) > 5Cp,
whence 7 > 2Cp, and it follows that the line segment from g; 5(v) to q; 5(v) +71v
is a strict subset of the line segment from q, g(v) and q, g(v) +Tv. If q(l) qW,
then = must lie between qﬁﬁ(v) + 71v and g, g(v) + 71v; this implies that €
B? (A(l) p) NBi(q',p), i.e. the scatterer B (A(l),ﬁ) is not separated, contradicting
v € m (cf the definitions at the beginning of Section B.2]). Hence q(1 £ qW,
and then from the definitions of these points it follows that q( ) has distance >p
from the ray q; 3(v) + R>ov, and so |wi(q; 5(v),v;p)| = (1 + N7l >1-n,ie.
v belongs to the set in (B.61]).

It follows from the above discussion that gq oy 18 @ subset of the set in (3.61)).

Hence )\(gqpn) < e foral p e (0,(1+n)tp1), g € Pr(p), B € K, and the
proposition is proved. ([

3.8.1. Macroscopic initial conditions. The macroscopic analogue of Propo-
sition [3.34] is as follows.
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PROPOSITION 3.36. Let A € Poo(TH(R?)). Then
A{(q.v) € W(L;p) : ¢V (p' g vip) €EY) =0 as p— 0.

PROOF. The proof of Proposition 3.34] carries over with simple modifications,
using Theorem B.T4in place of Theorem The only step which is not immediate
is the following fact, which is the required analogue of ([B.51): For any relatively
compact set B C R?,

(3.62) A({EN (p' g+ BDp_lR(v)_l) #0}) =0 as p—0.

To prove ([B.62]), we first note that, as in the proof of Prop. 222 we may reduce to
the case when A has a density A’ € C.(T"(R?)) with respect to volg,, ga-1. Then
1

each point p € £ gives a contribution to the expression in ([3.62)) which is bounded
above by

( sup |A’|) / / I(pe (plqu—l—BD;lR(v)*l)) dv dgq
T1(R4) Rd JS¢1

= ( sup |A’|) vol(B)w(S¢1) - pdld=1),
T (R)

Take R, R’ > 0 so that supp A’ C B‘}% X S‘li_1 and B C B%,. Then BDP_1 - le,dR,,

and therefore only points p € £ with ||p|| < p!~¢(R+ R’) can give any contribution
to the expression in ([B.62]). Hence that expression is bounded above by

#(EN B aipp) ( up |A’|) vol(B)w(S¢1) - p2td=1),

s
T (Ra)
Now (B.62)) follows from the fact that £ has asymptotic density zero (cf. [P2]). O
Finally we give the macroscopic analogue of Proposition

DEFINITION 3.4. Let &, be the set of all (q,v) € 20(1;p) which give rise
to n-grazing paths, i.e. paths such that wi(p'~%g,v;p) € i, or such that there
exists some ¢’ € P\ {g")(p*~?q,v; p)} which has distance < (14 7)p from the line
segment between p'!~%q and p'~q + 71 (p' ~%q,v; p)v.

PROPOSITION 3.37. Let A € Poo(T'(R?)) and € > 0. Then there exist n and
po in the interval (0,1) such that A(&,,,) < e for all p € (0, po).

PROOF. The proof of Proposition .35l carries over with some modifications.
First, fix n € (0,1) so small that

R (R x flay x T) < <,

where }17 =4, U (B{? \Bf:rlz) as before. We introduce the scaling map
S:THRY) — T'(RY),  S(g.0) = (L+n)""qv).

By Theorem 3.14] and Remark 3.5, applied to both the measures A and Ao S~1, it
follows that there exists some p; € (0, 1) such that for every p € (0, p1) we have

(3.63)  A({(q,v) € T"(RY) : (q,v) ¢ W(1;p) or wi(p' q,v;p) € {ln}) < %
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as well as
(3.64)
Ao S ({(q0) € T'RY : (g,0) ¢ W(Lip) or wi(p g, vip) € ,}) < <.

Now take any p € (0, (1 +n)"!p1). Set p:= (1 +mn)p. Then [B.64) holds with
p in place of p, and this statement can be equivalently expressed as:

A{(q.v) € THRY : (o' q,0) # w(137) or wi(p' g, vip) € TLy}) < .
The last bound together with ([B.64]) imply:
A({(@v) € W(15p) 5 wilp'q,vip) € 84y or (0 q,0) ¢ w(157)
(3.65) or wi(p'~q,v;p) ¢ Bf:,lz}) <e.

By the same argument as in the proof of Proposition B35 &,,,, is verified to be a
subset of the set in the left hand side of ([B.60). Hence the proposition is proved. O



CHAPTER 4

Convergence to a random flight process

4.1. Joint distribution of path segments

Theorem [Tl below is our first main result; it gives the limit of the joint distri-
bution of the first n flight segments and the marks of the corresponding scatterers.
It generalizes [44, Thm. 4.1] (specialized to start from a scatterer) from the case
of a lattice to the case of an arbitrary point set P satisfying the assumptions in
Section

Recall the definitions of t(j; p), ¢¥)(q,v; p), <;(q,v; p), w;(q,v;p), q;(q,v; p)
and v,(q, v; p) given in Section B4l Given an open subset U C Sﬁl71 and a function
B € Cy(U,RY), we set

(4.1) mg)p)n ={velU: (q,5(v),v) €w(n;p)}

This notation generalizes that of ZI0), in that w8 = m'g)p)l. We also introduce
the following notation generalizing (353)):

(4.2)
X[(]n)::{<'l)0, <§j,§j,vj>?:1> eUx (R>0 X XS?il)n HECPS Vq;j71 (j =1,... ,n)}

For v € S9!, the tangent space T,(S{™') is naturally identified with the
orthogonal complement of v in R For h € T, (S$!), we write Dy, for the corre-
sponding derivative. We use the standard Riemannian metric for S‘li_l7 and denote
by TL(S971) the set of unit vectors in T, (S¢™!). For any open subset U C S9!
we write

T'U) = || To (87,
velU
for the unit tangent bundle of U.

We will formulate the limit result of Theorem [£lin a way that is uniform with
respect to certain families of functions B : U — R®. This will be crucial for making
it possible to prove the theorem by induction over n.

DEFINITION 4.1. For U an open subset of S{7%, let C}(U,R?) be the space of
C' functions B : U — R which are bounded and satisfy supperi(v) |1DrB| < 0.
We call a subset F' of C} (U, R%) admissible if it is relatively compact as a subset of
Cy(U,R?) and satisfies supge suppert(v) || DnB| < 0o and (B(v)+Rsov)NBE =0
forall e Fandv e U.

THEOREM 4.1. Let P and € satisfy all the conditions in Section[2:3 and (235,
and let U be a scattering process satisfying the conditions in Section[34] Let n €
Z>1 and T € R>q; let U be an open subset of Sf_l; let F1 be an equismooth family
of probability measures on Sf_l such that N(U) = 1 for each A € Fy; let F be a

69
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uniformly bounded and pointwise equicontinuous family of functions f : X[(]n) — R;
and let F3 be an admissible subset of Ci(U,R?). Then

L 10 50,5000, 0:0).5.0,5(0). v:0).0,(0, 5(0).030))

q,p,n

n

) d\(v)

j=1

(4.3) —/X(n)f(”07<§ga§gavg> )pog( ((I)avo;§1,§1,171)

n n
< [ po(@j—2,5-1,v5-1:&,55,v5) dA(wo) [ (d¢; dm(s;) dv,) —

Jj=2 j=1
as p — 0, uniformly with respect to all q € Pr(p), N € F1, f € F», B € F3.

REMARK 4.1. Regarding the limit expression in ([£3]), one should note that

n

/ po,8(s,vo; 1,61, v1) Hpo(vj—z, Si—1,v5-1;&5,55,v5) dA(vo)
X(") N

U Jj=2
H d¢; dm(s;) dv;) =

for all ¢ € ¥ and B € Cp(U,R?). This follows by using ([3.49) in Lemma 328 n
times. In particular, taking f = 1 in ([&3)), the theorem implies that A(w? ) — 1
as p — 0, uniformly with respect to all ¢ € Pr(p), A € F1, and 3 € F3.

q,p,n

4.2. Auxiliary results

We next review some results from [44], Section 3].

Recall the definition of the maps 3% and of the differential cross section o (v, v)
from Section 34l Set

(4.4) Cyi=1+max( sup e s ||Dhﬁ )-

heTI(VY)
Then C, is independent of v, depends continuously on 7 > 0, and may approach
infinity as n — 0.

For any s € R\ {0} we let v, be the probability measure on S¢~* which
gives the direction of a ray after it has been scattered in the ball B¢, given that
the incoming ray has direction 8 := ||s||~!s and is part of the line  + Rs with x
picked at random in the (d — 1)-dimensional unit ball {s}+ N B¢, with respect to
the (d — 1)-dimensional Lebesgue measure. Thus

(4.5) dvs(v) = vy 0(3,v) dv.

Let us write V7 := VI (cf. 348)). For n > 0 so small that VI # 0, we define
vl to be the probability measure which is obtained by restricting vs to V7 and
renormalizing, i.e.

(4.6) vl = vs(VH ™ vslyy

Given s € R%\ {0}, a number p > 0, an open set U C S{~* and a continuous
function B : U — RY subject to the condition pB(v) ¢ B(s, p) Vv € U, we set

)
(4.7) U={veU : (pB(v) +Ruov) NBi(s,p) # 0}.
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For v € U we set

(4.8) 7(v) = 7, 58(v) = inf{t > 0 : pB(v) +tv € B(s,p)},

let B(v) = B,.s(v) be the impact location on S¢™', i.e., the point for which
pB(v) + 7(v)v = s+ pB(v), and let

(4.9) V(v) =V, 5(v) = U1 (v, B(v)) € {7,

the outgoing direction after the ray p3(v)+Rs v is scattered in the sphere s—l—SZ_l.
Let us write D7 := {v € S?™! : (v, s) < n} for the ball of radius n with center
5in S¢7!. We now have:

LEMMA 4.2. Given any 0 <n < 155(3 —sw(5 —By)), C > 10 and & > 0, there
exists a constant py = po(n, C,e) > 0 such that for any p € (0,p0), any s € R?
with ||s|| > C~1, any open subset U C S~ containing D!, and any C'-function
B:U — R? satisfying sup,cy |B(v)| < C and supper(v) |[DrBll < C, all of the
following statements hold:

(i) Let V. =V, 4z be the restriction of V.=V, 45 to V"1 (V1); then V is a C!
diffeomorphism onto V.

(i) If M C V7 is any Borel subset with vs(M) > 0 and if v denotes the measure
w restricted to Vﬁl(M) and rescaled to be a probability measure, then V ,ju =
g - vs(M) g nr for some continuous function g : M — [1 —e,1 +¢].

(iit) Define the C' maps B* = B;’fsﬁ V1 — S through BE (u) = Bé,l(u)(u).
Then ||B*(u) — B3 (u)|| < ¢ for all w € V! and |DpB*|| < C, for dll
hc T'(VI).

PRrROOF. This is [44] Lemma 3.2], mildly generalized by allowing a more general
set U in place of “V” | and allowing either sg = 1 or —1 (whereas in [44] we assumed

sy = —1). The proof carries over immediately, using the assumption DI C U; cf.
in particular [44] (3.9)]. O

Next we prove a lemma which is useful for reducing to test functions f of
compact support in the proof of Theorem [£.1]

LEMMA 4.3. Let U be an open subset of S2~' and let A € P(U) and n € Z7.
Given any € > 0 there is a compact subset K C X[(]") such that

n
/ po,6(s,v0;&1,51,01) [ po(vj-2,5-1,v5-15 85,55, 05) dA(wo)
(n) J
XNk i

X (dé'J dm(gj)dvj) <e€

1

Jj=
for all ¢ € X and B € Cy(U,RY).

PROOF. Take &’ > 0 so small that (1 —¢&')"*! > 1 —¢. Let Ky be a compact
subset of U such that A(Ky) > 1 —¢’. By Lemma we can take C' > 1 and
n > 0 so that

c
(4.10) / / /_po)g(g,v;§,<+,v+) dvydm(cy)dé >1—¢
1/cJs V]
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holds for any open set U’ € 8¢, and any 8 € C*(U’,R%), v € U’, s € ¥. Now set
n —
K = {<’U0; <§j,§j,vj>j:1) S X[(Jn) Vg € KU, fj S [C 170],
v; VI (j= 1,...,n)}.

Using (@I0) iteratively n times it follows that for any ¢ € ¥ and B € C,(U,RY),

n

n
/pO,,B(gaUO?glaqavl)HPO('U] 2,5j—1,Vj-1;&;, S5, V5) dA(vo H d¢; dm(s;) dv;)
K

j=2 j=1
> (1-— 5')"/ d\(vo) > (1 —&)" T > 1 —e.
Ku
Recalling also Remark [£.I] the lemma follows. O
Next we give a lemma about varying 8 in po g(s, v; &, 54, v4).

LEMMA 4.4. Let U be an open subset of S&, and let f € CC(X,(JQ)) and € > 0.
Then there exists v > 0 such that for any vg € U, ¢ >0,¢' € X, U' C S‘li_l, v e
U'NVy, and any continuous functions By, By : U' — S¢71 if |8, (v) = By(v")|| < v
then

/ f(v07§/7§/7v/7§7§7v) (pO,,Bl (gluvl;§7§7v) — Po.3, (gluvl;guguv))
RsoXXXV,r

(4.11) xd¢ dm(s) dv| < e.

PrROOF. By Lemma [B.28) the expression inside the absolute value in the left
hand side of ([@IT]) equals

| [ 56 (k80D AW 116).6.0) = k(B0 R 1) )
xdpg(w) dE,
where f1 € Cp(Roo x Q) is given by
FlE (w.6)) = F00, €60/ Euc Wae, s (@) R() )
with s_ as in (@45). Let F; be the subset of Cy(Rsg x Q) given by

Fl = {<§7 (’LU,C)> — f(v07§I7<I7v17§7<7 \Ill(elu S—(w))R(vl)_l)
tvg €U, E>0,¢' €8, v €V}

Using f € CC(X,(J2 )) one shows that Fj is relatively compact. It now suffices to

prove that there exists v > 0 such that for any wg,w( € Bf_l, dex, fLe,if
lwo — wi]| < v then

’/ /flﬂ ) k((wo, ), € w) — k((wh,<'). & w) } dua(w) dé| <.

However this is a consequence of Remark 3.1l since F} is relatively compact. O
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4.3. Proof of Theorem 4.1

We now prove Theorem Il The proof is by induction. The case n = 1 is
already covered by Theorem Hence we now fix n > 2; we assume that the
statement of Theorem [£.1] holds with n — 1 in the place of n; our goal is to prove
that the statement also holds for n.

4.3.1. Initial reductions. By standard approximation arguments similar to
those used in the proof of Theorem (again cf. [44, Thm. 2.3; Steps 2-4]) and
utilizing Lemma 3] it suffices to prove the desired statement in the special case
when F} and F; are singleton sets, with the unique function f € F5 having compact
support, i.e. f € CC(X,(J")). Hence from now on we restrict to that situation. Let A
be the unique element in /. Since Fy = {\} is equismooth, we have A = (g-w),y, for
some continuous function g : Sffl — R>¢ and some open set U; C Sil*l satisfying
w(0U1) = 0. Let K be the image of the support of f under the projection map
from X [(J") to U; this is a compact subset of U. Let us show that without loss of
generality we may assume Uy C U. To this end, choose an open neighborhood U’ of
K satisfying U’ C U and w(0U’) = 0. Note that the desired limit statement, (@3],
remains the same if we replace A by A\(U")™! - Ay € P(S{™1) (in the special case
A(U’) = 0 the limit statement is of course trivial). This corresponds to replacing
g by AU")~t. g and U; by U; N U’; and we note that w(0(Uy NU’)) = 0 since
(U1 NU') C 90U, UAU’. After having carried out these replacements, we have

A=(g-w), € PST™Y);  ThicU;  w(dUp)=0.

4.3.2. Introducing auxiliary parameters, functions and spaces. Since
f has compact support, we can choose Cy > 1 so that f(v, (;,¢;, 'vj>§‘:1) = 0 unless

€1,...,&, all lie in the interval (C; ', Cy). Set
T, =T+C1+1

and

Cy := sup max(lO, sup ||B(v)||, sup HDhﬁH)
BEF3 velU heT! (V)
Let us write fo = f; we will now define functions f,, € C.(X [(Jnfm)) recursively
form=1,...,n— 1. Assuming that f,, 1 € CC(X[(]"_WH)) has been defined, we
define f,, on X"~™ by

fm(v()v <§J7§J7vj>;1;17n) ::/ fmfl(v07 <§Ja§javj>_;l;]:ma gvgvv)
RyoXXEX Vo,

(412) XPo ('Un—m—lu Sn—msVn—m;§,5, v) d¢ dm (() dv.

The fact that f,, € C.(X [(]"_m)) indeed holds follows by using Remark Bl together
with Lemma [B:26 (cf. also Remark B.g).

Let £ > 0 be given. We fix 0 <7 < 155 (5 — sv(% — By)) so small that

(413) 82,,(U1) cU and )\(agn(Ul)) < E/Hf”oo

(this is possible since w(9U;1) = 0), and also so that there is some pf, € (0,1) so
that

(4.14) A2 ,.) <e/lflle  VYp€(0,00), a € Prp), Be Fs
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(as is possible by Prop. B30). Fix a family of pairwise disjoint open subsets
Dq,...,Dpy of SEF1 such that each Dy is a diffeomorphic image of a closed (d — 1)-
simplex in RY~1 and has diameter < 7/C,, (with respect to the metric ¢), and so
that S{™ = UY.,D,. Recall the definition of vy € P(S{ ') for s € R\ {0}, cf.
(@3); it depends only on 3. Given s € R4\ {0} and ¢ € {1,..., N} with vs(D;) > 0,
we let vy 5 € P(Sffl) be the normalized restriction of the measure vg to Dy:

(4.15) vis = vs(Dg) ™!

Vs| p, -
For each £ € {1,..., N} we let
(4.16) Ay ={seS{ ™ D, cVy,
and set
(417) Flyg = {Vl,s S A[};

this is an equismooth family of probability measures. Also for any vg € U N Ay,
§o > 0, o € X we define the function fiy, ¢o.c0) ng_l) — R by

(4.18) Swoséorso] (Vs (€555, 05)121) = f(w0,€0,0, 0, (5,55, v5) 521,
and set
(4.19) Fg)g = {f[vo,Eo,Co] cwvg e UNAy & >0, ¢ € E}.

This is a uniformly bounded and equicontinuous family of functions on Xgle_l).
Define

(4.20) Fyy= {g DS BisC osup  |DaBl < Gy,
heT!(Dy)

(B(v) + Rsov) N B = O Vo € Dg}.

Then Fj ¢ is relatively compact as a subset of Cy(Dy, RY).
Let us also take ' > 0 so small that for any vo € U, & > 0,¢ € X, ¢ €
,...,N}, v € Dy NV, and any continuous functions B, 8y : Dy — S¢71, if
181(v") = B2 (v')[| <0 then
(4.21)

/]R . fn*Q(v07§/ag/7v/7§agatv)
>0 XX ’

X {po,ﬁl (</7 ’U/; 57 S, ’U) - po,ﬁz (</7 ’U/; 57 S, ’U)} d§ dm(() dv| <e.

This is possible by Lemma .41

4.3.3. The choice of py. Now take py € (0,1) so small that

/mﬁ F(v. " 7i(a, 5(0),v:0).5i(a, 5 (), 05 ), 05 (g, 5(V), v; )12} dpu(v)

q,p,n—1

(4-22) _/X“‘*l) f(voa <§J7§J7v]> )pog( (Q)uv0;§17§17v1)

n—1

X Hpo V;-2,6-1,05-1;§5,55,v;) du(vo) H d¢; dm(s;) dvj)| < e

Jj=2 Jj=1
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for all p € (0,p0), g € Pry(p), L €{1,...,N}, n € Fry, f € Foy and B € F5 . This
is possible by our induction hypothesis, i.e. the assumption that the statement of
Theorem E.1] holds with n — 1 in the place of n. We shrink pg further if necessary,
so as to also ensure that

(4.23)

‘/mﬁ frn-1 (v, pd7171 (qp,ﬁ(v)7 v; p)v S1 (qp,ﬁ(v)7 v; p)v ’Ul(qp,ﬁ(v)v v; p)) d)‘(v)

= [, T (@& s, v1)p0,p(s(9), 03 & v1) dA(v) d€y dm(sy) dvy
XU

for all p € (0,p0), g € Pr(p), and B € F3. This is possible by Theorem 3321
We shrink po yet further if necessary, so as to also ensure that the following
four conditions (£.24)-{@.2T) are fulfilled:

(4.24)  po< min{ﬁo(n,cz,min(ﬁm/)), o, (m)l/(d—l)}

(where po(---) is as in Lemma 2] and pf is the number in [@.I4));
(4.25)

Avew? | qP(q,sw),vip) €} <

(as is possible by Prop. B.34);
(4.26) p(v,v") <4C1(1+ Ca)pg and |& — & | < (14 Ca)ph
= ‘f('vv <§j7§j7vj>?:1) - f('U/,gi,Cl,’Ul, <§j7§j7vj>?:2)‘ <e

(this can be obtained since f is continuous and has compact support); and

€
(4.27) p(v.0) S8CI(L+Ca)ps = |g(v) = g(v")| < ——gmg—
W(ST oo

4.3.4. Modification and partition of the domain of integration. Let us
now cousider any choice of p € (0, pg), g € Pr(p) and B € F5. In order to complete
the proof of Theorem [£T] we wish to prove that the difference in (£3)) is < . Thus
we need to study the integral

(428) [, (o6 m @ s @), di)

q,p,mn

where 7;(v) = T7(q,g(v),v;p) and ¢;(v) = (q,5(v),v;p) and v;(v) :=

vj(qp)ﬁ(v),v;p). Let us fix sets l~)1,...,DN so that D, € D, C Dy for all ¢
and lN)l, e ,EN partition Sffl, ie. lN)Z N lN)j = () for all i # j and SEF1 = Uévzlﬁg.
Given any a € S¢~! we let [a] be the unique set l~)j for which a € l~)j. Let us also
write gV) (v) := q(j)(qp)ﬁ(v), v; p) and

s1(v) == ¢V (v) —q.

We now come to a crucial step of our treatment: We will prove that with small
error the domain of integration in #28), w# , . can be slightly modified in such a
way that the new domain can be perfectly partitioned into a large number of small
pieces which can each be dealt with using (£222). First of all, since A is concentrated

on U, we may trivially replace mf;ypyn by Ui N mg,p,n- We then throw away any

v € Uy for which p?~1r(v) ¢ (C7',C1) or ¢V (v) € &, and also any v € Uy

<e

HfH vp € (07/)0), qc PT(p)v /6 € F3
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which does not satisfy that the whole set [v1(v)] is “far from grazing position and
is fully lit upon from U;”. In precise terms, we replace the domain of integration
by Us N mg’ where

(4.29)
Uy = {veUmm L CTl < p8 i (0) < O, @V (w) € P\ E, [or(v)] € VP

s1(v)’

P51

and [Va € [v1(v)] : F0' €U N m'gml st gV (') = ¢V (v) and v, (v') = a]}

The following lemma will allow us to bound the error caused by this replacement.

LEMMA 4.5. Ifv e (U1 N mq p.1) \ Uz then one of the following holds:

(i) p*tm(w) ¢ (O 1, Ch);
(ii) q(1 ( )EE;
(iii)

(iv) v € gq oy

PROOF. Assume v € (U1 N mqp D\ U, p@tr(v) € (C71,Ch) and ¢ (v) €
P\ &, i.e. neither (i) or (ii) hold. Then our task is to prove that either (iii) or
(iv) holds. Now 71 = 71(v), ¢ = ¢ (v), v1 = v1(v), wi(v) = wl(qpﬂ( v),v;p)
are well-defined, with 7;(v) < co. Take ¢ so that [v1] = Dy. Let us first assume
Dy ¢ Vi (with s; = s1(v)), and take a € Dy with o ¢ V7, ie.

81?7
sy - (By — ¢(a, 81)) < 57.

Then ¢(a,v1) < n/C, < 7 since a,v1 € Dy. Furthermore, since the ray g +

pB(v) + Rsgv hits B4 (g™, p) and ||B(v)| < Ca, we have ||s1]| > 7 — (14 Ca)p >

(2C)) 1!~ (cf. @E24)), and

(4.30)

(1+Co)p
[[s1]l

(again cf. (£24) for the last inequality). Hence
v (By — p(v,v1)) < Tn.

This implies w € 4, (cf. (35])), and so (iv) holds.

It remains to treat the case when ﬁg C V577 It then follows from v ¢ U, that
there is some o € Dg such that there does not exist any v’ € Uy N mﬂ ol satisfying
gV (') = ¢V (v) and v, (v') = a. We noted ||s1]| > (2C1) 1 p'~ a above, hence
ls1] > Cy* (cf. @24)). If (iii) holds then we are done; hence let us assume that
(iii) does not hold, i.e. D" C Uy. Then DI, C Uy, because of ([@30), and hence all
the assumptions of Lemma are fulfilled, with C5, s1,U; in place of C,s,U. It
follows that V/, the restriction of V =V, 5, g to V" '(V1 ), is a C' diffeomorphism

onto V7 . In particular, since € Dy C VJ, there is a unique v’ € U; satisfying
V(v') = a. For this v/, set 7" = 7, 5, g(v’), so that the ray {g+pB(v')+tv' : t > 0}
hits the ball B4(g™") (v), p) for t = 7/ (cf. @S)). Thus 7 (v') < 7. If 1 (v') = 7/
then it would follow that v’ € m'g7p71, gV (v'") = ¢M(v) and v1(v') = V(v') = a0,
contrary to our present assumptions. Hence we must have 7(v') < 7/, and there
is some q' € P\ {q,q" (v)} so that the line segment L’ between q + pB(v’) and

¢(s1,v) < arcsin ~————— < aresin(2C) (1 + C2)p?) < 4C1(1 + Co)p? <
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q + pB(v') + 7'v’ intersects B(q’,p). Let us also denote by L the line segment
between q + pB(v) and q + pB(v) 4 71 (v)v, and take points u},u; € S{™* so that
g+pB)+7v =gV @) +pu;  and g+ pB(v) +i(v)v =gV (v) + pur.

We have ¢(s1,v) < 4C1(1+ C2)p? by [@30), and in the same way, p(s1,v’) <
4C1(14+Cq)p®. Hence p(v,v") < 8C1(1+Ca)p? < 1. Hence using supy,cr1 (rr) | D ||
< Cy and D27 C Uy C U, we get ||B(v) — B(v')|| < 8C1C2(1 + C2)p?. Furthermore
we have p(a,v1) < 1/C,, since e, v1 € Dy. Hence by Lemma A2 -(111), noticing that
u; = B (a) and w; = B™(v1) with B™ = B 5, it follows that p(u1,u}) <
Cho(a,v1) < 1. Hence the end-points of L and L' satisfy

1(g™ (v) + puy) — (@ () + pur)|| < p

and

(g + B(v)) — (g + B())| < 8C1C:(1+ Ca)p? <np

(cf. @24))). It follows that each point on L’ has distance < np to L. Hence q’ has
distance < (1 + n)p from L, and hence v € g . i.e. (iv) holds. O

By Lemmald.5, and since f(v,(&;,<;,v;)7—1) = 0 whenever & ¢ (C’f1 C1), the

error caused by replacing the domain of integration in 28] by Us N 102 a.pm 1S

(4.31) < (M{vewl | qW(v) € &)+ A0y (U1) + A2 ,,)) - [1flloo < 3e.

q,p,1

Cf. (13), @I4) and [(@23) for the last inequality.

Now our task is to understand
(132) Lo, (o mw) s v),) )

With the new domain of integration, the integral can be decomposed as a sum over
those ¢’ which can appear as q(*). By the definition of Us, each such point ¢’
satisfies ¢’ € P\ £ and

11l < llgll + (Cs + 1)p + Crp' ™0 < (T4 Cy +1)pH~% = Ty p

(we used (24) in the second inequality); thus ¢’ € Pr,(p). Given any q' € Pr, (p)
we write s1 := q@' — g, and let M(q’) be the corresponding set of £ € {1,...,N}

such that Eg is far from grazing position and is fully lit upon from Uy, i.e.
q)=1{f: D,V and
Vo€ Dy : v € Ui N mgm s.t. g1 (v') = ¢’ and v (v') = of }.
Then ([@32)) can be expressed as
(EONED YD Y | Flo. (" 7y (0).55(0). v (0) 1) dA(),
a'€Pr, (p) teM(q) Vo’ Rl
where
Uge={vel ﬁmqpl : qV(v) = ¢, vi(v) € Dy}

Indeed, for every v € U Nwh  there is exactly one choice of ¢’ € Pr, (p) and

¢ € M(q') such that v € Ug,NwB . and conversely for any ¢’ € Pr,(p),
(e M(q)and v € Uy N . wehave v € Uy or p*~'7i(v) ¢ (C;1,Ch), and in

the latter case the integrand vanishes.
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4.3.5. Step by step modification and approximation of the decom-
posed integral. For any q’, ¢ and v € Ug/ ¢ as in {.33)), we have |71 (v) — ||s1]|] <

(14Ca)p, 9(31,0) < 4Cy (14 Co)p? (ck. @A), and < (v) = s(¢'). Hence by (D),
up to an error of absolute size < ¢, [£.33) equals

(434) ) Z 81,Pd71||31||,€(q/)7v1(v),

a'€Pr, (p) LeM(q U’e“mwn

(P17 (0), 5 (0), v, (0)], ) dA(v).

(Note that 51 € U, since v € Uy and Uy U 0o, (U1) C U.) Next recall that dA(v) =
g(v) dw(v) for v € Uy. By [@27), if in each region Uy ¢ we replace the function
g by any constant equal to a value taken by g in Ug ¢, this causes a total error
of absolute size < ¢; and by the intermediate value theorem, an admissible such
constant is A(Ug ¢) /w( ' ¢). Hence we conclude that (£34) differs by less than e
from

) z AUs) | 7 (310 1l s(@), o1 (0),
Uq/,emmg,p,n

q'€Pry (p) LeM(q

1 n dw(v)
(4.35) <pd Tj(v),gj(v),vj(v)>j:2) m.

As in the proof of Lemma 5] for any fixed ¢’ € Pr,(p) and ¢ € M(q’), we
have a C' diffeomorphism V' of from V™' (V2) onto VI ; also Uy, C V' (V1),
V(Ugt) = Dy, and vy (v) = V(v) for all v € Uy . We take v; = v;(v) as a
new variable of integration in (£35). By Lemma [L2)ii), using also [@24]) and our
notation from EIH), w(Uq ¢) ' dw(v) in [@35) transforms into h(vi) dves, (v1),
where h = hg 4 is a continuous function on Dj satisfying |h(v1) — 1] < &/|Ifllso
for all v € 132. It follows that replacing h(vi)dve s, (v1) by dves, (v1) causes a
total error < ¢ in our expression. Also, the point where the particle leaves the
q'-scatterer is ¢’ + pB " (v1) with BT = B;slﬁ as in Lemma [£2(iii), and we note
that for all v € Ug ¢ the condition v € W% is equivalent with v (v) € w3

Hence, up to an error of absolute size < ¢, ([£38) equals

> Y e [ - 7 (300" s s ().

a'€Pr, (p) LEM(q) "
1~ ~ ~ n—1
(4.36) (P15 (0), G (0),3,(0) ) ) dvie, (0),

where 7;(v) = 7;(¢' + pB™ (v),v; p), $j(v) = 5;(¢' + pBT(v),v;p), ¥;(v) = v;(q +
pB* (v),v;p). ~

Clearly we may replace Dy by Dy in ([386]), since 9D, has measure zero Let us
temporarily fix ¢’ € Pr, (p) and £ € M(q'), and set 3 := B‘D : then DyNroB

qpnl

q'.pn—1 "
mf;/, o1 and using also ([.I8)) the integral appearing in (£30) can be rewritten as
1~ ~ ~ n—1
(4.37) /B ORI PAIRICD) (v, (P 175(0), G(v), 95(v)) ) dvg,s, (V).
1o

q’,p,n—1
Note that for all ¢’ and £ appearing in (£36), we have ve s, € Fi ¢, fi5, pa—1s,c(q')] €
F5 4, and also 8 := BFLD[ € F3 4, by Lemma [.2(iii). Hence by (£22)), the integral
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in [@37) differs by less than e from

~ _ —1
/ (n—1) f(slvpd 1||Sl||7§(q/)51;07<§ja§javj>?:1 )pohﬁ(g(ql)avo;flvglvvl)
X

n—1

(438) X HpO 'Ug 2555 — lavj 17§J7§J7vj desl vO H dg] dm gﬂ dv])

Jj=2 Jj=1
= (1)fn72(§1,Pd71||31||7<(q/),01,52,@7”2)1’0,5@(‘1/),’01;52,%122)
xg)
xdvg, s, (V1) d€a dm(s2) dva,

where in the last equality we used [@I2]) for m =1,2,...,n —2, and then renamed

the variables vg,&1,¢61,v1 as v1,&2,5,v2. Here ﬁ B and by Lemma

p,81,8| D¢’
E(iii), using p < po and E24), we have ||B(v1) — ﬁ§1 (v1)]] < 7' for all vy € Dy,
and hence by (£21) and ([B:43), the expression in ([@3])) differs by less than ¢ from

@ fn—2(§17pd71||sl||7((q/)7v17§27<27v2)p0(§17<(q/)7v1;§27<27'v2)
XD@
(4.39) xdvy,s, (v1) d§2 dm(<z) dvs
[ s sl S(),01) v o),
Dy

where the equality holds by [@I2)). In conclusion, for any ¢’ € Pr,(p) and ¢ €
M(q'), the integral appearing in ([@30]) differs by less than 2e from the integral in
(#39). Adding over q’ and ¢, it follows that the whole expression in [@36]) differs
by less than 2¢ from

(4.40) Z Z AL fe/ fro1 (81, p7 sl s(q), v1) dve s, (v1).

a’'€Pr, (p) LeM(q’)

4.3.6. Conclusion of the proof. It follows from the recursion formula (£12)
together with (8:49) in Lemma that ||fn-1llee < [[fa—2lloc < =+ < || llco-

Similarly the continuity property ([@20) immediately carries over to f,_1, i.e. we
have

p(v,v") <4CI(1 4 Co)pf and [&1 — &1] < (14 Ca)pj
= ’fnfl(’U,fl,Cl,’Uﬂ - fnfl('vlvgivglvvl)’ <é.

Hence by repeating the argument between ([{33]) and (£36) (“backwards”), with
the function f,,_; in place of f and with a slight simplification due to the fact that
this time we are not intersecting by mq p.n 0 the domain of integration, it follows
that (£40) differs by less than 3e from

(4.41) > Fam1(v, p? 7 11(v), <(a"), v1(v) dA(v).

a'€Pr, (p) teM(q') " Va' ¢

Also by the argument between (32) and [33)), this double sum equals

(4.42) g fn,l(v,pd_lﬁ(v),gl(v),vl(v)) d\(v).

n
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Now by Lemma 3 and the bound in (Z31)) (and the fact that X\ is concentrated
on Uy), replacing the domain of integration in (£42) by m p,1 causes a total error

less than 3e. Hence, using also [@.23), it follows that (IZEI) dlffers by less than 4e
from

) fn—l (’U, 61 yS1, ’Ul) po,,@(g(q)u v; 61 yS1, ’Ul) d}\('l}) dgl dm(Cl) d’Ul
XU

(4.43) :/X(n)f(”Oa<§ja<javj>?:1)po,ﬁ(C(Q),vo;&,cl,vl)

U
X HpO Vj—2,5—-1,Vj— 17§Ja§javj dA UO H dgj dm Cj dv])
Jj=2 Jj=1
where the last equality holds by repeated use of (£12).
Summing up, we have proved that for any p € (0, o), g € Pr(p) and B € F3,
the two integrals (28)) and ([{43) differ by less than 15¢. This completes the proof
of Theorem (1] O

4.4. Macroscopic initial conditions

Generalizing the notation 20(1; p) from Section B21] let us write 20(n; p) for
the set ro(n; p) in macroscopic coordinates, i.e.

(4.44) W(ni p) = {(g.v) € T'RY) : (9 ~q,v) € w(n p)}.
The following space is the macroscopic analogue of X [(]"), cf. (@2):
X = {<q,’vo, (€55,v5)5_1) € THRY) x (R x £ x 877"

(4.45) v; €V, (j:l,...,n)}.
In particular note that X(*) = X, the extended phase space defined in (B.55).

THEOREM 4.6. Let P and £ satisfy all the conditions in Section[2:3 and (235,
and let U be a scattering process satisfying the conditions in Section[34 Then for
anyn > 1, A € Po(TH(RY)) and f € Cp(X™), we have

n
lim f(q, v, <Pd_17j(P1_an v;p),si(p' " %q,v;p),v;(p' g, v; p)> , )
P=0 Jow(nsp) J=1

xdA(q,v)
(4‘46) = /}{(n) f(qJUOJ <§j7<j7vj>?:1) p(v0;517§17v1)

n
XHPO v] 2,S6j—1,Uj— 175]79]7/0] dA (I;'UO H dé-_]dm Sj dv])

Jj=2 j=1

REMARK 4.2. Regarding the limit expression in ([£46]), one should note that

n
/( )p(vo;fl,ﬁ,’vl) [1ro;—2,5-1,v5-15&,55,v;) dA(g, vo)
X n .

Jj=2

x [[(d¢; dm(s;) dv;) =

Jj=1
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This follows by iterated use of (849) in Lemma B28, and Lemma In partic-
ular, taking f =1 in (£44), the theorem implies that A(20(n;p)) — 1 as p — 0.

REMARK 4.3. In the special case of ¥ being specular reflection, Theorem
is equivalent with Theorem [[L21 Here one should note that the definition of the se-
quences {7;}, {s;}, {v;} which was given in Sec. B4 and which is used in Theorem
46l differs slightly from the definition used in Section and Theorem How-
ever, as far as the values of ((7;,¢;,v;))’_; are concerned, this difference occurs only
for initial conditions (g, v) which lie outside 20(n; p), and since A(20(n; p)) — 1 as
p — 0 (cf. Remark [2)), it follows that Theorem and Theorem are indeed
equivalent.

Proof. We derive Theorem as a consequence of Theorem [T together with
Theorem and Propositions and [3:3371 As we will see, after expressing the
integral in the left hand side of (440 as an iterated integral over g and v, the
inner integral (that is, the integral over v) can be treated by more or less exactly
the same arguments as in the proof of Theorem (.11

Some initial reductions: The right hand side of (@46]) can be expressed as
fX(") fduna, where pa is a Borel probability measure on X (™); cf. Remark re-
garding the fact that s (X (")) = 1. Hence by a standard approximation argument,
it suffices to prove ([£48) under the extra assumption that f has compact support
in X", Next let g € L'(T*(R%)) be the density of A with respect to dg dv. Again
by Lemma and Lemma we have

/(R>0xzxsfl)n

n
(- ~)‘p(vo;§1,<1,v1) [T ro(wj—2,5i-1,05-15€5,55,v5)
Jj=2

X H(déj dm(s;) dv;) < || fllso
j=1

for all (q,vo) € T'(R?) (where the integrand should be interpreted to vanish when
(g, vo; <§j,§j,vj>?:1> ¢ X)), Hence, since C.(T*(R?)) is dense in L' (T*(R%)), we
may without loss of generality assume g € C.(T*(R%)).

Since f has compact support, we can choose C; > 1 and T > 0 so that
f (@, v0; (&5, 55, vj>;.l:1) vanishes unless ||q|| < T and &1, ..., &, all lie in the interval

(C;1,Ch). Set
T, =T+ C; + 1.

We write fo = f, and define functions f,, € C.(X™~™)) recursively for m =
1,...,n— 1 exactly as in ([£I2)) but with the extra parameter ¢ in each f,,.

Let € > 0 be given. We fix 0 < 1 < 155(5 — sw(5 — Bw)) and pj, € (0,1) so
that

(4.47) AB,n) <e/llfllc Yo €(0,0);

this is possible by Prop. B:37 Given 7, we let Dy, l~)g, Ay, Fyy and Fy for £ =
1,..., N be exactly as in the proof of Theorem [£1l Also for £ =1,..., N we set

Fap = {flgwoc0rc0) © (@v0) € T'(RY), wg € Ay, & >0, ¢ € B},
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where flg vo.¢0.50] € CC(XEZ_U) is defined exactly as in (£I8) but with the extra
parameter g in f. Then F5 is a uniformly bounded and equicontinuous family of
functions on ng_l).

Let us also take ’ > 0 sufficiently small so that the condition formulated around
#21) holds, but with the extra parameter q in f,_o and with (g, v’) arbitrary in
T'(R?). This is possible by an obvious modification of Lemma F4l

Next take po € (0,1) so small that the inequality in [@22]) holds for all p €
0,p0), ¢ € Pr(p), £ € {1,....,N}, u € Fry, f € Foyp and B € F5,. This is
possible by Theorem 1] applied with n — 1 in the place of n. We shrink pg further
if necessary, so as to also ensure that

1

V( )fn_l(q,v,pd‘ln(pl‘dq,v;p),q(p ~Aq,v;p),v1(p' g, v;p)) dA(q, v)
W(1;p

(448) _/ W fn—l(qu’Uaglugluvl)p(v;glagluvl) dA(q,’U) dgl dm(Cl)d’Ul <e€
x @

for all p € (0,pp). This is possible by Theorem We shrink pq still further if
necessary, so as to also ensure that the following four conditions [@49)-(Z52) are
fulfilled:

(4.49) po < min{ﬁo(n, 107min(”f5”00,n,>), o, (%Cl)l/(dl)}

(where po(---) is as in Lemma 2] and pf is the number in ([@47]));
(450)  A({(q,v) € W(1;p) : ¢V (p' g, vip) € E}) </l flloc  Vp € (0,p0)
(as is possible by Prop. B.30));
(4.51) (v, v') <4C1p§ and [& — &1] < 2pf
= |fl@v,(&,5,v)0-1) — f(g, v, &, q,v1, (6, 55,v5) )| <€

(this can be obtained since f is continuous and has compact support); and

9
vol(BH)w(ST ) flloo

Now fix any p € (0, po). We will prove that the integral in the left hand side of
([#428) differs from the right hand side by < e. We will use the following short-hand
notation:

(4.52)  @(v,v') <8C1p] = |g(q.v)—g(g,v)| <

1-d 1-d 1

() = Ti(p' g vip);  G(v) =0 g, vip); v;(v) = w,(p' g, v p);
gV (v) = g9 (p' g, vip);  s1(v) =g (v) - p' .
For each g € R? we set

Wy(n;p) = {v ST : (q,0) € W(n;p)},

and let A\, be the Borel measure d\q(v) := g(g,v)dv on S¢~'. Then since
f(q,v,(&,5,v5)}—1) = 0 whenever ||g|| > T, the integral in the left hand side

of ([A40) equals
(4.53) /B d /(m . 7(g. 0, (0" 75(0), 5 (0),05(0)) ), ) dAq(v) da.
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For each q € B%, we define the set Uz 4 as the exact counterpart of Us in ([@29):

Usq = {v € W(lip): O <p™Im(v) <C1, ¢V (w) € P E, [wr(0)] C VI,
and [Va € [v1(v)] : Jv' € We(1;p) s.t. ¢V (v') = ¢V (v) and v1(v') = ] }
We now have the following analogue of Lemma

LEMMA 4.7. For q € B%, if v € Wq(1;p) \ Uz,4 then one of the following holds:

(i) p*mi(v) ¢ (C71, Ch);
(ii) ¢M(v) € &;
(iii) (q,v) €6,

PROOF. The proof of Lemma carries over with very small and obvious
modifications. There are some simplifications due to the fact that we now have
“B = 07, meaning that we can replace Cy by 0, and take C' = 10 in the application
of Lemma O

By Lemma 47 and since f(q,v,(&;,¢),v5)j—1) = 0 whenever & ¢ (c;t, ),
the error caused by replacing the domain of integration in the inner integral in
[@.53) by Us,q NWq(n; p) is

(4.54) < (A({(g,v) € W(L;p) : ¢V (w) € EY) + A(,)) - [| flloo < 2.
Cf. (@410) and (E0) for the last inequality.

Now our task is to understand
ws) [ £(@.0.(5"1 7 (0).55(0), 0, (0))]_, ) dAg(v) da.
B JUs,qNWq(n;p)

Fiz an arbitrary q € B%, and consider the inner integral in (&55)). This integral can
be decomposed as a sum over those ¢ which can appear as ¢1). By the definition
of Us,q, each such point ¢’ satisfies ¢’ € P\ € and

Iq']| < lp* g + 20+ C1p*~* < (T + C1 + 1)p' 4 = Ty p' %

thus q' € Pr, (p). Given any q' € Pr, (p) we write 81 := ¢’ — p'~?q, and let M4(q")
be the corresponding set of £ € {1,..., N} such that Dy is far from grazing position
and is fully lit upon, i.e.,

Mg(g')={¢ : D, C V3" and
Ve € Dy : 30" € Wy(1;p), st. ¢V (@) = q and v, (v') = al}.
Then for our fixed g € B%, by the same argument as for (Z33)), the inner integral
in ([A58) can be expressed as
(4.56)

v =11 (v), ¢ (v),vi(v " v
Z Z 9 /Uq’lqu(n;p)f((b ’<p J( ),Cj( ), J( )>J:1) d/\q( )

q'€Pry(p) LeMq(q

where

Ugei={veWy(1;p) : ¢V (v) =¢', vi(v) € Dy}
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Now, by a direct mimic of the treatment of [@33)) in the proof of Theorem F1]
all the way to (@ZI]), one shows that for every q € B%, the expression in (£50)
differs by at most

e (6 Ag(S91) + VOI(QB%))

from
(457) /U Famr(@, v, 0" 71 (0), 1 (0), 01 () dAg (0).

(The factor vol(B%)~! in the bound comes from the corresponding factor in ([AL.52)),
which was not present in the analogous assumption in (£27]).) Integrating now over
qc BE‘,{, we conclude that up to an error of absolute size < 8¢, the double integral

in (A35H) equals
(4.58) L[ fea@os n@).a), v ) dy(o) da
Bt JUz,q

By Lemma [£. 7 and the bound in (£.54)), replacing Us 4 by 24(1; p) in (A58)) causes
a total error less than 2¢; and hence, using also ([4.48)), it follows that (£58) differs
by less than 3¢ from

" fn—l (q7 v, 517 S1, ’Ul)p('v; 517 S1, ’Ul) dA(q7 ’U) dé-l dm(§1) d'Ul,
b's
and this integral is equal to the right hand side of ([Z40]).

Summing up, we have proved that for any p € (0, po), the integral in @53
differs by less than 13¢ from the right hand side of ([@.40]). This completes the proof
of Theorem O

4.5. Random flight processes

We will here discuss the deduction of Theorem [[I] and Theorem from
Theorem

For any metric space S and positive real number T, we write Dg[0,T] (resp.,
Dg[0, 00)) for the space of cadlag functions [0, T] — S (resp., [0,00) — S), equipped
with the Skorohod topology (cf., e.g., [T, Ch. 3] and [28] Ch. 3.5]). Given A €
P(TY(R9)) and p > 0, if (g,v) is a random point in (T*(R?), A) then ©() defined
by ©)(t) = @”) (q,v) as in (LI4) or (I.29), is a random element in D1 (gay[0, 00).

We will first give a precise definition of the limiting flight processes © appearing
in Theorems [[.T] and To this end, we extend ([@4H) by letting

X(OO) = {<q0,'vo; <§j,gj,'vj>;il> S Tl(]Rd) X H(R>0 X 2 X Sf*l) :

Jj=1

(4.59) v; € Vo, Vi 2 1},

with the topology induced from the product topology on T*! (RY) x Hjoil (Rsgx X%
Sffl). Also let pr,, : X(*) — X () he the projection taking (g, vo; INST vj>;i1>

n

to (g, vo; (&5, ), 'vj>j:1>. Given any Borel probability measure A on T'(R?), we
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let v be the unique Borel probability measure on X () which for any n > 1 and
any Borel set A ¢ X (") satisfies

(4.60) VA(pfr_Ll(A))Z/Ap(vo;&,q,vl) Hpo(vj—%<j—17vj—1§§ja§javj)
j=2

xdA(g,vo H d¢; dm(s;) dv;).
Jj=1

(The probability measure in the right hand side is exactly the one that appears
in (£40) in Theorem [L8) The existence and uniqueness of the measure v, is a
consequence of the Kolmogorov extension theorem. Note that v, is the distribution
of a Markov process with memory two on the space Ry X ¥ X S‘li_l.

Set

F= {(qo,vo,<§J,§J,vJ>J )eX( 00) . Z;‘;lgj<oo}.
LEMMA 4.8. v (F) =0.

PRrROOF. For any ¢t > 0 and any positive integer n we have

(4.61) UA({<q0,vo,<§],<],v]>J L EX ng St}) (cpva—1)" Z—n'

Indeed, using (£60) and Lemmas and to express the left hand side as
an integral over T'(R?) x (Rso x Q)", and then using the fact that both k and

k9 take values in [0, cpvg—1] (cf. BH) and (B)), the left hand side of ([@GI) is
seen to be bounded above by (cpvy—1)™ times the Lebesgue volume of the simplex
{(615--,8n) € (Rog)™ = D70, & < t}; this is the bound in (@ET).

It follows from (A6T]) that va (Z;il & < t) = 0, for every t > 0. The lemma
follows from this fact. (|

We next define a map
(4.62) J : X — Do gay [0, 00),

as follows. For z = (q07v0; <§j7§j7vj> ) in X (> \‘7:

(463)  J@0) = (a0 + DG+ (=&~ — &)varva).

j=1
where n = n({£1,&,...),t) is the nonnegative integer defined through the relation

(4.64) G+ 46 <t<&+ 4+ &t

To make J defined on all X () we choose a fixed (dummy) value y° € D1 (ga)[0, 00)
and declare J(z) :=y° for all x € F.

The map J is Borel measurable; in fact J is even continuous on X () \ F, as
one easily verifies using [28] Prop. 3.6.5].

DEFINITION 4.2. We let © be the random element J(x) in D1 (ge)[0, 00) for x
random in (X (), v,).
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We will now give the proof of Theorems [[.T] and In the case of Theorem
[Tl we consider the hard sphere scattering process introduced in Section [[.2] and
let the scattering map ¥ : S — S, be as in ([L4); in the case of Theorem we
consider the Lorentz process for potentials and let ¥ : S_ — S be the scattering
map associated to the fixed potential W. (We recall explicit formulas for the
correspondence W — ¥ in Section [5.4] below. Note that in Theorem we are
assuming that W is such that ¥ satisfies the conditions in Section[3:41) The choice
of scattering map ¥ then leads to corresponding collision kernels p(v; &, ¢, v4)
and po(vo, s, v; &, ¢4, v4) (cf. Sec. BH) and a corresponding probability measure v
on X () (cf. [@B0)) and finally a random flight process © (cf. Def. E2). We will
prove that Theorem [L.1] (resp., Theorem [[3]) holds with ¢his limiting random flight
process O.

Let us note that it suffices to prove that, for each fixed T > 0, the random
element G(P)|[07T] in D1 (ray[0,T] converges in distribution to Ol 1), as p — 0.
Thus from now on we keep 7T fixed. For each n € ZT we define ¥, : X(™ — Ryq
by

Sp@)=& 4+ & for = = (qq,vo; <§j,§j,vj>;l:1> e xm,
We also view ¥, as a function on X (°) via composition with the projection pr, :
X () — X Then define the random element ©,, 7 in D1 (gay[0, T through

J(x) if ¥,(x)>T,

(4.65) Onr = :
Yl if Bu(z) <T,

with 2 being the same random element in (X(°) v,) as in Definition B2, and y°
being the dummy constant in Dr1(gay[0, 00) fixed above. Let us record that, as an
immediate consequence of ([@61]) applied with ¢t = T', we have

(4.66) lim P(O, r=06r)=1.

n—00

For any p > 0, (q,v) € w(n;p) and j € {1,...,n} we let 75(q,v; p), (g, v; p),
and v;(q,v; p) be as defined in Section 3.4 We define the map

C,: THRY) — x™

by
(@0, (p" " 75(p"~"aq,v:p), (0" ~a. 03 p), v (' M wip)) )
Cplg,v) = if (g,v) € W(n;p),
20 if (q,v) ¢ W(n;p)

(recall ([@Z4)), where z° is a (dummy) point in X (™ fixed once and for all. Let us
also set

Wr(n;p) = {(q,v) € W(n;p) : ,(Cy(q,v)) > T and
(4.67) vj_1(q,v;p) # sw - vj(q,v;p) for j=1,....,n—1}.

REMARK 4.4. Recall B30) regarding sg; thus the last condition in (@G
means that none of the first n — 1 collisions occurs with exactly vanishing impact
parameter. We need to exclude the case of vanishing impact parameter since the
collision time may be infinite in this case. We remark that in the case of the
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hard sphere scattering process, the last condition in (£67) could be removed in the
following proof.

We will next define a map J, : X — Dr1(gay [0, T such that [J,0C,(g, v)](t) =
&)gp)(q, v) for all (q,v) € Wr(n; p) and ¢ € [0, T]. This is slightly more complicated
in the case of the Lorentz process for potentials, and we discuss that case first. Here,
we first need to introduce one more piece of notation regarding the Hamiltonian flow
with the potential W. Recall that for a particle entering the unit sphere with veloc-
ity v_ and exiting with velocity v, the point of entrance is uniquely determined
to be B, (vy), and the point of exit is 3 (vy). It is also easily verified that the
total time which the particle spends inside the unit sphere, T%_ ., is finite when-
ever 3, (vy) # —v_[1 In this case, let the particle path inside the unit sphere
be t — 1, .. (t), for t € [0,Ty_,]; in particular Yy 0, (0) = By (v4) and
Yy v, (To_v,) = Bt (vy). Tt follows that the particle path in the sphere of ra-
dius p? centered at the origin is given by t s p? Yo v, (p~dt) fort € [0, p* Ty_ v, ].
Now we define the map

Jp: X = D (ray[0,T)

as follows. Let

n

z = (g,v0: (&, 55, v5);_,) € X

be given. If 377, & < T orif v; = sy - v for some j = 1,...,n—1 (cf. (B30))
then we set J,(z) = ¢°|[o,7). From now on assume > 7, §; > T and v; # sy - v
(& By, ,(vj) #vj1) foreach j =1,....,n—1. Set { :=&; + pTy, . w,. Given
t € (0,7}, let m be the largest number in {0,1,...,n} satisfying 327", £} <t; then
infact 0 <m<n—1 Ift <&y + Z;n:l &) then we set

1@ 0= (a+ 32 (6001 + 08, ()~ B3, (0,))

(=€ = = €)om, ),

whereas if £ 1 +3070, &) <t < Z?:El &) then set s := p~ @ (t = (Empr+ D721 &)
and

Jp(2)(t) := (q + Z(fj”j—l +0'(B, () = By, (vj))) + &mt1Um

j=1
(4.68) S N O By c i AR ) B LN O] [ S ) §

This completes the definition of J,, in the case of the Lorentz process for potentials.

In the case of the hard sphere scattering process, we define J, : XM
D1 (ay[0, T simply by applying the above definition with 7, _ ,, = 0; this means
that f;- = ¢, for all j and the case (L68) never occurs; thus there is no reference to

Py, ()7

Hndeed, we have To_w, = T(I(B5_(vg)R(v-))Lll) in the notation of (5.64); hence the
claim follows from (5.65) and Lemma [3:225(2).



88 4. CONVERGENCE TO A RANDOM FLIGHT PROCESS

By inspection one verifies that, both for the Lorentz process for potentials and
for the hard sphere scattering process:

(4.69) [Jp0C,h(q,v)](t) = &)Ep)(q,v), V(gq,v) € Wr(n;p), t € [0,T].
Furthermore J, o C,(q,v) = 4°|o,7) for all (q,v) € W(n; p) \ Wr(n;p).

Recall from Sections[[2 and [[3] that the random element ©() in D1 (gay [0, 00)

is defined by ©®)(t) = &)Ep) (q,v) where (q,v) is a random point in (T*(R?), A).
Using the same random point (g, v), we now also introduce, for each fixed n € Z™,
the random element @55 2[ in D1 (gay[0, T] through

ov) = JpoCplq,v) if (g,v) € W(n;p),
" Y°l 0,17 if (q,v) ¢ 2W(n;p).

Note that @552[ = G(P)“O)T] whenever (g, v) € 2r(n; p); hence
P(Gfﬁr = 6(’J)|[0,T]) > AW (n;p)).
Furthermore, by Theorem and Remark (and ([B0)), Cy(g,v) converges in

distribution to a random point in (X vy opr; ') as p — 0. It is immediate from
(#50) that

vaopr, ({z € XM . %, (2) =T or vj_1(2) = sy - vj(2) for some
(4.70) ji=1,...,n—1}) =0,

and hence by the Portmanteau Theorem,

ll)ig% A7 (n; p)) =vaopr, ({2 € X 1 B,(2) > T1).

The last expression tends to 1 as n — oo, by ([@61]) applied with ¢ = T. Hence we
conclude:

(4.71) lim liminf P(0). = 0|, 1) = 1.

n—oo  p—0

In view of ([@TI) and [@B0), in order to prove that ©) |j0,7] converges in distribu-

tion to O], 1}, it now suffices to prove that for each fixed n € Z*, 655; converges
in distribution to ©,, 7.

Thus from now on we keep n € Z*t (as well as T > 0) fixed. We will prove the
desired convergence by using Theorem and the continuous mapping theorem.
We first need to introduce one more map. We define

(4.72) J: X™ — Do (gay[0, T
by setting, for z = (q, Vo; <§j, S 'Uj>?:1) e Xm);

J(@) =4l if ¥p(2) <T,
while if 3,,(z) > T then

T@)®) = (20 + D G014+ (t = (@) v, v,

Jj=1
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where m is the unique integer in {1,...,n — 1} such that ¥,,(z) <t < Z,41(x).
The point of this definition is that now the random element ©,, 7 in (£60) can be
expressed as

On,r = J(pr, (1)),
where  is a random point in (X(°),v,) as before.

LEMMA 4.9. If {pr} is any sequence in (0,1) with pr — 0, and {2z} is any
sequence in X such that z := limp_eo 21 exists in X("), and ¥,(z) # T and
v;—1(2) # sw - v;(z) for each j = 1,...,n —1, then limy o0 Jp, (21) = j(z) mn
Doy gy [0, 7).

Proor. This is easily verified by comparing the definitions of J, and J. One
also uses the basic fact that the collision time for any scatterer collision is uniformly
bounded so long as the impact parameter is bounded away from zero (cf. Lemma

B25(2) and (E.65) in Section 5.4 below). O

We continue to let z be a random point in (X (), v,) and also let (q,v) be
a random point in (T'(R?),A). As we have noted above, C,(g,v) tends in distri-
bution to pr,,(z) as p — 0 (by Theorem [£.6] and ([@G0)). Hence by the continuous
mapping theorem [35, Thm. 4.27], together with Lemma and (@10, we con-

clude that J, o C,(q, v) tends in distribution to J(pr, (x)) as p — 0. Equivalently,
955)T tends in distribution to ©,, 7.
This completes the proof of both Theorems [I.1] and [[.3] O

4.6. Semigroups and kinetic transport equations

This section provides more details on the forward Kolmogorov equation (31

for the random flight process © introduced in (L24). We follow closely [44] Section
6], and will only highlight key steps. We start by providing a precise definition for
O and showing the process is Markovian.
Define L'(X) and L{ (X) as the spaces of integrable/locally integrable func-
tions X — R with respect to the measure dgdv d¢dm(s)dvy, where X is the
extended phase space as defined in (B55). We generalise v in (£60) as follows.
Given any non-negative function f € L] (X ) we define 7 to be the (unique) Borel
measure on X (°) which for any n > 1 and any Borel set A ¢ X satisfies

(4.73) op(pry}(A)) = / £ (2,00, 60,61, 01)
A
< [ [ po(wj—2,5-1,v5-1;&, 55, v;) dgdvo [ ] (d€; dm(s;) dv;).
j=2 j=1

The same formula also associates to any f € Ll(X ) a signed Borel measure 7y on
X () Note that if f is a probability density then Uy is a probability measure. In
analogy with (L.62) we define the map

J: X = Dx[0,0),
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j\(‘r)(t) = (QO + Zgj'vj—l + (t - En(‘r))vm Un, En-‘rl(x) —t,Sn+1, 'Un-i-l)a

j=1

for x = (qo,vo; <§j,§j,vj>;il) € X(®)\ F (with n = n((&,&,...),t) as before);
again declare the dummy variable .J| (x) := y° for all x € F. This map J is Borel

)\ F, as one verifies using [28|

measurable; in fact J is even continuous on X
Prop. 3.6.5].

DEFINITION 4.3. For f € L'(X) a probability density, we let © be the random
element J(x) in Dx[0,00) for z random in (X (), 7).

That is, for all probability densities f € L*(X) and Borel sets A C X,
P(O(t) € A) = op{z € X : J(z)(t) € A}.

(X) — LL (X) for © is

loc

DEFINITION 4.4. The evolution operator K; : Ll _
defined by the relation

(4.74) /Ath(q,v,g,g,m) dgdv d¢ dm(s) dv, = op{z € X+ J(x)(t) € A},

for all non-negative f € L{ (X) and Borel sets A C X, and extended to all L}, .(X)
by linearity.

We note that K; preserves the subspace of non-negative functions in L (X);
K; also preserves L'(X). If f € L'(X) is non-negative, then IKefllx)y =
[l fllLi(x)- This follows from (A.74)) for probability densities f, and for general
non-negative f by linearity. We thus have by the triangle inequality

(4.75) Il xy < I fllrx

for all f € L'(X). We have the following expansion in terms of number of collisions
n within time ¢,

(4.76) K=Y K",
n=0

where

(4.77)

/Kt(n)f(qav7§,<,v+)dqdvdédm(g)dmr
A
=0z e X : J@)(t) € A, Tp(z) <t < Spyi(z)}.

More explicitly, in the case n = 0,

(478) Kt(O)f(qvvagvgvv‘F) = f(q - t’l}, 'U,é.—i- t7§7v+)7
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and for n > 1,

Kisn)f(qv v, 57 Ss ’U+)

(4.79) = /§1+...+§n<t f(q - (;fjvjl +E—&—... §n)vn>7v07§17§1;vl>

n+1 n
X H Po(vj—2,5j-1,v-15&5,5,v;) H(dvj,l dé; dm(s;)),
j=2 j=1
subject to

(4-80) v, =0, &1 =§+t— (51 + ... +§n)a Sn+l1 =6, Upy1 = V.
We have for any f € L'(X) and n > 1:

n CpUq t
(481) R e

This bound is proved by first applying Lemmal[3.28 to the integrals over &, ¢, 11, Vpt1,
and then mimicking the proof of ([@GI). It follows from (RI]) that the sum (@70)
is uniformly operator convergent on L'(X).

The semigroup property established in the following proposition implies that
O is Markovian.

PROPOSITION 4.10. The family (K¢)i>o forms a linear sengmup on Li (X),
and a (strongly continuous) linear contraction semigroup on L'(X).

PRrROOF. (This is almost identical to the proof of [44] Proposition 6.3].) For
feLL(X),0<5<t,0<m<n, and {@I0),

KR flg 0,606, 04)

/ (q— (Z@v; 1+ (t—-& — —§n)vn>,v0,§1,§1,’01>

(4.82) i=1
n+1 n
<[] po(wj-2,5-1,v-15&,55,v;) [ (dv;—1 dg; dm(sy)),
=2 =1

with the range of integration [J restricted to

m+1

Z§J<tand Z§J§s< Zéj (m < n)

(4.83)
Zgj <s (m =n).
j=1
Therefore
Z KT R m = g
and thus

K, K, Z KM m i . KM R M Z K,
m,n=0 n=0 m=0
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This proves the semigroup property. Strong continuity follows from a standard
argument, see [44], Proposition 6.3]. The contraction property is already established

E.T5). O

Set f: = Kf. For f sufficiently nice (see below for details), ¢ > 0 and h small,
we have in view of the semigroup property and the expansion (L.70l),

ft+h(q7va€7§7v+) = ft(q - h'U,’U,g—'— h7§7v+)
+/ fi(q — (&vo + (h = &)v), v0, &1, 61, v) po(vo, 51, v5€ + h — 1,5, v4)
0<é1<h

X d’vo dgl dm(gl) + O(h2)

If we divide this expression by h and formally take the limit A — 0, we recover
the transport equation (IL3T]). To make this rigorous, we need to assume suitable
differentiability assumptions for f. To this end, we define the following spaces of
continuous and continuously differentiable functions.

For functions X — R we define the norm

(4.84) Ifll, = esssup @&

(qv,€,5,v4)EX o(v,v4)
and let L;°(X) be the space of f with || f|l» < co. We denote by C,(X) C L>°(X)
the subspace of continuous functions, and furthermore set

CLX):={f€Co(X) : Do f,..., 04,1, 0cf € Co(X)}.

Similarly, we consider function spaces with an additional time-dependence,
where for any given T > 0, X in the above definitions is replaced by [0,7] x X. In
particular, we set
(4.85)

CLI0,TIx X) :=={f € Co([0,T) X X) : O¢f,0gr f,- - 0guf,0cf € Co([0,T] x X)}.

In the following we will assume that the collision kernel pg is a continuous
function in all variables. This allows us to solve the Cauchy problem of the for-
ward Kolmogorov equation for the Markov process o. Examples of case where
po is continuous include Poisson scatterer configurations and Euclidean lattices in
dimension d > 3 [44] Remark 4.1f1

Set

Y = {(vo,¢",v;&,6,v4) € ST x U x ST X Rog x B x ST iw €V, vy € Vi),

/ .
(4.:86) lollo = esssup 120 U&S V)]
(v0,¢",v3€,6,v4)€Y o(v,vy)

We let L (Y) be the space of ¢ with |||, < 00, and C,(Y) C Lo°(Y) the subspace
of continuous functions.

2For Euclidean lattices in dimension d = 2 one has a completely explicit formula for po;
cf. [45], and po is continuous except at points with B;LDR(D)(el)J_ = Be, (v+R(v)) L (there is a
misprint in the statement of this condition in [44] Remark 4.1], however it appears in the correct
form in [44] Lemma 6.5(iii)]). Using this precise control on the set of discontinuities of pg one
can show that Theorem F.I1] holds also for the case of Euclidean lattices in dimension d = 2; cf.
[44, Theorem 6.4].
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THEOREM 4.11. For T > 0, fo € CL(X) and po € C,(Y), the function
ft,q,v,6,6,vy) = Kifo(q,v,€,6,v4) is the unique solution in CL([0,T] x X)
of the integro-differential equation (L31]),

(487) (at +v'vq —85)f(t,q,'v,§,§,v+)

:/ a1 f(t,q,'U(),0,C/,'U)po('Uo,C/,v;§,§7v+)dm(§/) d’UO
ExSTT

with f(oaqavvé.agav+) = fo(q,v,§,§,’l}+)-

PROOF. The proof is virtually identical to that of [44] Theorem 6.4]. We will
therefore only sketch the main steps. Key are the following two lemmas.

LEMMA 4.12. For every fo € C,(X), the function f(t,q,v,& ¢,v4) =
K fo(g,v,&,¢,v1) belongs to Cx([0,T] x X) for all T > 0.

PROOF. See [44], Lemma 6.6]. We have by (£79)),

(488 |Kfol < ol [ o(v0,01)
51+~~~+£71St
n+1 n
X H Po(Vj-2,5-1,V-1;&5,j,V;) H(dvj—l d&; dm(gj)),
j=2 j=1

subject to ([@80). The same proof as for (@61 then yields

n (cpvg—1t)"
(4.89) 1K™ folle <~ £l

n!
and hence
1£t e = [Kefolle < e follo,
which shows that f is bounded.
It now remains to establish continuity. In view of ([ZY), it suffices to prove
continuity for each function f(t,q,v,¢,¢,v4) == Kt(")fo(q,v,g,g,mr), n > 0,
which in turn follows from (£79), using the assumed continuity of fy and pg. O

LEMMA 4.13. For fo € CL(X) and f(t,q,v,,5,v4) = Kifo(q,v,£,6,v4), the
derivatives Oy f,0q, f, ..., 0q,f, Oc f exist and belong to C,([0,T] x X) for all T > 0,
and f is a solution of the transport equation (LT]).

PROOF. The proof follows the same strategy as Lemma[I2l See [44] Lemmas
6.7, 6.8] for details. O

The remaining step in the proof of Theorem [.11] is thus the uniqueness of
the solution, which follows again from a standard argument, cf. [44] Lemmas 6.9,
6.10]. 0

The analysis of the above Cauchy problem can be extended in principle to cases
when pg is not everywhere continuous. We will not pursue this here, but instead
demonstrate that, given initial data fo, and two collision kernels po and Po that
are close in L', the resulting time-evolved densities K fo and K, fo remain close in
L' for all t € [0, T] (T fixed). This means in particular that the solutions of (1)
provide arbitrarily good approximations of processes with general collision kernels.
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To make this precise, let L}T (Y) the space of ¢ that are integrable with respect
to the measure
o(vg,v) dvgdm(s") dv d¢ dm(c) dv .,
and denote by [¢l|1(y) the corresponding norm. Recall that, by Lemma [3.28,
every collision kernel satisfies

(4.90) / h / /v po(v0,<', V1€, 6, v4) dvy dm(cy) dé = 1

for all vg € S{7', ¢/ € ¥ and v € V,,. This implies that po € LL(Y), with
pollLs vy = va-—1 w(S47Y). Of course also po € L(Y), with ||polls < cpva_1.
Finally we define

7(’0,6,(,’0.},.) = /Rd |f(q,’l),§,§,’v+)| dq7

which we view as a function on X which is independent of gq.

PROPOSITION 4.14. Let pg and po be two nonnegative functions in Lo (Y) both
satisfying the relation @) for all vo € ¢, ¢’ € ¥ and v € Vy,. Then for any
fel}(X) andt >0,

(4.91) [|Kpf — fN{tfHLl(x) < 2|[fllo llpo — Poll: (v) t exp (va—1(lpollo + [IPollo) t)-

ProOOF. Let us modify the definition of Kt(") in (@19), replacing the fixed
collision kernel po by a sequence of general functions 1,2, ... € LL(Y)NLI(Y).
That is, we set

Ki(fn)f(qv v, 57 Ss ’U+)

(492) = /§1+,,,+§n<t f(q - (;gjvjl + (t - 51 e T §n)vn>7v07§17§1;'vl>

n+1 n
< [T ei1(@i—2,5-1,v5-1:&,55,v5) ] (dvj-1dg; dm(sy)),
j=2 j=1
subject to (@30). In analogy with the proof of (AGI) (this time also using
o(vj_1,v;) = o(v;,vj_1) to integrate out the terms with index < n — 2), we

then have for any f € L*(X), n > 1,

-1y
(4.93) [Fiek f||L1(X) < 1, Hf” llonllLe vy H l[pillo-

Alternatively, if ¢,, = po (or Po), then we may first apply the relation (£90) to inte-
grate out the variables &, ¢, 41, Vn41. Bounding the remaining factors appropriately
we conclude that, for any 1 < j < n,

—2n n—1
1

ol IIfH 1eillLy vy HII%HU

l#]

(4.94) 1K™ fllix < (d

We use the formal relation

Ay--- Ay — By ZAl A; 1(Aj — B;)Bji1--- By
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to expand K™ f — K™ f into a sum of n terms, each of the form [@JZ) with

Y1 = ... = @Yj_1 = Po, P; = Po — Po, Pj+1 = ... = Pn = Po. Using the bounds
(#93) and ([£94) we then obtain

1 ~(1 = -
(4.95) 1K f = KDl < [T lollpo — Bolley vy t

and for n > 2:
1™ f — f(t(n)fHLl(X)

- Vg 12t ! n—2 Ugilltn 1
<[ fllellpo = Pollr: (v) (ﬁ(”pono + pollos)” ™+ oy lpolle™ )

(4.96)

n k k
t
d
< |[Fllsllpo = PollLs vy D (=] i ([lpollo + [1Poll )"
k=n— 1

Since Kt(o) f- IN(t(O) f =0, the bound @37 follows from summing ([EI5) and (£.96)
over n > 2. O






CHAPTER 5

Examples, extensions, and open questions

5.1. The Poisson case

Fix a constant ¢ > 0. In the present section we will prove that all the as-
sumptions in Section 23] are (almost surely) satisfied in the case when P is a fixed
realization of a Poisson process in R? with constant intensity c. In fact we will prove
that the key limit statement, [P2], holds with the limit measure being independent
of g € P. Hence in the present section, the space of marks ¥ can be taken to be a
singleton set, and we may remove it entirely from our notation, writing X = R% and
P =P. However, we will still write “u.” for the unique limit measure appearing
in [P2], so as to avoid a clash of notation with the macroscopic limit measure p
defined in Section (In the end it turns out that pc = p.)

PROPOSITION 5.1. Fiz constants ¢ > 0 and 0 < a < 1. Let 1) € P(N4(R?)) be
the distribution of a Poisson process in RY (d > 2) with constant intensity c. For
-almost every P € Ny(R?), all the assumptions in Section [Z3 are satisfied, with
cp = ¢, the unique limit distribution uc being equal to ¥, and with an admissible

choice of £ in [P2] being € = {q € P : dp(q) < |q| =/},

The proof of the proposition builds on ideas from Boldrighini, Bunimovich
and Sinai, [12]. It is well-known that 1-almost every P € N,(R?) has constant
asymptotic density ¢, i.e. [P1] holds with ¢p = ¢. Also the properties [Q1]-[Q3]
are well-known to hold for p. = ¢. Hence our task is to prove [P2] and [P3]. The
following lemma shows that the set £ defined in Proposition [5.1] has asymptotic
density zero.

LEMMA 5.2. Let ¢,a,%,P,E be as in Proposition [l Then for v-almost all
P € Ns(RY), the set & has asymptotic density zero, i.e. T=4#(E NBL) — 0 as
T — o0.

ProOOF. (Cf. [I2] Prop. 3.4].) Set r(y) = |ly||=*/=1. By basic properties of
the Poisson process we have, for any 7' > 1,

E,#(E N B2) = C/Bd P({Y € NyRY) : YN (y+BY,) #0})dy

—C/
B

Hence for any fixed 5 > 0, we have by Markov’s inequality
Y({P € Ny(RY) : 44(E N BF) > TATdld-1=)/d=D1) « 75

(1 — e_CVOI(BgW))) dy < 02/ Vol(Bf(y)) dy < THd=1=)/(d=1)
B

d d
T T

as T — oo. Applying this for 7 = 2", n = 1,2,..., and using > o, 27" < oo,
it follows by the Borel-Cantelli Lemma that, for i-almost all P, #(€ N Bg.) <

97
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2n(ftd(d=1=a)/(d=1) for all sufficiently large n. Taking here 8 € (0,22, so that
B+dd—1-a)/(d—1) < d, and using the fact that #(£ N BE) is an increasing

function of 7', the lemma follows. O

REMARK 5.1. Of course there is some flexibility regarding the choice of £ in
Proposition 5T} however let us note that £ certainly cannot be taken to be empty.
Indeed, it is easily seen that, i-almost surely, for all small p there exist points
qgePn le,d for which dp(q) < p (and in fact even dp(q) < p?~!). As seen
in Lemma [Z16] for p sufficiently small those points necessarily have to be in £ in
order for the uniform convergence in [P2] to hold.

The remainder of this section will be spent on the proof of the key convergence
property [P2]; the property [P3] will also follow as a consequence of the proof. The
method of proof is basically the same as in [12] Props. 2.3-2.5].

First we discretize the choices of test sets A C N,(R%), measures A € P(S¢™1)
and center points gq.

Let F be the family of all boxes B C R? of the form B = H?Zl [aj, B;) where

aj,B; € Q and a; < B for all 5. Let F be the set of finite unions of boxes B € F,
and let A be the family of all sets A C Ng(R%) of the form A = {Y € N (RY) :
#(YNB) >r}for Be F and r € ZT. Note that F is countable, and hence so are
F and A.

Let S be a countable family of subsets S C Sffl, chosen so that each S € S has
diameter < 7/2 with respect to the metric ¢ on Sffl, each S € S is a diffeomorphic
image of the closed unit cube [0, 1]97%, and furthermore so that for each € > 0 there
is a finite subfamily F' C S such that the sets S € F form a partition of S~ (up
to sets of measure zero) and each S € F has diameter < e[l For S € S we set
As = w(S) twis € P(S971). Let £ be the set of all these probability measures Ag.

Let us now fix a constant ¢ > 0 and set, for each 0 < p < 1,

(5.1) Glpl = p' M2 N B

We also set p, =n~" for n € Z>». Finally, we fix a constant v subject to o < y < 1.
Given a fixed P € Ng(R?), we define

(5.2) Q,(q.v) = (P\B%q,0")) —@)R(v)D, (q€R% vesi™),

and for each A € P(S{™1), we let ﬁy,), € P(N4(R%)) be the distribution of ép(q7 v)
for v random in (S{71, \).

LEMMA 5.3. Let P € N4(R?) be given. Assume that for each fived A € A and
AeL,

(5.3) ﬁfl’\,))n (A) —9(A) = 0 as n — oo, uniformly over all q € Glpy].
(M)

Then for every A € PaC(S‘li_l), we have ug,p 5 4 as p — 0, uniformly over all
qE€ Bgl,d,a subject to dp(q) > 2p7. In particular [P2] holds, i.e. for every T > 1

we have ,ué),‘g s 4p as p — 0, uniformly over all g € Pr(p).

1T see that this is possible, for each k € ZT consider the decomposition of each (d — 1)-face
of the cube [—1,1]¢ into k%~ congruent (d — 1)-cubes of side 2/k; by radial projection (with
origin as center) this yields a decomposition of S‘f*1 into 2d - k¥~ closed subsets, each of which
is a diffeomorphic image of [0,1]9~!. We can take S to be the family of subsets of Scll71 obtained
when the previous construction is carried out for all k € Zt.
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(In the last statement, Pr(p) = PﬁBE‘,{pl,d \ &, with &€ defined as in Proposition
bE1)

PROOF. Note that the second statement of the lemma is a trivial consequence of
the first, since g € Pr(p) for p sufficiently small implies ||g|| < Tp'~9¢ < p!=9=< and
dp(q) > ||q||=2/@=1) > T=/(d=1)p > 9257 In order to prove the first statement,
by Lemma it suffices to prove that for any A € PaC(S‘li_l), any bounded Borel
set B C R? with vol(0B) = 0, and any r € Z%,

(5.4)

MY € NyRY) « (Y N B) > 1}) —v({Y € Ny(RY) : (Y NB) >7r}) =0

as p — 0, uniformly over all q € le,d,a subject to dp(q) > 2p7. It follows from
our choice of £ that the set of densities of finite linear combinations of measures in
L is dense in L'(S{™!, w); thus it suffices to prove (5.4) under the restriction that
e L.

Hence we now fix some A € £ and some B C R? as above, and r € Z*, and
seek to prove the uniform convergence in (54]). Let € > 0 be given. Note that B is
Jordan measurable; hence there exist some np > 0 and B’, B” € F such that

(5.5) B c B\9,B, BUBCB"  vol(B"\B')<e/e
where 0,B denotes the 7-neighborhood of the boundary of B, that is, 0,B =
Upean B4(p,n). We set

A'={Y : #(Y N B') > r}; A:={Y : #(Y N B) > r};

A" :={Y : #(Y N B") > r}.

Then A’ C A C A” and A’; A” € A, and by our assumption, (3], there is some
integer N > 2 such that
(5.6)
B0 (A) =4 <e and |E0) (A7) —w(A")| <e,  Vn=N, ¢ €Glpa).

Take R > 0 so that B” C B%. After possibly enlarging N, we may also assume
that for every n > N,

(5.7) Vdpltt < py and  R((pa-1/pa)*t = 1) + Vdpl, <.
Having thus fixed IV, we claim that
(5.8)

‘ug’))(A) —p(A)| < 2¢ for all pe€ (0,pn) and q € B;llfdfa with dp(q) > 2p”.

Since e > 0 was arbitrary, this will prove (5.4)), and thus complete the proof of the
lemma.

Let p € (0, pn) and g € B;ll,d,a be given, subject to dp(q) > 2p". Taken > N
so that p, < p < pp—1. Let ¢’ be the point in G[p,] lying nearest to q (if there are
several options then just pick one). Then |g’' — q|| < Vdp:tt < pY (cf. (51), i.e. q
lies in the ball B(q’, p}); also dp(q) > 2p” implies that P N B%(q’, p) equals {q}
or §, and so P\ BY(q', p7) = P\ {q}. This implies that for each v € S¢~,

(5.9) Q,.(d',v) = Q,(q,v)D,, ;, + (qa — 4 )R(v)D,,.
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Using this we will prove

(5.10) [Q,(q,v) € A = Q,,(¢,v) € A"], Yo e 8971,

Indeed, assume Q,(q,v) € A, i.e. #(Q,(q,v)NB) > r. Given a point p € Q,(g,v)N
B, we set

(5.11) p' :==pD, ;,+(qa—4q)R(v)D,,.

Note that ||(g — ¢ )R(v)D,, | < Vdph, since ||g — q'|| < VdpL™; furthermore
|pll < R since B C B” C B%. Hence

(5.12)  |lp—P'|| <|pD,,,, — pll + Vdp,, < R((p/pn)*" = 1) + Vdpl, <,

where we used p < p,—1 and (&7). If p’ ¢ B” then using BU9, B C B” (cf. (5.3])) it
follows that p’ has distance > n from 9B, and also p’ ¢ B, so that the line segment
between p and p’ intersects 9 B; these together yield a contradiction against (5.12]).

Hence p’ € B” must hold. Also p’ € @pn (¢',v), by (09) and (EI)). Hence each
p € Q,(g,v)N B gives rise to a corresponding point p’ € épn (¢’,v) N B”; therefore
#(@pn(q’,v) NB") > #(Q,(q,v) N B) > r, so that @pn(q’,v) € A”, and we have
proved (5I0). By a similar argument we also have

(5.13) [Q,.(d',v) €A = Qy(qv)€A]  (WweSth).
Together, (510) and (GI3]) imply
~(x ~(A
(5.14) g, (A) < uG(A) < g, (A").
Note also that
(5.15) P(A"\A) <yY{Y : YNB"\ B #0}) <cvol(B"\ B') <e
(cf. &3). Using (&6), &I14), (&I5), and A’ € A C A", we obtain ’ug),‘g(A) -
¥(A)| < 2¢, and we have thus proved (5.8) and with it the lemma. O

LEMMA 5.4. Under the assumption of Lemma[53, for each A € Ph.(T*(R%))

we have MEJA) s as p— 0.

PrOOF. Fix f € Cp(Ng(R?)); then our task is to prove uEJA)(f) — (f), ie.
(5.16) pdd—b / ) £(Q,(q,v)) N (p*tq,v)dvdq — ¥(f), as p— 0,
Re JS{T

where A’ € L*(T'(R%)) is the density of A. Without loss of generality we may
assume A’ € C.(T*(RY)). Take R > 0 so that supp A’ C B x S¢~1.
It follows from Lemma [5.3] and Lemma 23 that, for each fixed € R?,

(5.17) /Sfl [(Q,(q,v)) AN (z,v)dv — </S?1 N(xz,v) dv)w(f)

as p — 0, uniformly over all q € B;ll,d,a subject to dp(q) > 2p”. By a standard
subsequence argument, using the fact that A’ € C., (&IT) is upgraded to also
hold uniformly over all & € R% in particular we may take £ = p?~'q in the
statement. Note also that Rp'~¢ < p! =9~ for all small p, and the total volume of
all g € B}épl,d satisfying dp(q) < 2p7 is < p~H4=D+47 which gives a negligible
contribution to the left hand side (5I6]) as p — 0. Using these facts, we conclude
that (5I6) holds. O
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Note that the conclusion of Lemma [5.4] implies in particular that the condition
[P3] holds; cf. Remark 2.8 Hence in order to complete the proof of Proposition [5.1]
it now suffices to prove that -almost every P € N,(R?) satisfies the assumption
(E3) in Lemma In fact, since A and L are countable, it suffices to prove
that for any fized A € A and X € L, the condition (B3] holds for ¢-almost every
P. Thus let A € A and A € L be given; take B € F and r € ZT so that
A={Y € Ny(R?) : #(Y N B) > r}, and take S € S so that A = A\g. The following
proof is modelled on the proof of Prop. 2.3 in [12].

We fix constants 51 and (2 satisfying

(5.18) 0<Bi<3(l—9) and Bi<Pfo<l—n.

For each sufficiently small p, we fix a choice of subsets Si,...,S, C S satisfying
diam(Sy) < p?r and w(Sy) =< p?1(@=1) which are separated so that ¢(Sy, Sp) > pP2
for any ¢ # ¢/, and which fill up most of S in the sense that w(S\U_,Sy) < pP2=F1.
[ 1t follows that k = pPi(i=d) (Here and in the following, the implied constant in
any “<”, “<” or “O(---)” depends only on d, S and B.)

Also for p small we set

Q) = {P e N,R?) : #(PnB%D,) =0}.
This is a Borel subset of N,(R?) and letting 1 = ¢ vol(B%,) we have
(5.19) Y(QP) = e " =1-0(p™).

We write {/)V(P) = (- | SNQ(P)) for the corresponding conditional probability, i.e.
PP (A) = p(A'NQP)) /1h(QP)) for any Borel set A’ C Ny (R?). For any P € N,(R9)
let

(5.20) RE = EM(A) —d(A) = A({v € S : O,(q,v) € A}) — ¥(A).
and
(5.21) R?, = {veS: Qylq,v) € A}) — A(Se)d) (A).

Using S\ US_,S0) < p%=%1 and [0(A) — 90 (4)] < p® (cf. (I)) we then
have

k
(5.22) Ry => Ry +0(p" " +ph).
£=1

The point of using () (A) in (5.ZI) is that we have the identity
(5.23) EyR} ;4 =0.
Indeed, by Fubini,

(5.24) EyR} ;4 = / (1/1({73 . Q,(q,v) € A}) — J(”)(A)) d\(v).
s

12

2An explicit choice of such subsets Si,..., Sk is as follows: By assumption there is a fixed
diffeomorphism ® from an open set U C R%~! onto an open subset of S‘li71 such that [0,1]471 C U
and S = ®([0,1]%"'). Now fix C > 1 large, and for each small p set n = [Cp~F1], k =
n?=1 and let S1,...,S; be the sets ®(n~'m + [0,n~! — CpP2]?~1) with m running through
{0,1,...,n — 1}‘1’1. If C is larger than a certain constant which only depends on ®, then for all
sufficiently small p, the sets Si,..., Sk satisfy all the conditions.
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Here for each v,

(5.25)
¥(Qp(q,v) € A) =4 ((P\ BL)R(v)D, € A) = ¢(PR(v)D, € A| PN B, =0)
= J(P) (A)7

where we first used (5.2)) and the fact that ¢ is translation invariant, then the fact
that for P random in (Ns(R%), 1), the two random elements P\ B%, and PNB%, in
N,(R?) are independent; and finally, for the last equality, we noted that PﬁBgv =0
is equivalent with 7311%('0)Dpﬁl3’;l7 D, = (), and then used the fact that ¢ is SL(d, R)-
invariant. Hence the integrand in (5.24]) vanishes identically, and we have proved
©.23).

Next we claim that for p sufficiently small and for every g € R?, if P is ran-

dom in (N4(R9),4) then the random variables RZ@,q for £ =1,..., k are mutually

independent. In view of the definition (5.21I]), and noticing that @p(q, vg) € A is
equivalent with P — g having at least r points in the region
(5.26) BD,"R(vy)~"\ BY

p"l?

it follows that it suffices to prove that for any v, € Si,..., v € Sk, the regions in
(5:26) for £ =1,...,k are pairwise disjoint. Fix R > 0 so that B C B%.

LEMMA 5.5. If v,v" € S and 4Rp'™7 < p(v, ) < 7/2 then
-1 -1 -1 1\ pd _
BD;'R(v)"' N BD, ' R(v/)"*\ B, = 0.

PROOF. Suppose x € BD,'R(v)"" N BD,'R(v')"! and & # 0. Set ¢ =
min(p(v, z), p(v,—x)) and ¢’ = min(p(v’,z),p(v’,—x)). The point x lies in
BD;*R(v)™* € BED,'R(v)™! C (R x B;l%;l)R(v)’l; this implies that x has
distance < Rp from the line Rv, and thus ¢ < 2sing < 2Rp/||z||. Similarly
¢ < 2Rp/||. Now by the triangle inequality in S¢~'/{+} we have 4Rp' ™7 <
e(v,v") <o+ ¢ <4Rp/|x|, implying [|z|| < p7, ie. x € BE,. O

If p is sufficiently small then the lemma applies to any pair of points vy, vy,
¢ # ', since then @(ve,ver) > p(Se, Sp) > p2 > 4Rp'™7 (cf. (BIF)), and also
(vg, ver) < m/2 since we have assumed that each S € S has diameter < 7/2. This
completes the proof that RZ& q for { =1,...,k are indeed independent.

Set

(5.27)

k
Vog =3 Ey((R},q)?) and H,:=max{\(Ss) : L€{l,...,k}} =< ph=.
=1

Then |R557q| < H, everywhere. In view of our observations, in particular (£.23)

and the independence just proved, we have the following inequality of Bernstein
type, for any X >0 and 0 < h < 3/H, (cf., e.g., [6, eq. (2a)]):

(5.28)
¢({7> e N,(R?) : > X}) < 27X exp(%2Vp7q(l - %)71).

k
P

§ :Rp,l,q

=1
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In order to bound V, 4, note that

E¢(A({v €58, : O,(q,v) eA})Q) :/SXS ¥(Q,(q,v) € A, Q,(q,w) € A)
(5.29) xd\(w) d\(v).

Here for any v, w with o(v,w) > 4Rp'~7, it follows from Lemma that the
events @p(q,'v) € A and @p(q,w) € A are independent on (N,(R%),4)), and so
the integrand equals ¢(¥) (A)? (cf. (5:25)). Furthermore for any v € Sy, the set of
w € Sy for which ¢(v,w) < 4Rp'~7 has measure < p(!=7(@=1) with respect to \.
Using these facts, and (52I) and (523)), we obtain

(5.30) Ed,((Rqu)z) < A(Sp)pt M=)  HA=7+B1)(d=1)
Adding this over £ =1,...,k it follows that

Vog < pd="d=1),
We now fix a constant ¢ satisfying

0<0<pBi(d—-1),

and apply (5.28) with h = 1/H, and X = H,p~°. Then h?V, 4 < 1 provided that
p is sufficiently small (cf. (527) and (BI8)), and we obtain

k
P
v ( Z RM 'q
=1
Setting e(p) = H,p~% 4+ C1(p?27P1 + p™7), where Cy > 0 is the implied constant in
the big-O expression in (522, it follows that

(5.31) (R, = elp)) < e,

This holds for every sufficiently small p, and all ¢ € RY. Using also #G[p] <
p~Udtett) it follows that for p small,

Y(3g € Glpl st |[RE| > e(p) < Y w(|RD,| = clp)) < prdldtotter
qa€Glp]

> pr‘5> <e

-5

This implies that the sum
Z ¥(3q € Glpn] s.t. |R) 4| = 2(pn))
n=2

converges (recall p, = n~%), and hence by the Borel-Cantelli Lemma, for 1)-almost
every P € Ny(R?) there is some N = N(P) such that |R? | < &(p,) holds for all
n > N and all ¢ € G[p,]. Therefore we have uniform convergence as in (B3] in
Lemma [5.3] and the proof of Proposition [5.1]is complete. O

Let us conclude this section by computing the collision kernels. Recall that X
is a singleton, which we remove from our notation. Thus X, = R Q = Bf_l
and po = v;_ll volga-1, and we find that for every &’ € X, the distribution of

the random point (wq,w’) := 1(z(Ec — @) equals Zile_wl/g dwn dpg(w') with
€ = (va_1c)™Y; cf. (LI0). Hence
k(x' & x) = 5716_5/2, for o',z e B{™' ¢>0.
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Similarly
KE(E,x) =€ e /L,
From (341) and (344) we now get
po(vo,v;&,vy) =p(v;€,vq) =co(v,vy) e¢/€,
Hence the generalized Boltzmann equation reads

((% +v-Vq— 85)f(t,q,v,§,v+) = /Sdi1 f(t,q,vo,(),v) p(v; €, v4) dvg.

1

As we discussed in the introduction, upon making the ansatz
f(t7 q,v, 67 ’U+) = f(t7 q, ’U) U(’U, 'U+) 6_5/57

this equation reduces to the standard linear Boltzmann equation, (L33).

5.2. Periodic point sets

In this section we let P be a locally finite periodic point set in R? (d > 2). This
means that there exists a lattice £ of full rank in R?, such that P + £ = P for all
L € L. We fix, once and for all, g € SL(d,R) and § > 0 such that £ = sz, We

can then choose a finite number of vectors by, ..., b,, € R? such that
(5.32) P =JoY4b; + 2%y,
j=1

and b; — b; ¢ Z¢ for all i # j. Without loss of generality, since we may from the
start replace P by a translate of P, we may also require that by = 0.
We will prove that such a set P satisfies the assumptions in Section 2.3l with

Y ={1,...,m},

with the map ¢ : P — ¥ given by ¢(q) = j for all g € §/%(b; + Z%)g (j € ), and
with m being the uniform probability measure on . We will start by giving an
explicit description of the map j — u; from ¥ to P(Ng(X)). This requires some
preparation.

Let B be the matrix in M,, 4(R) whose row vectors are by,..., b, (in this
order). Let By,...,Bg € R™ be the column vectors of B, and let J be the smallest
closed subgroup of R™ containing Z™ and Bj,..., Bg. In other words, J equals
the closure of the integer span of Z™ and By, ..., By:

J =Z™ +ZB; + --- + ZBy.

This is a closed Lie subgroup of R™. Let J° be the connected subgroup of J
containing 0; this is a linear subspace of R™ which intersects Z™ in a lattice (that is,
there exists an R-linear basis of J° consisting of vectors in J°NZ"). Furthermore,
J C Q™+ J°, and either 7 = J° = R™ or J is a union of a countable number of
translates of J°. Note also that if we assume b; = 0 then J° C elL.

REMARK 5.2. Equivalently, 7° can be defined as the orthogonal complement in
R™ of the set of integer vectors h € Z™ which satisfy h-B; € Z forall j € {1,...,d}.
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We identify the product space de = J° X --- x J° with the subspace of
matrices in M, 4(R) all of whose column vectors belong to J°. Recall that J°NZ™
is a lattice in J°; hence J2% := J°% N M, 4(Z) is a lattice in J°%; we let Tgoa =
Jod NG 4 be the quotient torus, and let nt be the translational invariant probability
measure on T zod.

For each j we have B; € J C Q™ + J°; hence there exists a positive integer ¢
such that B; € ¢7'Z™ + J° for each j € {1,...,d}, or in other words,

(5.33) B € q " My a(Z)+ T°°
We fix q once and for all, and set
I'(q) = {y € SL(d,Z) : v=1I mod ¢}.

Also let F, C SL(d,R) be a fixed (Borel measurable) fundamental domain for
I'(¢)\ SL(d,R), and let 7 be the (left and right) Haar measure on SL(d, R), normal-
ized so that n(F,) = 1.

Recall that X = R? x . Now for each £ € ¥ we define the map

Jy Fq X Tjod — NS(X)
by

®M)&Mﬂ+ﬁ%—(O&N@—W+W—W+WMXUQ\WMR

j=1

where w1, ..., u, € R? are the row vectors of the matrix U (in order). Of course,
the right hand side of (534) is independent of the choice of the representative
U e J°? for the point U + JZOd in T 704, since any other representative U’ for the
same point has u; € uj + 7% for each j. These maps Ji,...,J,, are continuous.
Finally, we define py to be the pushforward by J; of the probability measure n x nr
on Iy X T zoa:

(5.35) e = (n x nr) o J; 1 € P(N(X)).

It will be clear from the proof of Proposition 5.6 that py is independent of the choice
of ¢ and the choice of the fundamental domain Fj,.

PROPOSITION 5.6. For P, %, m as above, all the assumptions in Sectionl[2.3 are
satisfied, with € = 0 in [P2], and with the map £ — py from ¥ to P(N (X)) given

by (B.35).

We give the proof of Proposition 5.6 in Section [5.3.3] by deriving it as a special
case of our main result for quasicrystals of cut-and-project type, Proposition .12
but with the limit measures p, given in more explicit form.

REMARK 5.3. It is immediate from (5.34]) that
Jo(AU + T8 0 (R x {2)) = (6412947 {0}) x {£}.

It follows that a point process = in X with distribution p, has the property that the
projection of ZN (R? x {¢}) in R? is a random lattice of covolume § in R? minus the
origin, distributed according to the standard invariant measure on such lattices.



106 5. EXAMPLES, EXTENSIONS, AND OPEN QUESTIONS

EXAMPLE 5.1. Assume w.l.o.g. by = 0. It follows from Remark £.2] that J° =
ei holds if and only if the vectors e1,...,eq,ba,..., b, are linearly independent
over Q. In this case, 7°? consists of all matrices in M,, 4(R) with vanishing top
row; we identify this space with M,,—1 ¢(R) in the obvious way, and then get
Tjoa = Mp—1,4(R)/M—1,4(Z). Note also that we can take ¢ = 1. It follows
that in this case, a point process = in X with distribution uy can be constructed
as follows: Pick a random lattice L of covolume & in R? distributed according
to the SL(d,R) invariant probability measure on such lattices; then pick m — 1
random points {pj }je{l _____ m¥\{¢} in the torus Rd/L, independently and uniformly
distributed; and finally set:

E=((L\{o}) x{a}) J U (@ +p)x ).
jedLomI ()

Note that if p; is the projection map X — R? then

n(E) =L\ {o}) U @+py,
JELm\ e}

and the distribution of this point process in R? is independent of ¢. Hence in the
present situation it is possible to discard the set of marks, i.e. the assumptions in
Section 23] can be satisfied with ¥ being a singleton set and X = R (up to obvious
identification).

EXAMPLE 5.2. Now assume m = 2, and again by = 0. Then J° = ef if and
only if by ¢ Q% and in this case the description in Ex. 5.l applies. On the other
hand if by € Q¢ then J° = {0}, thus T o« = {0}, and ¢ is any positive integer
such that by € ¢~'Z%. In this case the formulas for .J;, Jo become

H(A) = (4@ fopax (1) J (540 + 294 x (2});
Jo(4) = (892 \ {opAa x {2}) | (679(-b2 + 2 A x {1}).

Here we remark that for A random in (Fy,n), the two random point sets p1(J1(A4))
and p;(J2(A)) have the same distribution. (The proof of this fact uses the obser-
vation that there exists an element v € SL(d, Z) such that (—by + Z%)y = by + Z4;
we then get pi(J2(vA)) = p1(Ji(A4)) for all A € SL(d,R); finally note that vF, is
a fundamental domain for I'(¢)\ SL(d, R) since I'(¢) is normal in SL(d,Z).) Hence
as in Ex. 5]t is again possible to satisfy the assumptions in Section 2.3] without
using markings, i.e. with X being a singleton set.

It should also be noted that the two cases for m = 2 just discussed (i.e.,
J° = ef and J° = {0}) are closely related to [43, Cor. 5.4] and [43] Cor. 5.9],
respectively.

EXAMPLE 5.3. A special case of the situation in Ex. is the honeycomb
point set, for which the limit distribution of the free path length in the low density
limit was considered in Boca and Gologan [10] and Boca [9]; cf. also [49] Remark
2.2]. The honeycomb point set can be represented as in (5.32) with d = 2, m = 2,

_ _ 1 0 _ _ 1 . o __
§=3/2, 9= <1/2 \/§/2) and by = 0, by = 3(1,1); thus J° = {0} and we can
take ¢ = 3 in Ex. 5.2
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EXAMPLE 5.4. In the previous examples we noted that it was possible to discard
the marking space. A simple example where the marking space cannot be discarded
is obtained by taking m = 3, by = 0, by € Q4\ Z?¢ and b3 ¢ Q% in (5.32). (However
for this example it is still possible to reduce from #3 = 3 to #X = 2.)

5.3. Quasicrystals of cut-and-project type

In this section we let P be a regular cut-and-project set; such P are also referred
to as (Euclidean) model sets. These are point sets which are typically non-periodic,
yet strongly correlated. Famous examples of point sets P which are covered by the
theory in the present section are the vertex sets of a Penrose tiling and of an
Ammann-Beenker tiling. Previous results on the Lorentz gas in a quasicrystal have
been limited to numerical simulations [38] and the distribution of free path lengths
|61, [49].

5.3.1. Preliminaries. We will use almost the same notation as in [49]: Let
d>2,m>0,n=d+m,and denote by m and 7y the projection of R = R? x R™
onto the first d and last m coordinates. We refer to R and R™ as the physical space
and internal space, respectively. Let £ be a grid (also called affine lattice) in R™,
i.e. a translate of a lattice in R™ of full rank. A cut-and-project set P = P(W, L)
is defined as the set of all projections to R% of points in £ which lie above a certain
window set W C R™, that is:

(5.36) P=PW,L):={r(y) : y €L, mmly) € W} CR

Conditions which are often imposed in the quasicrystal literature is that «|z is
injective and iyt (L) is dense in R™; however we will not require any of these here ]
Allowing this generality makes it necessary to introduce some notation of a more
technical naturd]: Let A be the closure of Tint (L) in R™; then A is a translate of
the set A— A ={a—ad : a,a’ € A}, which is a closed subgroup of R™. We denote
by A° the connected component of A — A containing 0; this is a linear subspace
of R™, and both A — A and A are countable disjoint unions of translates of A°.
Set m; = dim .A°. We define u4 to be the natural volume measure on A, i.e. the
measure which restricts to the standard m; dimensional Lebesgue measure on each
translate of A° contained in A. Se

VO=RIx A,  V=R'xA=V°+L, and Ly.:=(L-L)NV".

Then Lyo is a lattice of full rank in V°. We let py = vol X 4, the natural volume
measure on V. By abuse of notation, we will write p4 also for the m; dimensional
Lebesgue measure on A4°, and py also for the natural volume measure on V°.

We will always assume that the window set W is a subset of A; note that this is
no loss of generality, since the cut-and-project set P = P(W, L) remains the same
upon replacing W by W N A. We will furthermore assume that WV is bounded,
and that W has non-empty interior with respect to the topology of A. If W has
boundary of measure zero with respect to p4, we will say that P is regular. It

3This will allow us to also include periodic sets as part of the same setting; see Section [5.3.3]
for details.

41n the special case when iy (£) is dense in R™, the notation which we introduce here could
be dispensed with, since in this case we simply have: A = A° = R™; m; = m; pa = Lebesgue
measure on R™; V° =V = R"; Ly0o = L — L (this is the lattice which £ is a translate of), and
wy = Lebesgue measure on R™.

50ur usage of the symbols “V” and “V°” differs slightly from that in [49].
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follows from Weyl equidistribution (see [33] or [49] Prop. 3.2]) that for any regular
cut-and-project set P and any bounded B C R? with boundary of measure zero
with respect to Lebesgue measure,

m #{be L : n(b)e PNTB}

(5.37) Th_)OO T = 0g.m(L)ppa(W)vol(B),
where

1
(5.38) da.m(L) = (VL)

Our final assumption is that the window W is appropriately chosen so that
7| rn=1(w I8 injective, and thus a bijection onto P. Then (5.37) implies that P

int

has asymptotic density
(5.39) cp = bam(L)pa(WV),

i.e., (L)) holds with this ¢p. Under the above assumptions P is a Delone set, i.e.,
uniformly discrete and relatively dense in R? [49] Prop. 3.1]; in particular P is
locally finite.

Let ASL(n,R) = SL(n,R) x R™, with multiplication law

(M, z)(M',2') = (MM',zM' + x').
We let ASL(n,R) act from the right on R™ by affine linear maps, through
y—yM,x) :=yM+ x.

Set G = ASL(n,R) and I' = ASL(n,Z). We fix, once and for all, g € G and § > 0
so that £ = §'/"(Z"g). We define an embedding of ASL(d,R) in G by

Gy ASL(4,R) > G, (A,z) g (<‘§ 1(;) ,(:c,O)) oL

We also set G' = SL(n,R) and I'! = SL(n,Z), and identify G with a subgroup
of G through M +— (M,0); similarly we identify SL(d,R) with a subgroup of
ASL(d,R). Tt follows from the celebrated results of Ratner [56], [57] that there
exists a unique closed connected subgroup H = H, of G such that I'N H is a lattice
in H, ¢4(SL(d,R)) C H, and the closure of I'\I'p,(SL(d,R)) in I'\G is given by

(5.40) X :=T\T'H.

We set 'y := ' N H, and note that X can be naturally identified with the homo-
geneous space I'y\ H. We denote the unique right-H invariant probability measure
on X by pg; sometimes we will also let p1, denote the corresponding Haar measure
on H. _ _

Similarly, there exists a unique closed connected subgroup H = H, of G such

that DNH is a lattice in H, ¢, (ASL(d, R)) C H, and the closure of I'\I'p, (ASL(d, R))
in I'\G is given by
X =T\I'H.

Note that X can be naturally identified with the homogeneous space (I‘ﬂfl )\fNI . We
denote the unique right-H invariant probability measure on either of these spaces
by fig; sometimes we will also use fiy to denote the corresponding Haar measure

on H. Of course, H C H. Tt holds that my(8%/"(Z"hg)) C A for all h € H,
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and A equals the closure of miy(6'/™(Z"hg)) for fi,-almost all h € H and also for
pg-almost all h € H; cf. [49] Props. 3.5 and 4.5].

The following is a corrected and slightly generalized version of the Siegel-Veech
formula [49, Theorem 5.1].

THEOREM 5.7. For any f € L*(V, uy),
(5.41) [ rmdi ) = 60l0) [ .

mest/ " (Z"hg)
w(m)#0
(Note that 61/ (Z"hg) is invariant under h +— ~vh for ally € T, and 6'/(Z"hg) C
V for all h € H. Hence the left hand side of (5:41)) is well defined.)

PRrROOF. If § = 1, then Theorem [57is exactly [49], Theorem 5.1] (as explained
in the erratum to that paper, the summation condition in [49] (5.1)] should be cor-
rected to “m € Z"hg\ 7= 1({0})”). The proof of that theorem is easily generalized
to the case of an arbitrary § > 0. Alternatively, the extension to general ¢ can be
done by a simple scaling argument. ([l

The following lemma gives information regarding the summation condition in

Theorem 5.7
LEMMA 5.8. If m € Z™ and w(mg) = 0, then mh =m for all h € H.

PrOOF. Let h € H be given. It follows from the defining properties of H that
there exist v1,72,... € I" and A1, As, ... € SL(d,R) such that v;¢4(A4;) = hin G
as j — oco. But m(mg) = 0 implies that mpy(A) = m for all A € SL(d,R), and
thus m(yjp,(4,)) 7! = mwj_l € Z" for all j. However m(v;p4(A;))~" — mh™! in
R™ as j — oo, and since Z" is discrete this forces mh~! € Z™. But H is connected;
hence the fact that mh~1 € Z" for all h € H implies that mh ™! is independent of
h. O

Now we may reformulate Theorem [5.7] as follows. Let us set
(5.42) Zr = {m e Z" : w(myg) # 0}.
Theorem 5.7°. For any f € L*(V, uy),

(5.43) [ rmdam = o) [ fa.

b'e _
mest/n(Z7 hg)

(Note that Z;v = 7 for every v € I'g, by Lemmal[5.8 Hence the point set Z;hg is
a well-defined function of I'h € X, and the left hand side of (.43)]) is well-defined.)

ProoOF. Note that for any k € Z™ \Z’\L, the condition “w(m) # 0” implies that
the vector m = §'/"(khg) is excluded from the sum in (54T)), for all Th € X. On the
other hand, if k € ﬁ, then by a simple argument using real-analyticity, 7(khg) # 0
for p-almost all h € H (cf. [48, Lemma 8]), and so the vector m = §'/"(khyg) is
included in the sum in (.41, for almost all T'h € X. Hence the left hand side of
(E41) equals the left hand side of (G.43]). O

The following is a strengthening of [49, Prop. 3.7] (which dealt with the case
of W open):
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LEMMA 5.9. Let W C A, pua(OW) = 0, and assume that the projection map
from{y € L : mine(y) € W} to POV, L) is bijective. Then for pg-almost all h € H
the projection map from {y € 6*/"(Z"hg) : T (y) € W} to POV, 6Y/™(Z"hg)) is
bijective.

PRrROOF. The projections are surjective by construction. To prove the injectiv-
ity, set

D= (RYxoW) U ({0} x A) CV,
and consider the following two subsets of H:
(5.44)
Sy ={heH : 6" (Zrhg)N D #0};
(5.45)
Sy={heH : Iy, #y,€ SY™M(Zhg) N L(W®) satisfying 7(y,) = m(ys)},

int

where W° is the interior of W. Then p,(S1) = 0, by Theorem 5.7 applied with f as
the characteristic function of D. Also p4(S2) = 0, by [49], Prop. 3.7] (after scaling
by 6'/™). We will prove that every h € H \ (S; U S) has the desired injectivity
property.

Thus let h € H \ (S1 U S2), and let y; # y, be two arbitrary points in
SY™M(Z hg) N (W), Take my € Z" so that y,; = 6Y/"(m;hg). If m; ¢ zn
then m(y;) = 0 and y; = §1/"(m;g) € £ by Lemma [E8 hence our assumption
that the projection map from {y € L : min(y) € W} to P(W, L) is injective implies
that at least one of m; and my must lie in Z;; say mq € Z". Then m(y,) # 0,
since h ¢ S7. If mo ¢ 7" then m(y;) # 0 = 7(y,) and we are done; hence from
now on we may assume that both m;,mqy € zn. Again using h ¢ S7 we then have
Tint (Y;) & OW, ie. mine(y;) € WP, for both j = 1,2. Now it follows from h ¢ So
that 7(y,) # 7(y,), and the injectivity is proved. O

In fact a similar injectivity property holds also for shifts of W, at least away
from 0 € R%:

LEMMA 5.10. Let W be as in Lemmal59, and fir w € A. Then for pg-almost
all h € H, the restriction of w to §/™(Z"hg) Nt W +w) \ 7~ 1({0}) is injective.

int

PROOF. Set W = Wifv. Define D, S, S2 be as in the proof of Lemma [5.9]
but with W replaced by W. Then u4(S1) = 0 as before. Furthermore, as in the
proof of [49] Prop. 3.7], for any h € H with min(61/7(Z"hg)) = A, we have h ¢ Sy
if and only if
(5.46) Wo N Tine (8Y/™(Z™hg)o N ({0} x R™)) = {0},

where Wy := W° — W° = W° — W° C R™ and (Z"hg), := (Z"hg) — (Z"hg) C R™.
Our injectivity assumption implies that (5.46) holds for h = 1,. Hence by [49]
Props. 3.5 and 3.6], py(S2) = 0.

Now let h € H\(S1US>) and let 4, # y, be two arbitrary points in §'/™(Z"hg)N
7 W) \ 771 ({0}). Take m; € Z" so that y; = 6Y/"(mjhg). It follows from
Y1,y ¢ 7 1({0}) and Lemma [5.8] that both m1, ms € Z". Now h ¢ Sy implies
Tint (¥1), Tint (Y) € WP, and thus, using also h ¢ Sy, we have 7(y,) # 7(y,), and
the injectivity is proved. (I
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Finally, we also recall the Siegel-Veech formula for H. The following is [49]
Cor. 5.2] but for a general density ¢.

COROLLARY 5.11. For any f € LY(V, uy),

/F T mdE () = () /v fduy.

mesL/n(Znhg)

5.3.2. Verifying that the assumptions of Section 2.3 hold. From now
on we assume that P = P(W, L) is a regular cut-and-project set with £ a genuine
lattice, viz., 0 € £. We will prove that P satisfies the assumptions in Section 23]
with
(5.47) Yi=W,

with the map ¢ : P — ¥ defined by letting ¢(q) be the unique point w € W for
which (g, w) € £, and with

(5.48) m:= MA(W)_lﬂA\W'

The map ¢ — p, or as we will call it here, w — iy, from ¥ =W to P(N(X)), is
defined as follows. We assume that the fixed element g lies in G'; this is permitted
since 0 € £. Then also H C G* and 6'/"(Z"hg) = 6'/"Z"hg for all h € H. For
each w € W, define the map J,, : X — Ng(&X) through

(5.49) Juw(Th) == (8/"Zrhg + (0,w)) N (RY x W).

Noticing that the map X — N;(R™), Th — SYnZnhg + (0, w) is continuous (and
thus Borel measurable), and using [35] Thm. A2.3(iv)], one verifies that .J,, is Borel
measurable. Now define

(5.50) faw 1= flg © Jogt € P(Ng(X)).

PROPOSITION 5.12. For P, X, m as above, all the assumptions in Section [2.3
are satisfied, with € = 0 in [P2], and with the map < — uc given by (E.50).

We split the proof in a series of lemmas.

LEMMA 5.13. The density assumption [P1] holds for our P, with cp = 8q.m(L)-
pA(WV).

PROOF. We have X = R x W and P = £ N (R* x W). By [49, Prop. 3.2],
[P1] holds for any set B C X of the form B = D x U where D is a bounded
subset of R? with vol(dD) = 0, and U is a bounded subset of W with p4(0U) = 0.
Now for an arbitrary bounded subset B C X with pux(0B) = 0, note that B is a
Jordan measurable subset of the space V; hence for any € > 0 there exist subsets
B’, B” C V which are both finite unions of disjoint boxes in V, and which satisfy
B’ ¢ B C B” and py(B"” \ B) < . By what we have already noted, [P1] holds for
the two sets B’ N (R% x W) and B” N (R% x W), and by letting ¢ — 0 we conclude
that [P1] also holds for B. O

We next show that w — piq, is a continuous map; cf. Lemma [B.19]

LEMMA 5.14. Let w, w1, w2,... € W and h,h1,ha, ... € H, subject to w; — w
andTh; —Th as j — co. Furthermore assume (51/”Z”hg+ (0, w)) N(RIx W) =
0. Then Ju,(Thj) = Jw(Th) in Ny(X) as j — oco.
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ProOF. Immediate. O
LEMMA 5.15. The map w v jiy from W to P(Ns(X)) is continuous.

PROOF. Let w, wy,ws,... € W and assume w,, — w; then our task is to prove

fbg © Jz;i = pg© Jpt. However this follows from the continuous mapping theorem
[35] Thm. 4.27] together with Lemma [5.14] once we note that

(5.51) pg({Th e X = (6Y"Z7hg + (0,w)) N (R x dW) # §}) = 0,
by Theorem [E.7} O

Next we prove that the key assumption, [P2], holds, with & = () and with
stronger uniformity:

LEMMA 5.16. For any A € Pa.(S471), ,ué),‘,l —5 lig(q) as p — 0, uniformly over
al g € P.

PROOF. Recall that P = £ (R? x W). For any fixed g € P, letting w = <(q)
and using £ = L + (g, w), we have
Pa—a=(6Y"Z"g+ (0,w)) N (R? x W),
and so
(5.52)  Q,(q,v) = ((6"/"Zng)R(v)D, + (0,w)) N (R x W) = Jo (F,(v)),

where F, : S{™' — X is the map F,(v) = Typ,(R(v)D,). Let p, € (0,1) and
g, € Ptforn =12 ... and assume that p, — 0 and ¢(q,) = w as n — o0,

for some w € W; by Lemma it then suffices to prove that /‘511), on s i as
n — co. Set w, =<(q,) and v, = Ao F,!; then by (5.52) and (5.50), our task is
to prove v, o Ju' 5 pg 0 Jit. By [49) Thm. 4.1] we have v, — pg. Now the
desired result follows from [35, Thm. 4.27], using Lemma 514 and (G.5T]). O

The following lemma shows that the assumption [Q1] holds, in a much stronger
form.

LEMMA 5.17. For each w € W, ji is invariant under the action of SL(d,R).

ProOOF. It follows from ¢4(SL(d,R)) C H that for every A € SL(d,R), right
multiplication by ¢4(A) on X preserves the measure py. The lemma follows from
this fact, together with (5.50) and the fact that Ju,(Theg(A)) = Jyuw(Th)A for all
T'h € X and A € SL(d,R). O

LEMMA 5.18. The assumption [Q2] holds, i.e. for every w € W and fiq,-almost
every Y € Ny(X) we have y-e1 £y’ -ey forally#y €Y.

PROOF. Let w € W. Our task is to prove that
pg({Th € X : Jy,y' € Ju(Th)st. y#y' andy-e1 =y -e1}) =0,
and for this it suffices to prove that for any two fixed m # m’ € Z;,
(5.53)
,ug({h €H : mnt(dl/"mhg) eW —w, ﬂ'int(51/"m'hg) eW —w,
(m—m/)hg-e; =0}) =0.
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This is obviously true if the larger set S := {h € H : (m—m/)hg-e; = 0} satisfies
tg(S) = 0; hence from now on we may assume p4(S) > 0. Then a real-analyticity
argument implies that (m —m’)hg-e1 = 0 for all h € H. Using ¢,(SL(d,R)) C H
this forces w((m —m/)g) = 0. This means that m —m/’ ¢ 7", and thus by Lemma
B8 we have w((m — m’)hg) = 0 for all h € H. Now for every h appearing in the
set in (B53), we either have m(mhg) = w(m’hg) = 0 or else the restriction of 7
to 8/"Z"hg N7 (W — w) \ 771 ({0}) is non-injective. Hence (5.53) follows from

int

Lemma [5.I0l and the fact that the set S; in (5.44) satisfies uy(S1) = 0. O

Next, the following lemma shows that the assumption [Q3] holds, in a stronger
form.

LEMMA 5.19. For every € > 0 there is some R > 0 and an open set X. C X
such that p1g(X:) > 1 — ¢ and Ju(Th) N (B4 (2, R) x W) # 0 for all Th € X.,
weW, xR

PROOF. Since W has non-empty interior, there exist a € A and an open ball
B C A° centered at 0, such that a + B C W. For any I'h € X we write L}, :=
§/"Z"hg. Recall that £, C V for all Th € X. To start with, we note that if
T'h € X and R > 0 satisfy

(5.54) Ly + (B x B) =V,
then Jo, (Ch)N(B%(x, R)x W) # () for allw € W, x € R?. Indeed, given w € W and

x € R? take ' € R? so that BY(z’, R/2) C B4(x, R) \ {0}; then (z',a —w) € V,
and so by (B54) there exists a point y € L}, such that

(',a—w)ey+ (Bfl;i/2 X B).

Then 7(y) € B4(x', R/2) C B(z,R)\ {0} and y € §'/"Znhg since 7(y) # 0; also
Tint(y) +w € a+ B C W. It follows that y + (0,w) € Jo,(Th) N (B, R) x W),
proving our assertion.

Now let X' be the set of 'h € X satisfying mini(L1,) = A; recall that py(X') = 1.
For every T'h € X', the subspace R? x {0} maps to a dense subset in the torus
V/Ly = V°/(Ly, NV°) and hence there exists some R > 0 for which (5.54) holds.
It follows that if we let

X(R)={The€ X : Ln+ (B, x B) =V}

then X’ is contained in the union UrsoX (R). Also each X (R) is an open subset of
X, and X (R) is increasing with respect to R. It follows that limp_,o0 ptg(X(R)) = 1,
and so there is some R > 0 such that u,(X(R)) > 1 —e. Then X, := X(R) has
the desired properties. ([

Finally, we will prove [P3]. As in the case of the Poisson process, we will do
so by explicitly identifying the macroscopic limit process. Recall that X = T'\I'H,
and define the map J : X — Ng(X) by

J(Th) == 6™(Z"hg) N (RY x W).
This map is Borel measurable. We set

(5.55) = figoJ ' € P(N,(X)).

LEMMA 5.20. Let A € Pao(T'(R%)). Then S =25 1 as p — 0.
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PROOF. Recall that P = £ N (R? x W); hence for any q € R%\ P we have
Qy(g.v) = (6V/"Z"g — (¢,0))R(v)D, N (R x W),
and so for any (q,v) € T'(R?) and p > 0, if p'~%q ¢ P then

Qp(plidqv ’U) = J(Fp(qa 'U)),
where ﬁp : TY(R%) — X is the map ﬁp(q,v) =Tpy((1g, —(67/"p'=4q,0))R(v)D,).
Hence ,ugA) = Aoﬁ‘p_1 oJ~1. Now by [49] Thm. 4.7], Ao ﬁp_l 5 g as p — 0.
Also the map J has the property that if h, hy, he,... € H satisfy I'h,, — I'h as

n — oo and /" (Z"hg) N (R x OW) = 0, then J(Th,) — J(Th). Furthermore, by
Corollary B.11]

fig({Th e X : 6Y/™(Z"hg) N (R x OW) # 0}) = 0.
Hence by [35] Thm. 4.27], A o ﬁ;l oJ ' Yy i, 0 as p— 0, as desired. [
LEMMA 5.21. The assumption [P3] holds.

PROOF. In view of Lemma and Remark 28 it suffices to prove that
1({0}) = 0. Let us write £, = 6'/"(Z"hg), and let X’ be the set of all Th € X
for which mine(L£r) = A; recall that ﬁg()?’) = 1. For every Th € X/, J(Th) is
non-empty, since W has non-empty interior. Hence J }({#}) ¢ X \ X’ and thus

n({0}) < fg(X\ X7) = 0. O
We have now proved that all the assumptions in Section are satisfied, i.e.
the proof of Proposition [£.12is complete. O

REMARK 5.4. Of course, by combining Theorem 2.T9 and Lemma [5.20] it now
also follows that the measure p in (B.55]) agrees with the measure defined in (Z31).

REMARK 5.5. It follows from Theorem [5.7] that for each w € W, a point
process =, with distribution p., has intensity measure cpuy. Hence Section [3.3.2]
applies, leading to an expression for the transition kernel in terms of the Palm
distributions of =,,. However it is possible to give more explicit formulas for the
transition kernels in terms of Haar measures on certain homogeneous spaces. For
the special case of P a lattice (i.e. m = 0) this was done in [43] Sections 4 and 8];
and precise asymptotic formulas for the transition kernels were given in [46].

5.3.3. The case of periodic point sets. We now specialize to the case of a
periodic point set P as considered in Section 5.2l Thus let P, L, 6,9 and by, ..., b,,
be as in (5.32). We will prove Proposition by realizing it as a special case of
Proposition .12 following [49] Sec. 2.3].

Set n = d+ m and let

El =L x {0} + 51/d(b197 61) +ee 51/d(bmg7 em)'
This is a lattice of full rank in R™ which can be expressed as
E/ — 6/1/nanl
where ¢’ := §"/¢, and where ¢’ € G* = SL(n,R) is given by

(5.56) g = (ng ?) =9B (g ?) ; 9B = (é ?) :
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(Recall from Sec. that B is the matrix in M,, 4(R) whose row vectors are
bi,...,b,. Also in (B50), “I” stands for the identity matrix of order d or m,
depending on the position.) We will apply the set-up of Sec. with £’ in
place of £. Note that for this lattice we have A = 6*/9Z™ and thus p.4 is counting
measure. We fix the following (regular) window set:

W= {6",,...,6",,}.

The point of these choices of £ and W is that now our periodic set P in (5.32))
equals the cut-and-project set P(W, L). Hence Proposition [5.12] applies to the set
P, and we will see that in this case, the statement of Proposition [5.12]is equivalent
with the statement of Proposition We note that (5.47) gives ¥ = W, and
(5.48) means that m is the uniform probability measure on ¥, assigning mass m !
to each point. This agrees with ¥ and m in Proposition 5.6 if we identify each
je{l,...,m} with the vector 51/dej € W. It remains to prove that the map given
by (E50) agrees with the map in (5.35). The key step in doing so is the following
lemma, which gives an explicit formula for the subgroup H = Hy of G.

LEMMA 5.22.

I 0\ (/A 0\ _ o
H‘{93<U I) (o I>931:A€SL(d,R),U6J‘l}.

ProOOF. Recall that, by definition, H = Hy is the unique closed connected
subgroup of G such that I'N H is a lattice in H, ¢4 (SL(d,R)) C H, and the closure
of Mgy (SL(d,R)) in T'\G equals I'\I'H. It follows from (5.56) that ¢4 (A4) =
g5 (gAg™1) for all A € SL(d,R); hence H = H,,,. Let G’ be the following closed
Lie subgroup of G:

(5.57) G = {(é ?) : AeSL(d,R), U € Mm,d(R)} .
Note that ¢4, (SL(d,R)) C G’ and I' N G’ is a lattice in G’; hence
H=H, cq.

For any linear subspace U C R™, let us write ¢? for the space of matrices in
M,,.4(R) all of whose column vectors belong to U. Note that U? - A = U? for all
A € SL(d,R). Set

HZ/{ g {QB (é ?) ggl A S SL(d,R), U e ud}

I 0\ /A 0\ _
_{gB (U I) (0 I)gBl : AeSL(d,R),UeL{d};

this is a closed connected subgroup of G'.

Let © be the set of matrices U € M, 4(R) such that 0

U I
closed subgroup of (M,, 4(R),+). By mimicking part of the proof of [24, Lemma
7], we find that there exists a linear subspace V of R™ such that = V<. Using
g (SL(d,R)) C H it also follows that H = Hy. Hence it now remains to prove
that J° = V.

Note that for every linear subspace U4 C R™, Hy is a closed connected Lie
subgroup of G’ which contains ¢, (SL(d, R)). Hence, by the definition of H = H,,,
V can be characterized as the unique smallest linear subspace Y C R™ with the

€ H; this is a
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property that Hy, intersects I' in a lattice. Let 7 : G' — SL(d,R) be the projection

homomorphism g ? — A. Using [55] Cor. 8.28], it follows that Hy, intersects
I" in a lattice if and only if
(5.58) UNZ™ is alattice in U

and 7(T' N Hy) is a finite index subgroup of SL(d,Z); and as in the proof of |24}
Lemma 8], one sees that the latter condition holds if and only if

(5.59) B; e Q™ +U, Vj,

where Bjy,..., By are the column vectors of B. Hence: V is the smallest linear
subspace U C R™ which satisfies both (5.58) and (G.59).

Let s = dim V. Since V satisfies (5.58), there exists a Z-basis Vi,...,V;, of Z™
such that Vi,...,V; is a Z-basis of ¥V N Z™ and an R-linear basis of V. Since V
satisfies (5.59), there exists some ¢ € Z* such that B; € ¢~ (ZVsq1+- - -+ZVn)+V,
Vj. Now ¢ Y (ZVsy1 + -+ + ZV,,) + V is a closed subgroup of R™ containing Z™
and By,...,Bg; hence J C ¢ Y (ZVsy1 + - + ZV,,) + V, and thus J° C V. On
the other hand, recall that J° NZ™ is a lattice in J°, i.e. J° satisfies (558)), and
furthermore we have B; € J C Q™ + J° for each j, i.e. J° satisfies (5.59). Hence
YV C J°, i.e. we have proved J° =V, and thereby the lemma. O

Using Lemma [5.22] we now conclude the proof of Proposition Writing

(I 0\ [A 0\

with A € SL(d,R) and U € J°% one verifies that in the present situation, the
formula (549) can be expressed in the following more explicit way, for any w =
6de, in W:

(5.60)

i (00 = (L 892 + (e — ) (B + 1) Ag x (5/%e;} )\ (0.6 %e0)}.
j=1
It follows from (5.33) that By — B € J°% 4 M,, 4(Z) for each v € I'(¢); hence there
exist U, € J°% and ay € My, 4(Z) such that By — B = U, + a. Using Lemma
one now verifies that the lattice I' N H contains

’ Y 0 o
r ;_{<av+a 1> v el(g), aeJZd}

as a subgroup of finite index. Hence in the definition of p,, in (E50) we may just
as well view J,, as a map from T'{\ H to N(X), with 1, (in the present situation:
ftg') being the invariant probability measure on I')\H. Taking I, C SL(d,R) to
be a fundamental domain for I'(¢)\ SL(d,R), as in Section 5.2, and F; ¢ J°¢ a
fundamental domain for T ;oa = J od / N/ d, one verifies that the following set is a
fundamental domain for I'y\ H:

I 0\ [Ag~' 0\ _
(5.61) {gB<U I><90 I>gBI:A€Fq,U€FJ}.

Note also that when parametrizing the last set by (A4,U) € F, x F7, the probabil-
ity measure ji4 corresponds to the probability measure 1 x nr which we considered
in Section B2t furthermore, after renaming the markings “1,...,m” instead of
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“ldey, ... 6%, the formula (G60) turns into (5.34). (We used “Ag~'" in-
stead of “A” in (BGI) so as to get rid of the “¢” in (G.60).) Hence the formula
for fiq, (B50), turns into the formula for p, in (&38). This completes the proof of
Proposition O

5.4. Scattering potentials satisfying the conditions in Section 3.4

We consider scattering described by a Hamiltonian flow with a spherically sym-
metric potential W having compact support in the unit ball. Thus, by a slight abuse
of notation, the potential W : R4\ {0} — R is given by W(q) = W (r) with r = | q|,
where we assume W € C(Rs) and W(r) = 0 for » > 1. Furthermore we assume

(5.62) liminf r*W (r) > 0.
r—0

For scattering at the single-site potential W, considering a particle hitting the unit
ball with unit speed and with an impact parameter of length w € (0,1), the de-
flection angle and the total time which the particle spends inside the scatterer are
given by the formulas [53] Sect. 5.1]

oo —2
(5.63) O(w) = 1 — 2w rdr ,
ro \/1—=2W(r) — w?r—2
and
! dr
(5.64) T(w) = 2

ro V1 —2W(r) — w2r=2’
respectively. Here 19 = 79(w) € (0,1) is the largest solution to the equation
1 —2W(r) — w?r~2 = 0 (this number rq is guaranteed to exist because of (5.62))).
The deflection angle (w) in (£.63)) can take any value in [—oo, 7], which for 8(w) < 0
represents spiralling motion around the center; however, in the case of an every-
where repulsive potential (i.e., W monotonically decreasing) we have 0 < 8(w) < 7
[63] Sect. 5.4].
Comparing (564) and (563)), we note that

-0

(5.65) Tw) < 720 e 01).
w

In particular, if the function € is bounded, then T'(w) is uniformly bounded on any
interval w € [e,1), € > 0.

When replacing the potential W by the rescaled version q — W (p~tq), as in
([C23), the formula for the deflection angle remains the same, with w € (0, 1) now
denoting the normalized impact parameter; furthermore the function 7' is replaced
by w — pT(w).

We next discuss conditions on the scattering potential ensuring that the scat-
tering map ¥ satisfies the conditions (i)—(iii) in Section B4

DEFINITION 5.1. For the purposes of the present paper, we say that a potential
W € C(Rso) with supp(W) C (0, 1] is dispersing if W|g,1) is C, lim inf, o r?W (r) >
0 and limsup,._,o W(r) # % [, and furthermore the function 6 : (0,1) — R given by

(5:63) extends to a C' function on [0, 1) satisfying #(0) = kn for some k € Z, and
0'(w) # 0 and |#(w) — kn| < 7 for all w € [0, 1).

6These are the conditions imposed in Section [[L3]in order to make the flow <I>§p) everywhere
well-defined.
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When W is dispersing, it follows from Lemma and Remark 3.7 that the
scattering map ¥ (which is given by (834) and ([B.38]), using the extended function
6 :[0,1) — R) satisfies the conditions (i)—(iii) in Section B.4l

One example of a dispersing potential is the truncated (“Muffin-tin”) Coulomb
potential,

(5.66) Wr)=a-I(r<1)-(r—t 1),

for any constant « ¢ {0,—1}. Indeed, by a straightforward modification of the
classical treatment of the non-truncated Coulomb potential (cf., e.g., [I, Sec. 8.E]),
one verifies that in this case,

(1 _ w2)1 /2
l+a w

(5.67) O(w) = 2arctan( ) — I(a < —1)- 2.
On the other hand, if @ = —1, then #(w) = —mx, and the scatterer is a so called
Eaton lens: Each particle is reflected a perfect 180° angle independently of the
impact parameter, and the potential is not dispersing.

In Lemma below we give a simple criterion which ensures that every W
in a certain general class of repulsive potentials is dispersing. As a preparation we
first give an explicit formula for the first derivative of 6(w).

LEMMA 5.23. Assume that W | 1y is C*. ThenU = {w € (0,1) : 1§ W'(ro) #
w?} is an open subset of (0,1), and the function O(w) is C* on U, satisfying

(5.68)

— raw’ (r
L o (WA AW (r) W (1) — 2) s 4 W (r)
0" (w) = -2 372 dr
7o (w) (1= 2W(r) — w?r—2)

forallwel.

(Recall that we always assume W € C(Rsg), W(r) = 0 for r > 1, and that
(5.62) holds.)

PRrROOF. Recall that ro = ro(w) € (0,1) is the largest solution to the equation
1—2W (r)—w?r~2 = 0. Fix a point wg € Y. Then by the implicit function theorem,
the function ro(w) is C? in some neighbourhood of wg, with

wro
5.69 . =——.
( ) TO(w) w2 — TSW/(TO)
In particular, since ry is continuous near wgy, U contains a neighbourhood of wy.
This proves that U is open. Also for any w € U we have 1 —2W (r) —w?r=2 > 0 for

all 7 > ro(w); hence 4 (1 —2W (r) — w?r—2) }T:TO(w) >0, viz., w?ry® —W'(rg) > 0.
Hence in view of the definition of U/, we have:
(5.70) w? > 73 W (ro) and thus 7H(w) >0,  Vw €U.

Set &o(w) = 7o(w)/w. Substituting r = w(&(w) + h) in (5.63), differentiating
formally under the integration sign, and then substituting h = £ — §y(w), we obtain
[e'e) —2 AW W/ _9 ’ 2W’
(5.71) 0'(w) = _2/ (€2 + (w&g) + wEW (we) Eog;,;) W ()
So(w) & (1 —2W(w€) —£72)

dg
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for all w € Y. This formula is easily verified to be equivalent with (5.68]). In order
to justify the preceding manipulations, set A(w,z) = 2z - B(w, £ (w) + x?), where
B(w, §) is the integrand in (B.71)); then the right hand side of (E.71]) equals

-2 / A(w, x) dx.
0

Using (5.70) and W|i,1) € C? one verifies that A(w,z) extends to a continuous
function on all U x [0, 00). Furthermore B(w, &) = £3(1 — &72)73/2(¢72 — 2)¢) (w)
for ¢ > w™!, implying that A(w,z) < 7% for x large, uniformly over w in any
compact subset of U. It follows from these observations that the right hand side of
(&) is a continuous function of w € Y. Now to complete the proof it suffices to
verify that

(5.72) —2/UJ2 /000 A(w, z) dx dw = §(ws) — O(wy)

whenever wy; < wy and [w1,ws] C U. However, this follows immediately using
Fubini’s Theorem and (5.63), together with the fact that

- w,z)dw = |2z - (éo(w) +x?)~2 w=w;
/ A( | )d |:2 \/1 B 2W(’w(§0(u)) + ‘TQ)) - (50(“’) + 152)_2 w:w1.

w1

O

LEMMA 5.24. Let B be the numerical constant f = %&;&) =0.7124..
where o = 0.4093 . . . is the unique zero of 2z° + 2z* — 823 + 222 — 7w + 3 in [0, 1].
Assume that W\ 1) is C*, W is convez and W'(r) < —, ¥r € (0,1). Then W is

dispersing.

REMARK 5.6. It seems likely that the assumptions in Lemma can be sig-
nificantly relaxed: We believe that W is dispersing whenever W 1) is C?, strictly
decreasing, convex, and satisfies lim,_,o W(r) > %; however at present we have no
proof of this claim.

The constant 3 appearing in the statement of Lemma [5.24lis in fact the smallest
possible for the requirement that the integrand in (5.68) be nonnegative for all
w € (0,1) and r > ro(w). Indeed, this nonnegativity fails for any linear potential
W(r)=c-I(r <1)-(1—r) with slope 0 < ¢ < 3, as one verifies by computations
similar to those appearing in the proof below.

PrROOF OF LEMMA (241 The assumptions on W imply that W(r) > 8(1 —r)
Vr € (0,1], and so ro(w) extends to a strictly increasing C' function on [0,1)
with 79(0) > 1 — (28)~! = 0.298..., satisfying (569) for all w € [0,1). (This
of course means that we only need the assumptions in Lemma to hold for
1 — (28)7! < r < 1; the behavior of the potential W(r) for r < 1 — (28)7! is
completely irrelevant for our discussion.) Also Lemma [5.23]applies with U = (0, 1),
and so the formula (5.68) holds for all 0 < w < 1. The integrand in (G.68)) decays
like 7=3 as r — oo, uniformly with respect to w € [0, 1); furthermore the numerator
of the integrand is a C' function of (w,r) in [0, 1) x (0, c0), vanishing for r = ro(w),
and regarding the denominator we note that (1 — 2W (r) — w?r=2) > 28 for all
w € [0,1), r € (0,1). From these facts it follows that the right hand side of (5.63)
is well-defined for all w € [0,1), and depends continuously on w in this interval.
Hence 6 extends to a C* function on [0,1). Letting w — 0 in (5.63) we see that
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this extended function satisfies #(0) = 7. Recall also that 0 < f(w) < = for all
w € [0,1), as we noted below (G.63)).

Now to complete the proof of the lemma, it suffices to prove that §'(w) < 0 for
all w € [0,1). From now on we keep w € [0,1) fixed. Note that the integrand in
(E68) is positive for all > 1; hence it suffices to prove that the (numerator of the)
integrand is nonnegative for ro(w) < r < 1, i.e. that

(wzr_2 +AW (r) +rW'(r) — 2)T3W/(T0) +72W'(r) (w2 — TgW/(To)) > 0.
Using w? = r¢(1 — 2W(ry)) and W(r) < W(rg) + W/(r)(r — ro) we see that it
suffices to prove:
ro(4rog — 1) (r — ro) W' (r)W'(ro) + (r5(2 — rgr=2)W'(ro) — r*W'(r)) (2W (ro) — 1)
(5.73) > 0.
Next, noticing that
(5.74) B(1— )~ W) — r0) < Wi(ro) < }

and using the general fact that ¢; < 2 < ¢2 = a + bx > a + min(bey, bez), we see
that it suffices to prove that (E.73) holds when replacing W (rg) by 3 and when
replacing W (ro) by B(1 —r) — W/(r)(r — o). When replacing W (rq) by %, (5Z3)
simplifies into
ro(drg — r)(r — ro)W' (r)W'(r) > 0,

which holds since 79 < r < 1 and 79 > 7r9(0) > 0.29. Next, replacing W(rg) by
Bl —r)—=W'(r)(r—ry), @I3) turns into
(5.75) CW'(ro) +1r°(2(r —ro)W'(r) + 1 =281 —r))W'(r) > 0.
where
(5.76) C = ror(2rir> = 1)(r —ro)W'(r) +13(2 — rgr—>)(28(1 — r) — 1).
In order to prove (B.7H) we first show that C < 0. If 2r3r=3 — 1 < 0 then using
(r—ro)W'(r) > B(1 —r) — 3 (cf. (7)) we see that C' < 0 holds provided that
ror(2rgr=2 —1)3 +73(2 = r3r=2) > 0, viz., 4r¢(4rg —r) > 0, and this holds since
ro <1 < 1andry > 7r9(0) > 0.29. Now assume 2rgr—3 —1 > 0. Using W'(r) < —f3
we then find that C' < 0 holds provided that
(5.77) (r* — 5r3rg 4 2 4+ 4r°rg — 2r3) B < 2ror? — 1.
If r* — 5r37rg + 2rg + 412rg — 2r3 < 0 then (5.77) is automatic, and if r* — 5r3ry +
2rg + 4r?rg — 273 > 0 then (5.77) is a consequence of 8 < (2(1 — 79))~! (which
follows from & > W (rg) > B(1 — rg)) together with r%(r — rq)(4rg —r) > 0.

Having thus proved C < 0, we see using W'(ro) < W’(r) < 0 that (5.75) holds
provided that C' + 72 (2(r — ro)W’(r) + 1 — 23(1 — r)) < 0, or equivalently,
(5.78) (2rg — ror® + 20 YW/ (1) + (r 4+ 10)(r —r0) (1 — 2(1 — 7)B) < 0.
Using W'(r) < —f one finds that (578) holds provided that
B (r+10)%(r — o)
2 —rer3 + 20t 4+ 2(r +19)2(r — o) (L —7)

(5.79) B> f(ro,7):

(Note that the denominator is obviously positive.) It is our task to prove that (5.79)
holds for all r with 79 < 7 < 1. Expanding and simplifying % f(ro,r) and using
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(r +70) (873 — Trro 4 5r2) > 0 one finds that -Z f(rp,r) > 0 whenever r > rq > 0.

or
Hence it suffices to prove that f(rg,1) < g for all g € [ro(0), 1]. However we have
9 (1+2z)g(x) : 5 4 3 2
gf(%l):m with g(x) = 22° + 22* — 8z + 22° — Tz 4 3.

We have g(0) = 3, g(1) = —6 and ¢'(z) < 0 for all = € [0,1]; hence g has a unique
zero in [0, 1]; by definition this is the number o = 0.409 ... ., and g(z) is positive for
x € [0, «) and negative for z € (o, 1]. Hence f(z,1) < f(a,1) = g for all z € [0, 1],
and the proof is complete. O

While Lemmal[5.24] gives an example of a simple general criterion which ensures
that the potential W is dispersing, let us note that there certainly exist other general
classes of 'nice’ potentials which are not dispersing. For example, recall that for W
dispersing, the range of 6(w) is an interval of length at most 7, while in fact there
exist potentials W for which 6(w) varies over an arbitrarily large portion of the
negative real axis, meaning that the particle goes around the center of the scatterer
many times [53] Sect. 5.4]. Also the condition 6’ (w) # 0 in Definition 5.1l need not
hold for general potentials V.

5.5. More general scattering potentials

In this section we give an outline of how the main results of the present paper
may be extended to a more general class of spherically symmetric potentials. Let
O(w) be the deflection angle, as in ([L63)). Our precise assumption will be the
following;:

(5.80) There exists an open subset U of (0,1) of full Lebesgue measure
such that Oy € C' and 6/ (w) # 0 for all w € U.

It seems likely that this condition is fulfilled for generic potentials W within several
natural spaces of functions. However note that there also exist non-trivial, ’nice’,
potentials W for which (5.80]) fails; indeed this happens for the truncated Coulomb
potential in (5.66]) with o = —1.

From now on we assume that (5.80) holds. Note that then also the set {w €
U : O(w) ¢ 7Z} has full Lebesgue measure in (0,1). As this set is open, it can
be expressed as a union of a finite or countable family {I,, },e.a of pairwise disjoint
open intervals. By construction, for each a € A, I, is an open sub-interval of (0, 1),
we have |7, € C', #'(w) has constant sign in I,,, and there is some k,, € Z such that
O(w) € (kam, (ko + 1)7) for all w € I,. Furthermore, ) . [lo| = 1, where |I,|
denotes the length of I,,. Let us note that in the special case when W is dispersing,
these conditions are fulfilled with A singleton: A = {ao} and I,, = (0,1).

For every o € A we set

So- ={(v,b) €S9I x84 . ».b <0, sing(v,b) € I,};

this is an open subset of S_, and the family {Sa,— }ae.4 is pairwise disjoint. We let
S’ be the union of all the sets Sy, —; this is an open set of full measure (wrt. w X w)
in S_. The formulas (34) and [338) define a C* map ¥ = (¥, ¥y) : &~ — S,
satisfying conditions (i) and (ii) in Section B4l For each o € A and v € S¢~! we
also set:

Svo = {bES! ¢ (v,b) €5, )
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and
Voo ' ={P1(v,b) : b€ Sy}

Both these are open subsets of Sffl. By a simple modification of the proof of
Lemma [3:25] using the fact that 6’ has constant sign on I,,, we have:

(5.81) For each o € A and v € S{!, the map ¥, (v,-) is a C*
) diffeomorphism from Sy, ,— onto Vy 4.

Let us write
v Vwa = Sva,—
for the inverse diffeomorphism. We also set
o) = Ta(v,8, ,(w)  (veST! ueVya)
Both B, and ,Bfa are spherically symmetric in the sense that ,Bnya(uK ) =
ﬁfa(u)K for all K € SO(d). This implies in particular that both functions ﬁfa(u)

are jointly C! in v, u.
In the present general setting, the differential cross section is given by

O'('U,'U+) = Z UQ(U,’U+) (’U,'U+ € Sfil)a

acA
where
0/ (w)] L?H with w = |[(8, (v )R(v)) |
sin 0(w) et TE +
O'Q(’U,'U+) = if V4 € V’u,a;
0 1f ’U+ ¢ V’U,a'

Thus o is a function on S{~* x S{™! taking values in Rso U {+00}. As before
we have fsd—l o(v,vy)dvy = vg_1, implying that o is almost everywhere finite.
1

More generally, for any v € S‘li_1 and any bounded, Borel measurable function
f:8¢7! - R, we have

(582) /Bdl f(\Ifl(el, sf(w))R(rU)*l) dw = i f(v+) 0’(’1}, ’U+) dvy.
1 1

In our present setting, since the incoming and outgoing velocities v1 in a
scatterer collision do not in general determine the impact parameter uniquely, in
order for the limiting joint distribution of the first n flight segments and scatterer
marks to be a a finite-memory Markov process, we will also keep track of the
index « such that the impact parameter belongs to I,. It turns out to be natural
to lump this index together with the marking of the scatterer, thus forming an
element xy = (¢,«) in the space ¥4 := X x A. We equip X 4 with the measure
m4 = m X cy4, where c4 is the counting measure on A. We use the letters ¢
and « also to denote the projection maps from ¥ 4 to ¥ and A, respectively; thus
X = (s(x), a(x)) for all x € ¥ 4.

We modify the definitions appearing at the end of Sec. [34] very slightly, by
letting w(j; p) be the subset of points (gq,vo) € w(j — 1;p) for which 7; < oo,
q;_1 + 7jvj—1 lies on the boundary of a separated scatterer, and ||w;| € Uals.
We then let a; = aj(qg, vo; p) be the unique index « for which ||w;|| € I, and set
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X; = X;(@o,v0; p) = (55, ;) € X 4. The sets mq p,; and 20(j; p) are still defined by
(A1) and (#44), but using the new definition of ro(j; p).
The definitions of the collision kernels in Sec. (cf. B4I) and B44)) are

generalized as follows: For any £ > 0, x, x4+ € X4, and vg,v,v4 € Sffl, we set

Po (’Uo, X, U3 67 X+ 'U+)
= %@;Mk(( :,FOR(D)@(X) (61)J_, <(X))7§7 (ﬁ;ya(m)(erR(v))J_, <(X+)))-

if v € Vi a(x)s V+ € Vu,a(xy ), and otherwise po (vo,x,v;ﬁ,X+,v+) = 0. For U an
open subset of S¢71, B € Cy(U,R?), £ >0, ¢ € %, x1 € X4, we set

p0,8(S, V3€, X4, v4) =
_ Zate)(v,0+)

Vd—1

E(((BO)R®©))1:5), (B2, any @+ RE)) 15 (1))
ifveU and vy € V, o(y,), and otherwise po g ((, V; €, X+, 'v+) = 0. We then have
po(vo, X, v; &, x4, v+) =Pogt .. (s(X), 03 & x4, v4).

Similarly we set

Ua(x+)(va er)
Vd—1

p(vi€ s vs) = B (€, (B2, ) @+ B0) 1,5 (1)) )

if vy € Vy a(yy), and otherwise p(v;{,X+,v+) =0.
We now describe the generalizations of the main theorems in Section [dl We
replace the definition of X [(]") (cf. (E2)) by

X[(Jn) = {<’U0; <§janavj>;L:1> eU x (R>0 X E.A X Slf_l)n

V5 € Vo, at) G = Loom) |

Using our slightly modified notation, Theorem [£.1] carries over almost verbatim to
the present situation:

THEOREM 5.25. Let P satisfy all the conditions in Section[Z:3 and [235), and
let ¥ be a scattering process arising as described above. Let n € Z>1 and T € R>q;
let U be an open subset of Sffl; let F1 be an equismooth family of probability
measures on Sffl such that A({U) = 1 for each A € Fy; let Fy be a uniformly
bounded and pointwise equicontinuous family of functions f : X [(]") — R; and let F3
be an admissible subset of Cp(U,R?). Then
L 1o 580000000, 5(0).030). 0500, 5(0).030))

q,p,m

n

) dA(v)

j=1

(5.83) - /x(m F(voi (& x5, v5) 1 )0, ((@), vos €1, X1, v1)

U

n
pro Vi, Xj—1,Vj-1:&, X, V) dA(v0) H (d&; dm.a(x;) dv;) — 0
j=2 j=1

as p — 0, uniformly with respect to all q € Pr(p), N € F1, f € F», B € F3.
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Theorem [5.25] can be proved by following the arguments in Sections [3.5H4.4]
fairly closely. We here give a brief description of the most important modifications
required: First, instead of (84]), we now set

V. Oy (V if |Ia] >
V]9, = va\ Oy (Vo.a) 1 ol > (weSi ™ aecA n>0).
0 if [Io] <7
Note that for given 7 there are only finitely many a with V! , # 0; this is a crucial
point for several steps in the proof. The definition (358 is replaced by

ity 5= B\ o u (V)L
acA
Thus each i, is a union of a finite number of annuli centered at the origin, and
vol(il;) — 0 as n — 0. We define gg oy €xactly as in Definition B3] (using our new
iL,); then Proposition remains true; similarly Definition [3.4] and Proposition
[B3T extend to the present situation. In Section 2] the definition of v in (@5
is replaced by the following: For any s € R?\ {0} and o € A, we let v, , be the
probability measure on S‘li_1 given by

1
vol((Sz,a,-) 1)
Note that v is supported on Vs ,. Also for n > 0 so small that VI # 0, we
yo  (cf. [&T)). Now Lemma extends to the

present situation; the difference is that each of (i), (ii), (iil) in Lemma is now
a statement which holds for every a € A such that VI  # 0; for example (i) now

dvs o (v) = 04(8,v) dv.

— noy-1
define v, = vs,a(V5,)7" Vs,

says that for every such «, if V, = V, 5 5., is the restriction of V = V, 5 5 to
B, 5(Ss0-)NV, g (V,), then Vg is a C* diffeomorphism onto 1Z9%
Turning to the proof in Section.3 the definition of v, ¢, (1), is now replaced

by:

Vis,aa = Vs,a(Dl)_l . V‘S’O“Dg’
for any £ € {1,...,N} and a € A with v o(Dy) > 0; and in place of (£I6) and
(@17) we now set Agq = {s € Sffl : Dy C VS5’7Q} and F1y={vis0 : * €A, s€

Ag,o}. Note that Fy 4 is still an equismooth family of probability measures, for each
¢. Furthermore, [@19) is replaced by

P = {fiwosorxol * &0 >0, X0 € B, w0 € UN Ag oy 13
this is again a uniformly bounded and equicontinuous family of functions on X 1(3"2_1).
A bit further down, the definition of Uz, (£29), now takes the form:

Us := {'U elh ﬁmf;)p)l T < p? i (w) < 01, qW(w) e P\E,

[0 (v)] € V2L , and [Vu € [v1(v)] : F' €U N m§7p71 such that

s1(v),01(v)

q(l)(v’) = q(l)(v), a1 (v') = aj(v) and vy (v') = u] }

(Here a1(v) := a1(q, g(v),v;p), just as v1(v) := vi(q, g(v),v;p) and 71 (v) =
71(q, 5(v),v; p).) With this, Lemma [L.5 now carries over to our situation. Finally,
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[#33) now reads
x> x| (o (17 0), x4 (0), () dAw).
q'€Pr, (p) (L,a0)eEM(q U/Eaﬂmqpn
where now
M(q') = {(6, a) : lN)z C Vg?)a and [Vu € ﬁ[ s elUin mf;,p,l such that
q(l)(’l)/) — ql7 al(v’) — a and 1)1(’1)/) _ ’U,]}
and
aV(v) = ¢, a1(v) = a, vi(v) € Dy}

With this setup in place, the remaining part of the proof of Theorem K] carries
over in a fairly straightforward manner.
Next, the generalization of Theorem is as follows. We define X (cf.

&AT)) by:
X = {(a,v0, (5,35, 0))_,) € THR?) x (Rog X Ta x $71)"

(5.84) v; €V, 1 )(jzl,...,n)}.

U/ga:—{vEUlﬁmqplz

Hence in particular, we now have, in place of (B.55):

(5.85)
X=XW={{gv,&x,vs) € THRY) xRog x Sa x S§1 1 vy € Vo) }-
THEOREM 5.26. Let P and & satisfy all the conditions in Section[2.3 and (2.35]),

and let U be a scattering process arising as described above. Then for any n > 1,
A € Poo(THRY)) and f € Cp(X™), we have

lim f(q,v, <pd‘1Tj(p1‘dq, v;p), x;(p' %q,v;p),v;(p' g, v;p)> _ )
P20 Jan(nsp) i=1
(5.86) xdA(q,v)

:/ f(qa'UOa<§jan7’Uj>?:1)p(vo;glv)(l,’vl)
X (n)

n
XHPO Vj—2,Xj—1,Vj— 17§J7XJ7’UJ dA q,'UO H dgjdm-A XJ dv])

Jj=2 Jj=1

Using Theorem and mimicking the discussion in Section L5 one proves
that Theorem [[.3] extends verbatim to the present setting. The explicit description
of the limiting random flight process © remains the same as given in the beginning
of Section EH, with the only difference that the definition of X(°°) in ([Z53) is

replaced by

X0 . {<q0,v0, (& x5 ) 0)) € THRY) x [[(Rs0 x Sa x S{71)

—

1

J
v] 6 V'vj,l,a(xj)a v‘] Z 1}5

and in ([@60) we use my4 in place of m.
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Also the definition of © from the beginning of Section carries over imme-
diately, recalling that the extended phase space X is now given by (5.83), and
equipped with the measure dgqdv dédm 4(x)dvy, The rest of Section A0l carries
over in the obvious way. The forward Kolmogorov equation for O now reads:

(5.87) (0r+v-Vq—0)f(t,q,v.&x,vs)

= / f(tu q, vy, 07 Xlu 'U)pO(UOa Xlu ’U;§7 Xav-l-) dmA(XI) de'
EAXSL1171

5.6. Open questions

In addition to our main hypotheses [P1-3] and [Q1-3] on the scatterer config-
uration P, key assumptions in the present study are that all scatterers are iden-
tical, spherically symmetric and finite range, and that there are no external force
fields. Furthermore very little is known, except in special examples, on the limiting
Markov processes we have derived. This section provides a brief survey of some of
the remaining challenges.

5.6.1. Admissible scatterer configurations. The discussion in Section [5.1]
is restricted to realisations P of Poisson processes with constant intensity. It would
be interesting to extend the discussion to more general randomly generated sets, for
example Gibbs point processes, determinantal point processes and cluster processes.
A particularly simple example is the process studied in [3], where R? is partitioned
into unit cubes, and with a random number of points distributed uniformly and
independently in each cube. In all of these examples, we expect the spherical
average (2I0) in assumption [P2] to converge to a Poisson process, and hence the
Boltzmann-Grad limit to be given by the linear Boltzmann equation.

An immediate challenge is to extend the discussion in Sections[B.IH5.3lto unions
of the point sets considered there. For example, take P = P; U Po, where P; is
a fixed realisation of a Poisson point process with intensity ¢ (as in Section [E1I),
and P, is a fixed full-rank lattice in R? of covolume 6. In this case we expect
all hypotheses to be satisfied, with ¥ = {1,2} as the space of marks, labelling
the points from P; and Pa, respectively. The limiting process is the union of two
independent marked point processes, a Poisson point process with intensity ¢ (whose
points are marked 1), and a random lattice of covolume ¢ (whose points are marked
2). The independence of the two processes will imply a rather simple formula for
the transition and collision kernels in terms of the corresponding kernels for the
limiting processes for the Lorentz gases with configurations P; and Ps, respectively
(cf. [47]). The same should go through if P5 is taken to be a periodic point set (as
in Section [£.2) or a quasicrystal (as in Section [B3]). A slightly different challenge
is to understand the case when P; and P, are both full-rank Euclidean lattices. If
the two lattices are incommensurate, the paper [47] shows that the limit process
is the union of two independent random lattices, thus establishing condition [P2] —
however without the required uniformity in q.

Another class of examples P is obtained by “thinning” an existing scatterer
configuration Py. That is, for 0 < p < 1, remove each point in Py independently
with probability p, and consider P as a realisation of the resulting random point
set. In this case, the paper [62] establishes condition [P2] almost surely, again
without the required uniformity in g. It should be an interesting exercise to prove
all necessary assumptions in Section 2.3] in this setting.
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In a similar vein, one might ask whether the Boltzmann-Grad limit exists for
a Lorentz process where P is the set of primitive lattice points. Using the fact
that this set can be realised as an adelic cut-and-project set, El-Baz [27] proved
that assumption [P2] holds, again with no uniformity in g. The subtlety in the
problem is that the window set required in the cut-and-project construction has
empty interior. It would be interesting to establish the analogous results of Section
in this more singular setting.

5.6.2. Necessity of hypotheses and SL(d, R)-invariance. One might ask
whether any of our assumptions [P1-3] and [Q1-3] on admissible scatterer config-
urations can be weakened, or even dropped completely. If the Boltzmann-Grad
limit does not exist for a given P, can one at least establish convergence along sub-
sequences under appropriate hypotheses? It is natural to also consider sequences
of point sets P = P,, for example modelling the case of polycrystals [50], and it
would be interesting to extend our theory to this case. Assumption [Q1] stipulates
that the limit measure pc is SO(d — 1)-invariant, and we have noted that p. is nec-
essarily invariant under the diagonal group {D;},>o (Lemma [29). All examples
discussed in this paper however enjoy the significantly stronger property that puc
is invariant under the action of SL(d,R). So — are there any P for which p. is
not SL(d, R)-invariant? Note that there are simple examples of point sets P with
constant density for which the spherical average (P — q) R(v) D,, for some fixed
q € P, does not converge to a SL(d, R)-invariant limit process. The challenge here
is to find examples for which we have convergence, but no SL(d, R)-invariance, for
a positive density of g € P.

5.6.3. Non-spherically symmetric scatterers. There is no principal ob-
struction for our approach to be generalized to non-spherically symmetric scatterers,
under suitable conditions on smoothness and invertibility (excluding, for instance,
polytopal scatterers). The extension to a Lorentz gas with identical scatterers
given by hard ellipses and more general strictly convex bodies should be relatively
straightforward. The transition kernel k£ defining the limit process will now depend
on the direction of travel v, as the size of the cross section is given by the projection
of the elliptical scatterer onto the hyperplane perpendicular to v. Identify the hy-
perplane with R4~1 as before, and denote the projection of the scatterer by £471.
The only modification required in the definition of the limit process is to replace the
cylinder 3¢ = (0,€) x B4~ in the definition of the transition and collision kernels
by 32’ = (0,¢) x £471. The strict convexity of the scatterer is critical for our theory
to work. Polyhedral scatterers (as in the Ehrenfest wind-tree model) would not
lead, in the Boltzmann-Grad limit, to a finite-memory Markov process. We refer
the reader to [2] for a simple model of this phenomenon. An important outstand-
ing task is to generalise the present work to non-radial potentials, still assuming
compact support (cf. the extension to long-range potentials below).

5.6.4. Non-identical scatterers. In Section [.6.1] we mentioned scatterer
configurations P that are finite unions of point sets Pi,Pa,.... To model crystals
such as NaCl (where P; = Z3 and P, = Z* + (4, 3, 3)), or lattices with impurities
(where P; is a lattice and P a realisation of a Poisson point process, say), it is
natural to assume that the scatterers centered at P; are not the same as those in
P;. In this case the necessary modifications in the limit process will include of
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course different cross sections for the scatterers from different families, and transi-
tion kernels that will take into account the varying scattering radii. This requires
replacing the single cylinder 3¢ = (0,€) x B¢~ by cylinders 3t = (0,6) x B,
each corresponding to scatterers from P;.

5.6.5. Long-range potentials. The assumption that the scattering poten-
tials have compact support is central to our approach. Even an extension of our
results to exponentially decaying potentials will require some non-trivial estimates.
The case of potentials with power-law decay has currently only been investigated
in the case of random scatterer configurations [21], [54]. A related problem is to
consider different scaling limits for compact potentials, where the strength of the
potential is reduced, and at the same time the scatterer density rescaled suitably to
achieve a non-trivial limit. In this case grazing collisions become important, and one
expects a different kinetic equation for the macroscopic dynamics. See [36], [26], [22]
for the corresponding result for a random scatterer configuration—here the limiting
kinetic equation is the classical Fokker-Planck equation.

5.6.6. External force fields. A key feature of our approach is the linear
rescaling by the subgroup {D,},~¢ of particle trajectories between collisions. This
clearly breaks down when the trajectories are curved due to the presence of an
external force field. Progress in this non-linear setting has so far been limited to
random scatterer configurations [23} [8l, 42], and any extension of these results to
lattices or quasicrystals would be a significant achievement.

5.6.7. Transition kernels and distribution of free path lengths. We
have seen above that in the case of a Poisson scatterer configuration P, the limiting
transition kernels are explicit, with an exponential path length distribution. The
only other case where we currently have explicit formulas is when P is a Euclidean
lattice in dimension d = 2 [17, [45]. For higher dimensional Euclidean lattices there
are no explicit formulas, but we have precise asymptotics for the transition kernels
[46]. These asymptotics in particular imply precise power-law asymptotics for the
free path length distributions; thus for example, for P a covolume one Euclidean
lattice in arbitrary dimension d > 2, the limiting distribution of the free path length
between consecutive collisions satisfies ®(¢) = %5’3(1 +0(& 1 log €)) as
& — oo [46]. We remark that the asymptotics for the limiting transition kernels
for P a Euclidean lattice also play an important role in the derivation of the long-
time asymptotics of the limiting random flight processes ¢t — O(¢); cf. [561] and the
next paragraph. It would be extremely interesting to extend these results to other
scatterer configurations.

5.6.8. Diffusion vs. superdiffusion, entropy estimates. Can we char-
acterise the long-time asymptotics of the limiting random flight processes ¢t >
O(t)? Do they converge to Brownian motion under an appropriate rescaling? The
only known affirmative answers to these questions are in the case of random P
[58], 5], [4, [41], where the mean-square displacement is linear in ¢ (diffusion), and
lattice configurations P [51], where we have a tlogt scaling (superdiffusion). It is
remarkable that for fixed scatterer size, convergence to Brownian motion is only
known for periodic configurations P [14}, 25], [59] (with ¢logt scaling in the case of
infinite horizon); the case of random P is completely open [39]. Finally, it would
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be instructive to generalise the entropy estimates for the limiting process © in [18]
for the two-dimensional lattice setting to general scatterer configurations.
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