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ABSTRACT. Let 9 be a continuous decreasing function defined on all large positive real numbers.
We say that a real m X n matrix A is ¥-Dirichlet if for every sufficiently large real number ¢ one
can find p € Z™, q € Z" ~ {0} satisfying ||[Ag — p||"" < v(¢) and ||q||" < t. This property was
introduced by Kleinbock and Wadleigh in 2018, generalizing the property of A being Dirichlet
improvable which dates back to Davenport and Schmidt (1969). In the present paper, we give
sufficient conditions on % to ensure that the set of -Dirichlet matrices has zero or full Lebesgue
measure. Our proof is dynamical and relies on the effective equidistribution and doubly mixing of
certain expanding horospheres in the space of lattices. Another main ingredient of our proof is an
asymptotic measure estimate for certain compact neighborhoods of the critical locus (with respect
to the supremum norm) in the space of lattices. Our method also works for the analogous weighted
problem where the relevant supremum norms are replaced by certain weighted quasi-norms.
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1. INTRODUCTION

1.1. Background. Let m,n be two positive integers and let M, ,,(R) be the space of m by n real
matrices. The starting point of our work is the following higher dimensional generalization of the
classical Dirichlet’s Diophantine approximation theorem, see e.g. [2, §1.5].

Theorem 1.1. For any A € My, ,(R) and t > 1, there exists (p,q) € Z™ x (Z" ~ {0}) satisfying
the following system of inequalities:

1
(1.1) |Aq — p||™ < ; ond lqll™ <t

Here || - || denotes the supremum norm on R™ and R™ respectively.

A natural question to ask is whether one can improve (1.1) by replacing 1/t by a smaller function,
that is, consider the following system of inequalities:

(1.2) [Aq —p|™ <¢(t) and |q|[" <t

where 1) is a positive, continuous, decreasing function which decays to zero at infinity. Historically
there have been two directions to pursue in this regard: looking for solvability of (1.2) for an
unbounded set of £ > 0 vs. for all large enough ¢. The former is sometimes referred to as asymptotic
approzimation, and has culminated in definitive results such as the Khintchine-Groshev theorem.
In this paper we are interested in the latter, less studied set-up of uniform approximation. Following
the definition in Kleinbock and Wadleigh [25], we say that an m by n real matrix A is ¢-Dirichlet if
the system of inequalities (1.2) has solutions in (p, q) € Z™ x (Z" \. {0}) for all sufficiently large ¢.
It is clear that A € M, »(R) is ¢-Dirichlet if and only if A+ A’ is ¢)-Dirichlet for any A’ € My, ,,(Z).
Thus with slight abuse of notation, we denote by DI, ,,(¢) C My, ,(R/Z) the set of 1-Dirichlet
matrices.

Let 91 (t) = 1/t. The problem of improving Dirichlet’s theorem was initiated by Davenport and
Schmidt [10, 9] where they showed that the set

(1.3) DI, = | J DIpna(cyy)

0<ce<1
of Dirichlet improvable matrices is of Lebesgue measure zero, while having full Hausdorff dimension
mn. More recently, Kleinbock and Mirzadeh [22, Theorem 1.5] showed that for any fixed 0 < ¢ < 1,
the Hausdorff dimension of DI,, ,,(ct)1) is strictly smaller than mn. There have also been extensive
studies on the Hausdorff dimensions of the (even smaller) set of the singular matrices,

Sing,,, , = ﬂ DL, (ctn).
0<ce<1
After a series of breakthrough work, it is now known that the Hausdorff dimension of Sing,, ,, is

mn — 7 whenever max{m,n} > 1; see [3, 4, 13, 7, §].

On the other hand, for a general decreasing function ¢ with ¢ — t1(t) increasing, Kleinbock and
Wadleigh proved a zero-one law for the Lebesgue measure of DI, (1) depending on the divergence
or convergence of a certain series involving ¢ [25, Theorem 1.8]. See also [12] for the relevant
dimension theory of DI ;(¢), [23] for a similar zero-one law with the supremum norm replaced by
the Euclidean norm and [26, 15] for analogous results in the inhomogeneous setting.

The arguments in [25] rely on the theory of continued fractions and are not applicable for higher
dimensions. Nevertheless, for general dimensions, building on ideas from [6, 19], a dynamical
approach was proposed in [25, §4], reformulating the problem as a shrinking target problem, which
asks whether a generic orbit in a dynamical system hits a given sequence of shrinking targets
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infinitely often. To describe this dynamical interpretation, let us first fix some notation. Let
d =m+n and let X := SLy(R)/SL4(Z) be the homogeneous space which parameterizes the space
of unimodular lattices in R? via gSL4(Z) +» gZ?. We note that SLy(R) acts on Xy naturally via
the regular action: gA = ghZ< for any g € SLg(R) and A = hZ¢ € X,. For any s € R, let a, be the

diagonal matrix
s/m
as = (e T 0 > € SLy(R).

0 e,
Let A : X4z — [0,00) be the function defined by
1
(1.4) A(A):= sup log(—).
veAN{0} (”U”)

Finally, let us denote
Im A d
(1.5) YVi=qAs:= 0 I 7¢eXq: A€ Mpyn(R) .

The submanifold ) C X, can be naturally identified with the mn-dimensional torus M,, ,(R/Z)
via Ay <+ A € M,, ,(R/Z). Throughout the paper, we denote by Leb the probability Lebesgue
measure on Y = M, ,(R/Z); for simplicity of notation, for any function f on ) we will abbreviate
the space average [, f(A4)dLeb(A) by either Leb(f) or [}, f(Aa) dA.

It was shown in [25, Proposition 4.5] that for any given 1 as above, there exists a unique
continuous function r = ry, : [sg,00) — (0, 00) such that

(1.6) A€ My, (R) is not 1-Dirichlet < asAa € A™10,7(s)] for an unbounded set of s > sy.

This equivalence is usually called the Dani Correspondence. In view of this interpretation, our task
is to find conditions which ensure that for almost every (or almost no) A € My, ,(R), the orbit
{asAa}s>s, hits the shrinking target A71[0,7(s)] for an unbounded set of s-values. We note that
this was also the strategy used in [19] giving a dynamical proof of the classical Khintchine-Groshev
Theorem, where the relevant shrinking targets are certain cusp neighborhoods in X;. For our case,
by Mahler’s compactness criterion, the shrinking targets A=1[0, r(s)] are compact neighborhoods of
the critical locus A~1{0}, whose explicit description is given by Hajés’s Theorem [11] (cf. Theorem
2.3 below). The fact that these shrinking targets are compact sets causes new difficulties compared
to the situation in [19], see the discussion in Section 1.3.

1.2. Main results. In the present paper, based on the dynamical interpretation described above,
we give sufficient conditions on v implying that DI,, ,, (1) is of zero or full Lebesgue measure. In
fact, with some modifications, our arguments also work for the analogous weighted problem where
the supremum norms in (1.2) are replaced by certain weighted quasi-norms, as introduced in [16].
We thus prove our main result in that generality. We first introduce the relevant notation.

Let a € R™ and B € R" be two weight vectors, that is
a=(ar,...,am) € (Rs0)™ and B=(B1,...,0n) € (Rsp)"
with >, a; =3, Bj = 1. We say that A € My, ,(R) is 1a,g-Dirichlet if the system of inequalities
(L.7) 1A = plla <¥(t) and |qllz <t
has solutions in (p,q) € Z™ x (Z" ~. {0}) for all sufficiently large t. Here
@l = max {Jai/* 1 <i<m} and |yls = max {|y[7 1<) <n}
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are the two quasi-norms associated with a and 3 respectively. Again it is easy to see that A €
My 0 (R) is tq g-Dirichlet if and only if A + A’ is )4 g-Dirichlet for any A’ € M, ,(Z), and
we denote by DIg g(¢)) C My, (R/Z) the set of 1)q g-Dirichlet matrices. We note that when
a=(L,...,L)and 8= (1,...,1), then DI, g(¢)) = DI, (1)

We now state our main result which gives sufficient conditions on 1) determining when DI, g(v)
is of full or zero Lebesgue measure.

Theorem 1.2. Fix m,n € N and two weight vectors a € R™ and 3 € R". Let d =m + n, and let

Hy = L +2d -4 and Mg = Ld; 1).
Let to > 0 and let 1) : [tg,00) — (0,00) be a continuous, decreasing function such that
(1.8) the function t «— tip(t) is increasing
and
(1.9) Y(t) < i(t) =1/t for all t > ty.

Let Fy(t) :=1—ty(t). If the series

(1.10) > kT Fy (k) log <%>

k>to

converges, then DI, g(v) is of full Lebesque measure. Conversely, if the series (1.10) diverges, and
D to<k< k;_le,(k;)”d IOgAdH ( . >
(1.11) lim inf — == Py &)
1

t [e%¢)
T (Stsken H sk log (k)

then DIq g(1)) is of zero Lebesgue measure.

5 =0,

Remark 1. When m = n = 1, Theorem 1.2 is not new; in fact [25, Theorem 1.8] is stronger in the
sense that it gives a tight zero-one law without the extra assumption (1.11). We believe that an
analogous tight zero-one law should also hold for general dimensions m,n, i.e. that Theorem 1.2
should hold with the assumption (1.11) removed. See Remark 8 for a discussion of why assumption
(1.11) is needed in our proof.

Remark 2. The function Fy(t) = 1 — ty(t) encodes 9 via (t) = #ﬂm In view of the assump-
tions (1.8) and (1.9), Fy is a decreasing function and takes values in (0, 1). In particular, the limit
limy ;o0 Fy(t) exists and lies in [0, 1).

If limy 00 Fy(t) > 0, then the conclusion of Theorem 1.2 follows from the work of Kleinbock
and Weiss [27]. Indeed, in this case the series (1.10) diverges, and for any fixed 8 we have
Ztogkgtl k_1F¢(k)”d logﬁ(m) = logt; as t; — oo, so that also the assumption (1.11) holds;
moreover, lim;_,o, Fy(t) > 0 implies that there exists some ¢ € (0, 1) such that ¢(t) < ¢/t, implying
that DIy g(v) C DIg g(ctr); and by [27, Theorem 1.4], DI, g(ct1) is a null set.

Remark 3. Let us give some explicit examples to illustrate our results. We note that each function
¢ appearing below is strictly decreasing on [tg, 00) for ¢y sufficiently large.

(1) Let ¥(t) = M (& Fy(t) = c(logt)~") for some ¢ > 0 and 7 > 0. In this case the
series (1.10) diverges if and only if 7 < %id. It is also easy to check that condition (1.11) is
satisfied whenever 7 < %id. Hence Theorem 1.2 implies that for such ¢, DI, g(¢) is of full

1

measure if 7 > %id, and of zero measure if 7 < o
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(2) Let o(t) = 1_C(logt)71/:d (oglogt)™” (o Fy(t) = c(logt)~/*4(loglogt)~") for some ¢ > 0 and
7 € R. In this case the series (1.10) diverges if and only if 7 < )“Zl, while the condition
(1.11) is satisfied if and only if 7 < i—j. Hence Theorem 1.2 implies that for such 1, DI, g(1))

’\‘j{—;rl, and of zero measure if 7 < :\{—‘;. However, for 7 in the range

is of full measure if 7 >
M o< < ’\‘j!—l'l, Theorem 1.2 gives no information (although we believe that DIq g(1))

g —

is of zero measure also for these 7; cf. Remark 1). We point out that in the special case
T= :\{—‘;, the quotient in (1.11) remains bounded as t; — oo; in this case our method of proof
allows us to conclude that at least the set DI, g(¢) is not of full Lebesgue measure; see

Remark 16.

Remark 4. Let us also point out that the assumption (1.9) is imposed only to avoid making the
statement of Theorem 1.2 unnecessarily complicated (since otherwise Fy;(t) could be negative and
then the series (1.10) is not well-defined). Indeed, if (1.9) fails but 1 satisfies the other assumptions
in Theorem 1.2, then DI, g(v) is certainly of full Lebesgue measure. This is true since in this case

—T

after possibly enlarging to, we have (t) > 1/t > % for all ¢ > tg and 7 > 0, and therefore
DI, g(¢) D DI, g (t n—)%), where the last set is of full Lebesgue measure whenever 7 > -1

) I q
by Remark 3(1).

One of the main ingredients in our proof of Theorem 1.2 is a measure estimate in geometry of
numbers, which we believe is of independent interest. Let ug be the unique left SLy(R)-invariant
probability measure on X; = SLg(R)/SLg4(Z). We are interested in the sets A70,7] in Xy, as
r — 0. As we have discussed, these sets shrink toward the critical locus A~*{0} as » — 0%, and
by Hajés’s Theorem [11] (cf. Theorem 2.3 below), the set A~'{0} has a simple explicit description
as a finite union of compact submanifolds of positive codimension # —1=x3+4+1in X4. In
particular this implies that p1q(A7'{0}) = 0 and pq (A7[0,7]) — 0 as r — 0F. The following
theorem gives an asymptotic estimate on the exact rate of convergence in the limit just mentioned.

Theorem 1.3. We have
(d=1)( -1 1 1
(1.12) pa (A0, 7]) =47 e log ™7 (—) = pHatl]oghd (—), asr— 0T,
r T

Our proof of Theorem 1.3 proceeds by bounding the sets A~![0,7] from above and below by
more explicit sets whose Haar measure we can estimate directly. In the proof of the upper bound
we make crucial use of Hajés’s Theorem. We remark that Hajés’s proof (from 1941) of the theorem,
which settled a conjecture of Minkowski from 1896, is surprisingly complicated, with the first step
being a translation of the question into an algebraic statement about factorizations of finite abelian
groups (see also [35] for a nice presentation). It seems difficult to extend this proof in any direct
way from the case of A='{0} to deduce restrictions on the sets A71[0,r] which are sufficiently
strong to imply the desired upper bound on py (A_I[O,r]). Instead we apply Hajos’s Theorem,
in combination with a compactness argument, to obtain a convenient containment relation for
AL[0,7] valid for all sufficiently small  (see Lemma 4.5 and Remark 11). This initial restriction
serves as the starting point for our analysis where we use direct, geometric arguments to derive
further, r-dependent restrictions on A~1[0, 7] for 7 small, strong enough to finally imply the desired
upper bound on gy (A_I[O, T])

Remark 5. In the case d = 2, the following explicit formula holds [36, p. 74]:
2(6_2T +2r—1+ \I/(e_%)) ifo<r< %log2,

Ao, 7)) = i
pig (A0, 7]) {1_%6—% if r> 1log2,



where the function ¥ : (0,1] — R is defined by ¥(1) = 0 and ¥'(z) = (z7 — 1)log(z~! — 1). Tt
follows that in this case we have an explicit asymptotic expansion sharpening (1.12):

24 1 12(3 — 2log 2 1 1

pz (A0, 7]) ~ 51 log(—> + Mrz — —(257“3 log(—> + - as r— 07,
0 r 0 T r

The explicit formula for ps (A_I[O, T]), stated in a different notation, was independently obtained

in [28] using a different method.

Remark 6. Theorem 1.3 is also relevant for the study of the Hausdorff dimension of the set
DL, ,,(ci1). As we have mentioned, Kleinbock and Mirzadeh recently proved that the Hausdorff
dimension of DI, ,(c1) is less than mn for every 0 < ¢ < 1 [22, Theorem 1.5]. They derived this
as an application of their main result, [22, Theorem 1.2], which gives an explicit upper bound on
the Hausdorff dimension of a certain kind of dynamically defined subsets in the space X4. It seems
that by using Theorem 1.3 (cf. also Theorem 5.1 below), together with a further analysis of the
quantities appearing in [22, Theorem 1.2], it should be possible to sharpen the conclusion of [22,
Theorem 1.5] into a bound of the form

dimp (DL, n(cth1)) < mn —6(1 — ¢)*™ logha~1 (11— c)_l)

for all ¢ < 1 sufficiently near 1, where d = m +n and § > 0 is a constant which only depends on
m,n.

1.3. Discussion of the proof of Theorem 1.2. We next give a more detailed outline of our
proof of Theorem 1.2. For simplicity of presentation, we will only focus on the special case when
a= (%, e %) and B = (%, ce %)7 we comment in Remark 9 below on the modifications needed
to treat general weights.

We start from the Dani Correspondence, (1.6), and discretize the shrinking target problem which

appears there by introducing the following thickened targets:

By := U a_sA_l[O,r(k: + s)], for any integer k > sg.
0<s<1

It follows from this definition that for any A € Xy, apA € By if and only if asA € A7L0,7(s)]
for some k < s < k+ 1. In particular, by (1.6), A € My, ,(R) is not t-Dirichlet if and only if
apA 4 € By for infinitely many integers k. For any k > s let us define

E) = {AA el :apAy € Bk}
Then, in view of the previous discussion and the identification Y = M,, ,,(R/Z), we have

DI7, ,(¥) = limsup Ej.

k—o00
Hence, by the Borel-Cantelli lemma,

> Leb(Ey) < oo —> Leb (DI, (1)) = 0;
> Leb(Ey) = 0o & “quasi-independence conditions” = Leb (DI, ,(¢)) =1

We thus need to understand when the sum ), Leb(E},) diverges or converges, respectively. It
follows from our definitions that

Leb(Ek) = / XBk(akAA) dA
y
6



Using Margulis’s thickening argument [30], it is well known that the as-translates a;) equidistribute
in X4 as s — oo, that is,

(1.13) / xB(asAa) dA — pa(B), as § — 00
y

for any subset B in X; with boundary of measure zero. However, since our shrinking target By
varies in the parameter k, we need an effective version of (1.13). Such a result was first proved by
Kleinbock and Margulis [18, Proposition 2.4.8]; we use the following explicit version (see Corollary
6.4 below): there exists 6 > 0 such that for any f € C2°(X,) and any s > 0,

(1.14) /y F(asha) dA = ua(f) + O(e N ().

where the norm N(-) is the maximum of a Lipschitz norm and a Sobolev L2-norm (see Section
6.2). By approximating {xp, }x>s, from above and below by smooth functions and applying (1.14)
together with an explicit bound on the norm N (-) (see Lemma 6.5), it follows that (see Lemma 7.1)

ZLeb(Ek) = 00 <~ Z'ud (Bk) = OQ.
k k

Furthermore, it is not difficult to see from Theorem 1.3 that the series Y, pq (By) diverges if and
only if the series in (1.10) diverges (see Theorem 5.1 and Lemma 6.1). This in particular settles
the convergence case of Theorem 1.2.

For the divergence case, in addition to the assumption that the series in (1.10) diverges (which
implies that ), Leb(E})) = 00), one also needs to establish a certain quasi-independence condition,
see (7.8). Roughly speaking, we need to show that the quantities

]Leb (Ez N E]) — Leb(E,)Leb(E])\ s 1 75 J > S0

are small on average. Here note that
Leb (E; N Ej) = / xB;(aiAa)x s, (ajAa) dA.
y

We now apply the effective doubly mizing for the ag-translates {as)}s>o. This result is due to
Kleinbock-Shi-Weiss [24, Theorem 1.2]; we use a more explicit version due to Bjorklund-Gorodnik
[1, Corollary 2.4] which states that for any fi, fo € C°(Xy) and any sq,s2 > 0,

(1.15) /yf1(a51AA)f2(a52AA) dA = pa(fi)pal(f2) + O <€_JD(SI’82)N(f1)N(f2)) ,

where D(s1, s2) 1= min{sy, s2, |s1 — s2|}. Combining this result with (1.14) we get

2
< e P02 TT max {N(£), na(f:)} -

‘ /y Filas, Aa) fa(as, Aa) dA — Leb(f1)Leb(f2)
=1

Finally, by approximating {x g, }x>s, from below by smooth functions, applying the above estimate
(together with a trivial estimate when D(s1, s2) is small, see (7.13)) and the bounds on the norm
N(-) (see Lemma 6.5), we show that the divergence of the series in (1.10) together with the addi-
tional technical assumption (1.11), implies that the required quasi-independence condition (7.8) is
satisfied, thus concluding the proof of the divergence case of Theorem 1.2.

We end our discussion with a few remarks.

Remark 7. Our argument should be compared to that of Kleinbock and Margulis [19], where the

shrinking targets are certain cusp neighborhoods: In [19] the relevant shrinking target problem is

first solved for the case of as-orbits starting at ug-generic points in the ambient space Xg; for this
7



task it suffices to use, in place of (1.14) and (1.15) respectively, the invariance of the measure py and
the exponential mixing of the ags-flow. Then by an approximation argument [19, §8.7], the shrinking
target property for pg-generic points in X, is shown to imply the same property for generic points
in the submanifold ). A key observation in this approximation step is that all shrinking targets,
by virtue of being cusp neighborhoods, remain essentially unaffected by perturbations from a fixzed
neighborhood of the identity in the neutral leaf of the as-flow, i.e. the centralizer of the as-flow
in SLg(R). This, however, is no longer the case in our setting, with the shrinking targets being
compact sets. This is why we take the more direct approach using effective equidistribution and
doubly mixing of the as-translates of ), that is, (1.14) and (1.15).

One potential advantage of this more direct approach is that if (1.14) could be refined by replacing
the measure Leb by a natural measure on some submanifold of ), then by mimicking our analysis,
one could establish the ¢-Dirichlet property for generic points in that submanifold, for any 1 such
that (1.10) converges. See Remark 14 below for a discussion of the application along these lines of
a recent effective equidistribution result obtained by Chow and Yang [5].

We note that the use of equidistribution of as-translates of ) in the study of the Dirichlet im-
provability problem is not new; it has been applied several times in the more well-studied setting of
Dirichlet improvable vectors and matrices. For min{m,n} =1 and Z C ) being an analytic curve
in ) satisfying certain explicit conditions, Shah [32, Theorem 1.2] proved that the as-translates of
7 equidistribute in X; with respect to pg as s — 0o. Shah’s proof relies on Ratner’s classification
of measures invariant under unipotent flows [31], and his equidistribution theorem is not effective;
still it suffices for the deduction of the fact that generic points on the curve Z are Dirichlet non-
improvable, that is, lie outside of the set (1.3). (This is so since in this case, the relevant “shrinking”
target is in fact a fized set of positive measure.) Shah’s results have been generalized and strength-
ened in various directions [33, 34, 37, 17]. In a recent breakthrough of Khalil and Luethi [14], the
authors refined (1.14) (for the case when n = 1) by replacing Leb with a certain fractal measure,
from which they deduced a complete analogue of Khintchine’s theorem with respect to this fractal
measure.

Remark 8. Another difficulty, which also stems from the fact that our targets are shrinking
compact sets, is the fact that the norm N(-) unavoidably blows up (polynomially) for the smooth
functions approximating the shrinking targets from above and below (see Lemma 6.5). While the
impact of this blow-up of the norm can be eliminated in the convergence case due to the exponential
decay in the parameter s (i.e. the factor e=%° in the error term in (1.14)), it causes serious problems
in the divergence case, and this is exactly why we need to impose the extra assumption (1.11).
Let us here also note that this assumption (1.11) can be rephrased in terms of the measure of the
shrinking targets as follows:

1
i inf zso<k§sl ta(By) log (m) 0

T (Sapcren malB)

Remark 9. In order to extend the argument outlined above to the case of general weight vectors
a and 3, we have to consider a more general one-parameter flow {gs}s>0 C SLg(R) associated to
a and B (see (5.1)), and use a dynamical interpretation of ¢4 g-Dirichlet matrices which involves
this gs-flow and generalizes (1.6); see Proposition 6.2 and Remark 13. We therefore need analogous
effective equidistribution and doubly mixing results for the gs;-translates of ). Fortunately, such
more general (and considerably more difficult) effective results are known to hold, thanks to the
work of Kleinbock-Margulis [20, Theorem 1.3] and, again, Kleinbock-Shi-Weiss [24, Theorem 1.2]
and Bjorklund-Gorodnik [1, Corollary 2.4] (see Theorem 6.3 below). In fact in [1] a uniform
8




treatment was given proving effective mixing of arbitrary order for the gs-translates of ); however
we will not make use of this.

Notation and conventions. Throughout the paper, the notation || - || denotes the supremum
norm on various Euclidean spaces or matrix spaces (which can be viewed as Euclidean spaces on
the matrix entries). Let I C R be an interval (not necessarily bounded). A function f: I — R
is called increasing (resp. decreasing) if f(t1) < f(t2) (resp. f(t1) > f(t2)) whenever t; < ta. All
the vectors in this paper are column vectors. For two positive quantities A and B, we will use the
notation A < B or A = O(B) to mean that there is a constant ¢ > 0 such that A < ¢B, and we
will use subscripts to indicate the dependence of the constant on parameters. We will write A < B
for A< B < A.

2. SOME PRELIMINARIES FOR THEOREM 1.3

Fix an integer d > 2. In what follows we always denote G = SLy(R), I' = SLy(Z) and Xy = G/T
the space of unimodular lattices in R?. Let g be the unique G-invariant probability measure on
Xg4. Let A X — [0,00) be the function on X; defined as in (1.4). In this section, we collect some
preliminary results for our proof of Theorem 1.3. In fact, for simplicity of presentation we will prove
an equivalent measure estimate result. For any r € [0,1) let C,. C R? be the open “(1 — r)-cube”,
i.e.

Cri=(r—1,1-r)
Let K, C X4 be the set of unimodular lattices having no nonzero points in C,, i.e.
K, = {A eXy: ANC. = {0}}

We note that by definition of A, K, = A™1[0, —log (1 — r)], or equivalently, A™'[0,7] = K;_,r.
Since 1 —e™" =7+ 0(r?) < r for all r € (0,1), Theorem 1.3 can be equivalently restated as follows.

Theorem 2.1. Let »; = d2+72d_4 and Mg = @ be as in Theorem 1.2. Then

1
wa (Kr) <4 patl Joghd (—), asrT — 07,
r
We will prove Theorem 2.1 by proving a lower bound and an upper bound separately.

2.1. Haar measure and coordinates. Let P < GG be the maximal parabolic subgroup fixing the
line spanned by e; € R% and let N < G be the transpose of the unipotent radical of P. Here and
hereafter, {e; : 1 <i < d} denotes the standard orthonormal basis of R%. Explicitly,

P={peG : pey=tey for some t # 0},

and

Iy _
N:{um:: ( ‘(i)tlff> cxeR? 1}.
For any p € P, let by := peq,...,bs_1 := peyg_1 be the first d — 1 column vectors of p. We note that
p is uniquely determined by by, ...,bg_1; we will sometimes denote p € P by pp, .. s, , to indicate
this dependence. For any g € G, let us denote by g € My_1 4—1(R) the top left (d — 1) x (d —1)
block of g. If det g # 0, then g can be written uniquely as a product

(2.1) 9= Dby, by Uz forsomepy p, , € P anduz € N.
9



Let v be the (left and right) Haar measure on G, normalized so that it agrees locally with pg.
In terms of the coordinates in (2.1), v is given by

1

(2.2) dv(g) = ———da [ db,
¢2)-cld) e
where ((-) is the Riemann zeta function, and where da and db; denote Lebesgue measure on R? !
and R?, respectively. For later purpose, we also note that the lattice A represented by Db,....bg_1 U
ie. A= pb17...7bd71umZd, has a basis
A:Zbl@---GBZbd_l @Zbd,
where b, 1= Z 1 x]b + (det p)'eq is the d-th column vector of the matrix Dbr,...by_, Uz- Here p

is the top left (d 1) x (d — 1) block of pp, ...

bd—1-

For our computation of the upper bounds, it will be more convenient to use another set of
coordinates: For any g = (¢ij)1<ij<d € G with det§ # 0, as mentioned above, we can write g
uniquely as in (2.1). It is clear from this relation that g and ps, . p, , share the same first d — 1
column vectors, i.e. ge; = b; for all 1 < j < d — 1. Moreover, as noted above, for the d-th column
vector we have

d—1
geq = Zx]b + (det p)leg = Z:Ej ge;) + (det §) 'eq.
7j=1
In particular, we have (g14, . .. ,gd_l,d)t = ga, which further implies
da = (det g)~ H dgiq-
1<i<d—1

This relation, together with the relations ge; = b;,1 < j < d—1 and the Haar measure description
(2.2), immediately implies the following:

Lemma 2.2. For any (Borel) subset K of {g €G : |detg—1| < %}, we have

(2.3) v(K) Xd/IC H dgi;.

1<i,5<d
(6,4)7#(d.d)

2.2. A small parameter for the lower bound. To prove the lower bound, we will construct
a subset of K, whose measure is of the same magnitude as K,. For a lattice A = gZd € Xy, to
show A € K,, by definition one needs to show gm ¢ C, for all nonzero m € Z. If g € G is
sufficiently close to the identity element I; € GG, so that A has a basis close to the standard basis
{e; : 1 <4 < d}, then one only needs to consider vectors m € Z¢ with small supremum norms.
For this reason, we will only focus on lattices that are close to Z?. Recall that the set K, certainly
does not get concentrated near the lattice Z% as r — 07; indeed, we have Nr>o K, = Ky = A‘l{O},
which as we have mentioned is a finite union of compact submanifolds of positive codimension
24+ 1in X, (see also Section 2.3). The fact that it still suffices to consider a small neighborhood
of Z% when proving the lower bound in Theorem 2.1 is related to the fact that the mass of K,
(with respect to p4) becomes concentrated near the lattice Z¢ as r — 0F; see Remark 10.

Explicitly, we fix a small norm ball in X; around Z¢ as follows: For any ¢ > 0, let
(2.4) Ge:={9€qG: |g— 1L <c}

be the open ball in G of radius ¢, centered at I; with respect to the supremum norm on My 4(R).
Let m : G — X4 be the natural projection from G to X;. We fix a parameter ¢y € (0,1) (which
10



only depends on d) so small that W\GCO is injective and, for any vectors by, ...,b; € R? satisfying
|bi — ei]| < ¢o for all 1 < i < d, every hyperplane of the form

mb; + Y Rby
1<¢<d
]

with m € R, |m| > 2 and 1 < j < d, is disjoint from the cube [~1,1]%. In particular, if A = gZ¢
for some g € G, then A has a basis {ge; : 1 < i < d} satisfying ||ge; — e;]| < ¢p for all 1 < i <d.
It follows that in order to prove that A € K, for a given r € (0,1), it suffices to verify that
> i<ica™i(gei) & Cp for all m = (ma,...,mq) € {-1,0, 1}¢ < {0}.

2.3. Hajos’s Theorem and its consequences. Recall that
Ky = {A eXy;: AN (—1,1)d = {0}} .

As we mentioned in the introduction, the explicit description of Ky was conjectured (and proved
in two and three dimensions) by Minkowski, and proved in full generality by Hajés in 1941 [11]:

Theorem 2.3 (Hajés). Let U be the subgroup of upper triangular unipotent matrices in G. Let W
be the subgroup of permutation matrices in GL4(Z). Then

Ko= |J (wUw™)z4
weW
If we set
(2.5) Up={(uj) €U : =3 <uy <iforalll<i<j<d}

so that Uy is a fundamental domain for U/(I' N U), then we have the following immediate corollary
of Hajos’s Theorem.

Corollary 2.4. Given any A € Ky, there exist w € W and u € Uy such that A = wuZ® =
wuw 77,

Proof. Since A € K, by Theorem 2.3 we can find v/ € U and w € W such that A = wu'w™'Z% but
since w™1Z% = Z%, we have A = wu/Z% Now using the fact that Up is a fundamental domain for
U/(T' NU), we can then find u € Uy such that uZ? = «'Z?. Thus A = wu'Z¢ = wuZ? = wuw™'Z,

finishing the proof. O
There is a geometric interpretation of Ky in terms of lattice tilings by unit cubes [35, Ch. 1.4]:
Let us write %Cg = (—%, %)d for the unit cube obtained by dilating Cy by a factor % Then for

any A € Xy, the family of cubes v + %Co, with v running through the lattice A, forms a tiling
of R? (modulo a null set) if and only if A € Ky. More generally, for any r € [0,1) we write
3¢ =(E0r-1,10- r))d. Then for any A € Xy, the condition A € K,, i.e. ANC, = {0}, is
equivalent to the condition that the cubes v + %CT (v € A) are pairwise disjoint. When this holds,
we write

Cpyp = A+ %CT
for the union of these disjoint cubes. This set is used in the statement of the following simple

bound, which is of crucial importance in our proof of the upper bound in Theorem 2.1.

Lemma 2.5. Let A € X4 and r € (0,3) be such that AN C, = {0}, and let U be a Borel subset of

R? which is disjoint from €A, and which is contained in some translate of the cube (0, %)d. Then
vol(U) < dr.
11



Proof. The set €, is invariant under translation by any vector in A, and if F C R? is any
fundamental domain for R?/A, then

vol(FN&x,) =Y vol (Fn( =) vol ( +1¢) =vol(iC,) = (1 —r)?,

vEA veEA

where the first equality holds since the cubes v + %CT (v € A) are pairwise disjoint, and the third
equality holds since the sets F — v (v € A) form a partition of R%. Hence

vol(F N €p,)=1—(1-7) < dr

Next, since U is contained in a translate of (0, ) the difference between any two vectors in U lies
in (—%, %) = Cy/4 C Cp, and since ANC, = {O} this implies that the points in U are pairwise
inequivalent modulo A. Hence the set (F \ (A+U)) UU is another fundamental domain for RY/A,
and it contains . After replacing F by this set, we have U C F; thus U C F \ €4, and hence

vol(U) < vol(F N\ €y ) < dr. O

3. PROOF OF THE LOWER BOUND

We keep the notation introduced in Section 2. In this section we prove the lower bound in
Theorem 2.1. We will do this by constructing, for every sufficiently small r, an explicit subset
K, C X; which we will show satisfies

1
K, C K, and  pg(K,) >arHlogh ().
;

We start by giving a family of conditions which ensures that a given lattice is contained in
K,. Recall from Section 2.2 that ¢y € (0,1) is a small fixed parameter with the property that
for any g € G, and 0 < r < 1, we have gZ? € K, if and only if >1<j<amj (gej) ¢ C, for all
m = (my,...,mq)t € {—1,0,1}¢ < {0}.

Lemma 3.1. Let ¢y € (0,1) be as above, let r € (0,co/d) and let A = pbl,,,,7bd71umZd € Xy with
bj = (b1j7’ .. ,bdj)t e R? (j =1,...,d— 1) and x € (O,Co/d)d_l. Let p = (bij)lgi,jgd—l be the top
left (d—1) x (d — 1) block of pp,,..b, , as before. Suppose by, ..., bs_1,x further satisfies

(3.1) bij,—bjie (—CQ,O), V1i<j<i<d-—1; bye€ (—Co,O),baE (1—7‘,1), Vi<i<d-1,

(3.2) bij < b, V2<j<i<d,
(3.3) l—r<detp<(1—r)t and Z |bgi|z; < (detp) ™t — (1 —7),
and
d—1
(3.4) bii+2bijl‘j>1—7‘, Vi<i<d-1.
j=1
Then A € K,.
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Proof. Let us set 9= DPby...by_ Uz and by = (bra, ..., baa)" := geq; then b; = ge; for all 1 < j < d,
and by = z 1 x]b + (det p)~ley; in particular by = Z?;% bijja; for 1 <i <d—1. We will start
by proving that g € Gy, 1e. ||bj —ej]| < ¢ forall <j<d Infact,if 1 <j <d-—1 then
|b; — ej]| < cp is an immediate consequence of (3.1) and 0 < 7 < ¢p/d < cp; thus it remains to
show ||bg — eq|| < cp. For each 1 <i < d — 1 we have

d—1 d—
Co
<Y bl |y < ZE co,
j=1 j=1

where for the second inequality we used the assumption that x € (0,cq/d)?! and the fact that
|bij| < 1 forall 1 < i,5 < d— 1, which is immediate from (3.1). It remains to prove that
1—cy <bgg <14 ¢y. In fact, we have the following stronger bound:

d—1

> bija;

|bia| =

(3.5) 1—7r<bgg <1+c.

Indeed, using bg; < 0 and z; > 0 (1 < j < d — 1) in combination with (3.3), we get

QL
—_

baq = Zbd]x] + (det p) ™' = (detp) ™t — lbgjlxj >1—r
1

<.
Il

as well as
baa = Zbd]x] (detp)™ < (detp)™ < (1 —r)' <1+4+2r <14

(For the second to last inequality we used the fact that 0 < r < ¢p/d < 1/2.) This finishes the
proof of (3.5), and hence g € G,.

Because of g € G¢,, in order to show A € K, it suffices to prove that gm = Zlgjgd m;b; & C,
for all m € {—1,0,1}? ~. {0}. Thus we now let the vector m = (my,...,mq)" € {~1,0,1}¢ < {0}
be given, and show that gm ¢ C,.

First assume that all the nonzero entries of m are of the same sign. After replacing m by —m
if necessary, we may assume m; > 0 for all 1 < j < d. Let k € {1,...,d} be the smallest integer
such that my = 1. If £ = d then m = ey, and thus gm = b, ¢ C, by (3.5). In the remaining case
when k < d, the k-th coordinate of gm satisfies

d
(3.6) mibek + > Mybgj = bk + Mabga > min{big, bk + bea
j=k+1
where we used the fact that, by (3.1), by; > 0 for each k < j < d — 1. Furthermore,
(3.7) min{bkk, brr + bkd} >1—r,

since by > 1 —r by (3.1) and bgg + brg = bk + Z?;% bpjr; > 1 —r by (3.4). It follows from (3.6)
and (3.7) that the k-th coordinate of gm is larger than 1 —r, and so gm ¢ C,. This completes the
proof in the case when all the nonzero entries of m are of the same sign.

It remains to treat the case when {—1,1} C {m; : 1 < j < d}. Then let 1 <i; < iy < d be the
indices which record the latest instance when the signs of the entries of m change, i.e. the unique
indices such that m; m;, = —1, m; =0 for i; < j < iy and m; € {my,,0} for iy < j < d (the last
two conditions are void if i1 + 1 = iy or i9 = d, respectively). Again after replacing m by —m if
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necessary, we may assume m;, = —1, m;, = 1, and thus m; > 0 for all i3 < j < d. Now consider
the is-th coordinate of gm which is

D mbiy g = bisiy +bisiy + Y My

1<j<in 12<j<d

Here we have

(3.8) Y mbiyg = bigiy = > bigj = bigsy >0,
1Sj<i1 1Sj<i1

where the first inequality holds since |m;| < 1 and b;, ; < 0 for all j < 4, and the second inequality
holds by (3.2) (except if iy = 1; in that case (3.8) simply says that b;, ;; < 0, which holds by (3.1)).
Furthermore,

(3.9) biy,ip + Z m;ibiy,j

12<j<d

> bi27i2 + mdbi%d >1—7r if i9< d,

where we used (3.5) in the case io = d, and in the case ip < d we used the fact that m; > 0 and
bi, j > 0 for all i9 < j < d—1 (if any), and then applied (3.7) with k& = i5. Adding the inequalities
in (3.8) and (3.9), we conclude that the io-th coordinate of gm is larger than 1 —r; hence gm ¢ C,.
This concludes the proof of the lemma. O

We next give another family of conditions, which implies the conditions in Lemma 3.1, and which
is more suitable for the measure computations which we are going to carry out.

Proposition 3.2. Let ¢y € (0,1) be as above, let v € (0,c9/d) and let A = pp, . ugZ € Xy
with bj = (bij,...,bg) €R? (j=1,...,d—1) and = € (0,co/d)" . Assume that

(3.10) bij,—bjie (—CQ,O), V1i<j<i<d-—1; by € (—CQ,O),bME (1—%,1), Vi<i<d-1,

'7bd71

(3.11) bij < dbij1 (& |bij| > dlbij1]), V2<j<i<d,
d—1

(3.12) Ibijbsil < %, Vi<j<i<d—1, and Y |bgla; < g
j=1

and

(3.13) bij > bij (& [bgi| < bii]), VI<j<k<i<d

Then A € K,.

Proof. In view of Lemma 3.1, it suffices to show that the conditions (3.1), (3.2), (3.3) and (3.4)
are fulfilled. Among these, (3.1) is an immediate consequence of (3.10). Furthermore, (3.2) follows
from (3.10) and (3.11) by the following computation, valid for any 2 < j < i < d:

j—1

bij <dbjj—1 < (j—1)b;j—1 < Zbik (<0),

k=1
where the last relation is an equality when j = 2, while for j > 3 it is a strict inequality which
holds since (3.11) forces b; j—1 < b j—2 < --- < b; 1. Also (3.4) is easily proved: Let 1 <i <d — 1.
Then for every 1 < j < d — 1 we have x; > 0 and b;; > bg; (the latter holds by (3.13) if j < ¢ and
by (3.10) if j > 4). Hence

d—1 d—1
T T
b biids > bi: bog:>1— — — —>1—
u‘|‘j§::1 ijLj > “+j§::1 djTj > 2d 2> T
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where for the second last inequality we used (3.10) and the second part of (3.12).
It remains to prove (3.3). We first note that the ordering assumptions in (3.11) and (3.13) imply
(3.14) by 7| < |bij] whenever 1 < j' < <d,1<j<i<dandi <iandj <j.

Now let p = (b;j)1<i, j<a—1 be as in Lemma 3.1. Define

ws= Y, I [Pl

0€Sq_1 1<i<d—1
o#id
where S;_1 is the symmetric group over the finite set {1,2,...,d — 1} and id € S;_1 is its identity
element. Then
d—1 d—1

(3.15) H bii —pp < detp < H bii + ¢p-
i=1 i=1

If d = 2 then Sg_; = {id} and ¢; = 0. Now assume d > 3, and consider an arbitrary permutation
o € Sqg_1 ~{id}. Let (i;...4¢) be a cycle of o of length ¢ > 2, meaning that o(i;) = ;41 for all
1 <j<{¢—1ando(ig) =1i;. Without loss of generality, we may assume iy = max{i; : 1 < j < (}.
Let ij, := min{4; : 1 < j < {¢}. Then (3.14) applies for the pairs (¢',j") = (0(ij,),%;,) and (i,j) =
(ig,i1), so that |b | < |bigir |- We also have |b;;| < 1forall 1 <i,j <d—1, by (3.10). Hence

U(ijo)7i10
r
H ‘bo'(z)z| S bU(ijo)vijo bihiz S |big,i1bi1,i£| < 57

1<i<d—1

where the last inequality holds by (3.12). The above holds for every o € Sy_1 ~\ {id}; hence

o

(3.16) ¢p < (d—1)

dld
Note that (3.16) also holds when d = 2, trivially.
Using (3.15), (3.16), and the fact that 1 — 55 <b;; <1forall1<i<d—1 (cf (3.10)), we get

d—1
- r r 1
(3.17) detp<il;llbii+a<1+a<(l—r) ,
and
de_lb U CR L B D
> [Ihe-G>(1-55) —G>1-5-521r

Hence we have proved the first condition in (3.3). For the second condition in (3.3), in view of the
second condition in (3.12) it suffices to show § < (detp)~! — (1 —r), or equivalently, that detp is
smaller than (1 — £)~!. But this is true since by (3.17), detp < 1+ 5 < (1 — %)~*. This finishes
the proof. d

We can now give the

Proof of the lower bound in Theorem 2.1. Keep 0 < r < ¢g/d, and define

(bl, ceey bd—17 ac) S (Rd)d_l X (0, Co/d)d_l }
satisfies (3.10), (3.11), (3.12), (3.13)

15
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By Proposition 3.2 we have K, C K,. It remains to bound p4 (K,) from below. Set

. . (b17 s 7bd—17 ZU) S (Rd)d_l X (07 CO/d)d_l
K= {pb1~~~v”d1“"’ €G T gatisfies (3.10), (3.11), (3.12), (3.13) ’

so that 7(KC,) = K. Here m : G — X} is the natural projection as before. By immediate inspection
of the proofs of Proposition 3.2 and Lemma 3.1, we have K. C G,,, and by our choice of ¢y, 7T|GCO
is injective (see Section 2.2). Hence uq (K,) = v (K,), and by (2.2) we have

1
V(&r) =d H </1 . dbkk) /726( (bm 1<]<z<d H dbz]7

1<k<d—1 ~2d 1<j<i<d
where
R = {(bij)1§j<i§d € (—cp,0)4d=1/2 . (bi;) satisfies (3.11) and (3.13)},
and
min Co’d'\b ‘}
§((bijhicj<icd) : = H / dbji X/ cond—1 g1 . H dz;
1<j<i<d—1 {ace(QF) F225=1 ‘bdj\xi<§} 1<j<d—1
=d,co H min{l,bL} X H mln{ b }
1<j<i<d—1 | ij| 1<j<d—1 | d]|
= H min{l,bL}.
1<j<i<d [bis]
Hence

. r
(3.19) g (K,) = v (K,) Zde % / [] min {1, W} dby;
R 1]

1<j<i<d

Now for each 1 < j < i < d, we make a change of variable, b;; = —dj_lzij, to simplify the
ordering condition (3.11). Then all the z;;’s are positive, and the conditions (3.11) and (3.13)
become

(3.20)  zyj < zy whenever 1 < j' <i' <d, 1<j<i<d, i <i, j’<jand (¢,j) # (i,j).

Moreover, for any j < i, the condition b;; € (—cp,0) corresponds to z;; € (0,co/d’ 1), and we note
that each of these intervals contains the fixed interval (0,co/d?"!). In fact, let us restrict each z;;
to the even smaller interval (r, co/d?™!), and assume r < c/d?~! so that this interval is non-empty;
then r/]bu\ = rd'™J /z; < d*79 < 1, so that min {1,7/|b;;|} = rd ™7 /z;; =<4 r/2;. Note also that
|dby;| = 7~ dzij =4 dzij; hence we get from (3.19):

d(d 1) dz; (d—1)(d+2) dz;;
pa(K,) g, v / I =Z=r": / I =
. iy -

z z
R <j<i<a 7Y 1<j<i<d Y

where
R = {(Zij)1§j<i§d e (r,co/d?~1)dd=1/2 . (2i5) satisfies (3.20)}.

The last integrand is invariant under every permutation of the variables (z;j)i<j<i<4, and the
integration regions o(R’) with ¢ running through all these permutations cover (modulo a null set)
16



the cube (r, ¢g/d4=1)d=1)/2. hence we obtain

(d=1)(d+2) co/d™! dzij (d—1)(d+2) ad-1) /1
B2 ) B 2 ] P 200 (1)
T

.
1<j<i<d Y

where the last estimate is valid e.g. for all 0 < r < ¢p/(2d9"!). Recalling that ¢y only depends on
d, we see that the lower bound in Theorem 2.1 is now proved. O

4. PROOF OF THE UPPER BOUND

We keep the notation introduced in Section 2. In this section we prove the upper bound in
Theorem 2.1. The main step in the proof is to show that for r small, K, is contained in a certain
set of more explicit nature; see Proposition 4.2 below. To prepare for the statement of this result,
we start by introducing the following set, for any r € (0,1) and C > 0:

1-7r<g; <14+Cr, V1<i<d
Krc:=1499=1(95) €G : lgijl <1, |gijgjs|l <Cr, V1<i#j<d
|detg—1| < 3

Here g denotes the top left (d — 1) x (d — 1) block of g as before. In view of the Haar measure
description (2.3), it is not difficult to compute the measure of K, ¢:

Lemma 4.1. For any r € (0,1) and C > 0 we have
— 1
v(Kro) <ac rloght (—)
”

Proof. Let us define

_, 1-1r<g; <14+Cr,V1<i<d-—1
Kic=149=1(95) €G : |9l <1, |gijgss|l <Cr, V1<i#j<d
|detg—1| < 3

by disregarding the restriction on g4y. Then clearly Knc C E’nc. Moreover, in view of the Haar
measure description (2.3) we have (noting also that »; +1=X\g+d — 1)

_, 14+Cr 1
V(’Cr,c) <a ] / dgii [] /_ ) /_ X950 913951 <Cr) dgij dg;i

1<i<d—171-7 1<j<i<d

1\ M 1
=c ri! <r log<—>> = pratl |pghd <—>
r r

< i 1
o) <o) ()

finishing the proof. O

Thus

Recall that 7 : G — X is the natural projection from G to X .
Proposition 4.2. There exist ro > 0 and C' > 0 (depending only on d) such that for all r € (0,7¢)

(4.1) K, C U w(wﬁncw_l).
weW

Let us first give a quick
17



Proof of the upper bound in Theorem 2.1 assuming Proposition 4.2. The Haar measure v on G is
preserved by conjugation by any element w € W (even though w may be outside G). Hence it
follows from (4.1) that, for any r € (0,7¢),

na(Ky) < Z pa (m(w Ky o wt)) < Z vwk,cw™) =d vk, c).
weW weW

Using this inequality, the upper bound in Theorem 2.1 now follows from Lemma 4.1. O

Remark 10. Proposition 4.2, in combination with the lower bound in Theorem 2.1, also implies
that as r — 0%, the mass of K, with respect to uq becomes concentrated near the lattice Z%. In
precise terms, if O is any fixed neighborhood of Z% in Xy, then

pa(K N O)
:ud(Kr)
Indeed, we can fix € > 0 so that O contains the set 7(G.) with G. C G the norm ball defined as in

(2.4); then by arguing along the same lines as above, the first relation in (4.2) will follow from the
following bound:

1
(4.2) pa (K~ O) < g r7atloghe=! <—>, and thus —1 asr — 0.
r

_ 1
v (ICT,,(; ~ GE) <4 patl Jpgha—! (;),

for C > 0 and r small. However, for r < ¢/C, g = (gij) € K¢ forces |gi; — 1| < & for all i, and
so the set K, ¢ \ G- is contained in the union Ui/;,gj/{g = (gij) € Kot lgijr] > 5}. Therefore, it
suffices to prove that for any given 1 <4’ # j' < d we have

C 1
V({g = (glj) S ]CT’,C' : ’gllj” Z g}) <<d,C T%d'f‘l log)‘d_l<;),

This is shown by following the proof of Lemma 4.1 and using

1
/ / X{(z,y) : |zy|<Cr} dy dz <. o 7.
e<lz|<1 /-1

Finally, the second relation in (4.2) follows from the first relation combined with the lower bound
in Theorem 2.1.

The remainder of this section is devoted to the proof of Proposition 4.2.

4.1. Bounds for diagonal entries. Recall that Uy is the fixed fundamental domain for U/(IT' N U)
given in (2.5). The next lemma shows that if a lattice A € K, has a representative sufficiently close
to some element in Uy, then the diagonal entries of such a representative satisfy the desired bounds.

Lemma 4.3. Let g = (g;;) € G and r € (0,3), and assume that gZ¢ N C, = {0} and ||g — ul| < %
for some u € Uy. Then

(4.3) 0<gi—(1—-7r)<yr, V1<i<d.
Proof. Note that it follows from g — ul| < % and u € Uy that |g;;| < 3 forall 1 < i < j < d,
lgii — 1] < % for all 1 <14 < d, and |g;;| < % for all 1 < j < i < d. For each i we have ge; ¢ C,, since
gZ*NC, = {0}. Combining this with the fact that | gjil < g < 1—r for all j # i, we conclude that
lgii| > 1 —r. Since also |g;; — 1| < %, we must in fact have g; > 1 — r, i.e. we have proved the left
inequality in (4.3).

18



Next, let i € {1,...,d} be given, and let U be the open box
L= (g — 295+ 3) (G #1),

where g;-ri := max{gj;, 0} and g;; := min{g;;,0}. Note that each interval Z; (j # i) has length

U=11 x---x1Iy, with {

|Z;| > 3, since |g;;| < 2; furthermore |Z;| = g;; — (1 —r) > 0 (thus Z; and U are empty if g;; = 1 —r,
but otherwise non-empty).

We claim that U is disjoint from € za . 1= gZ% + %CT. Indeed, assume the opposite; then there
is some v € ¢gZ% such that U N (v + %CT) # &. We must have v # 0 and v # ge;, since U is, by
construction, disjoint both from %CT and from ge; + %Cr. Pick a point € e U N (v + %CT). It follows
from x € v+ %CT and %(1 —-r) > % that at least one of the points x — %ei or  + %ei also lies in
v+ %Cr. But we have

sincez; €Z; C (—3(1—r),5(1—r)) forall j#iand z; — 3 < gis — 5(L—7) — L < 3(1—r). We
also have

T + %ei € ge; + %Cr,
sincex; €Z; Cgji+ (—3(1—r),3(1—r)) forall j#iand x;+1 > 3(1—r)+ 1> g —3(1—7).
Hence we have arrived at a contradiction against the fact that v + %CT is disjoint from both %CT
and ge; + %CT. This completes the proof of the fact that U is disjoint from € za .

Note also that U is contained in a translate of the cube (0, %)d, since each interval Z; has length

at most %. Hence Lemma 2.5 applies, and yields that vol({/) < dr. But we have noted that |Z;| > %
for each j # i, and |Z;| = g — (1 — r); hence vol(i) > 8'~%(g;; — (1 — r)). Combining these facts,
we obtain the right bound in (4.3) with the implied constant 8¢~'d. O

4.2. A technical choice of lattice representatives. For any ¢ > 0 let us write
UE:{(u,-j)EU : —%+4€<uij§%+€foralll§i<j§d}.

Lemma 4.4. There exist constants 0 < a < 1 and A > 1, which only depend on d, such that the
following holds: given any uw € U and ¢ € (0,a), there exist v € T NU and B € [1, A] such that
uy € Upe.
Proof. We will show that the statement of this lemma holds with A := 42" and q = 2-G+27),
Let us set

Ult] == {(uy) €U : -t +t<uj<i+tforalll<i<j<d} (teR).
Note that Uy = U|0], and for each ¢, U[t] is a fundamental domain for U/(I' N U).

For the given v € U and ¢ € (0,a), and for each k € Z>(, we let u®) be the unique element in
ul' N U[4Fe], and set

d it
P® =S"PH  where PM =321y ().
=2 =1

We now claim:
(4.4) VkeZso: k< 10g4(§) and u®) ¢ Upe = p)  plk+1)
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To prove (4.4), assume 0 < k < logy(&) and u®) ¢ Uy, Then v+ £ o) since otherwise u(*)
would lie in the intersection U[4Fe]NU[4¥*1e] = Uys.. Let us denote by ug-k) the jth column vector

of u®). Tt follows that ugkﬂ) #* ug.k) for at least one j € {2,...,d}, and for each such index j we
can argue as follows: Since u®), 41 € 4I'NU = w(I'NU), we have u§-k+l) = ug»k) +D 1<i<j miugk)

for some my,...,m;_1 € Z. Because of ugkﬂ) #* ug»k), there exists i € {1,...,7} such that m; # 0;

let us fix 7 to be the largest such index. Thus ugﬁl) = uz(f) + my; in particular ‘ugﬁl) — Z(f) > 1.

On the other hand, note that ugf) € (=3 +4ke, 1 4+ 4%¢], ul(-;ﬁl) € (=3 +4ktle I 4+ 4k+le] and
(2 4+4FFe) — (=1 +4%) = 1+ 3 4ke < 2 (since k < log4(§)). Hence we must have m; = 1,
implying that

u

u§k+1) € ugk) + ugk)

Thus uz(.,k;rl) = ug,kj) for all ¢/ > 4, and ugfﬂ) = ugf) 4+ 1 > 0 while ugf) < —% + 4ktle < 0
(again since k < log,(&)). It follows that Pj(kﬂ) - Pj(k) > 271 3,271 = 1. On the other
hand we clearly have Pj(kH) = Pj(k) for each j € {2,...,d} such that u§-k+1) = ugk). Hence

2?22 Pj(kH) > 2?22 Pj(k), i.e. P*+1) > p(k) This finishes the proof of (4.4).

+ Zu(.li)l 4+ -+ Zugk).

(2

Next note that by definition, for each k, P*¥) is a non-negative integer satisfying
d j—2

P <3N "ol <2,

j=2 i=0

This implies that we cannot have P*) < P+ for all k € {0,1,...,2¢ —1}. But our assumption
on ¢ implies that logy(g) > 2% (recall that 0 < & < a = 2_(3+2d+1)); hence it now follows from
(4.4) that u® ¢ Uyk. for at least one k € {0,1,...,2¢ — 1}. Furthermore, for such k we have
4k < 42' = 4 and u® € w(I' N U) by construction. Hence the lemma is proved. O

Using Lemma 4.4, Corollary 2.4 and a compactness argument we have the following technical
lemma, which gives us a good choice of lattice representatives for lattices in K, for some small
ro > 0.

Lemma 4.5. There exist constants 0 < a < 1 and A > 1, which only depend on d, such that
the following holds: for any g € (0,a) there exists ro > 0 such that for every A € X4 satisfying
ANC, = {0}, there exist g € G, w € W, B € [1,A4] and u € Uge, such that A = gZ and
lg — wuw™"|| < .

Proof. Let a and A be as in Lemma 4.4; we will prove that the statement of the lemma holds
with these a, A. The proof is by contradiction; thus we assume that the statement of the lemma
is false, i.e. we assume that there exist some g9 € (0,a) and a sequence r; > rg > --- in (0,1)
with r; — 0, and a corresponding sequence Aj, Ag, ... in Xg, such that A; NC,, = {0} for each j,
and furthermore, for each j we have that there do not exist any g € G, w € W, B € [1, A] and
u € Upe, satisfying A; = gZ% and ||g — wuw™!|| < g9. Now for every j we have C,, C Cr;, and thus
A;NC,, ={0}. Hence by Mahler’s Compactness Theorem, after passing to a subsequence we may
assume that A; tends to a limit point in Xy. Let us call this limit point Ag; thus A; — Ag in X
as j — o0o. Let us also fix a representative gy € G such that Ag = goZ®.

Recall that the standard topology on Xy = G/T" is given by the metric

dist(¢T, ¢'T) := inf{d(gv,¢") : v€T} (9,9 € G),
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where d(-,-) is any fixed right G-invariant Riemannian metric on G. Hence the fact that A;
converges to Ag = goZ® implies that there exist g1, go,... € G such that A= ngd for each j and
d(gj,90) — 0 as j — oo.

Using A; NC,, = {0} for each j, and r; — 0, we claim that
(4.5) Ao N (—1,1)¢ = {0}.

Indeed, assume the opposite; this means that there exists some m € Z% ~ {0} such that gym
belongs to (—1,1)%, i.e. [[gom|| < 1. Set r := (1 — |lgom||); then gom € C,. We have g;m — gom
as j — 00, since d(g;, go) — 0; hence for all sufficiently large j we have g;m € C, (since C, is open).
Also for all sufficiently large j we have r; < r. Hence there exists some j for which r; < r and
gjm € C; C Cy;. This contradicts the fact that A; NC,, = {0} for all j. Hence (4.5) is proved.

It follows from (4.5) and Corollary 2.4 that Ag = wu/w™Z? for some w € W and v’ € Uy. Next,
by Lemma 4.4 (and since g < a), there exist v € 'NU and B € [1, 4] such that u := u'y € Up,.
Using w™'Z% = 79 and v~ 'Z% = Z%, we then have Ay = wuw ™ 'Z%. Hence wuw™!' = goyo for some
Y € I'. Now d(gjv0, wuw™') = d(gj70, 900) = d(gj,90) — 0 as j — oo. This implies that every
matrix entry of g;7o tends to the corresponding entry of wuw™!, i.e. we have llg;vo — wuw | =0
as j — oo. In particular there exists some j such that ||g;70 — wuw™!| < g9. Now we have a
contradiction against our previous assumption; namely for our chosen j, if we set g := g;70 then
A; = gZ% and ||g — wuw™!| < &p. This completes the proof of Lemma 4.5. O

Remark 11. By a similar compactness argument as in the proof of Lemma 4.5, one can also
prove a more basic statement: for any g9 > 0 there exists ro > 0 such that every A € K,, has a
representative g € G (i.e. A = gZ%) satisfying ||g — wuw™!| < &y for some w € W and u € Uy.
The purpose of the choice of the more technical lattice representatives in Lemma 4.5 (with Upe,
in place of Up) is to ensure the following property, which is a key ingredient in the proof of the
important Lemma 4.6 below: for any g = (g;;) € G satisfying ||g — u|| < g¢ for some u € Up,,, and
any 1 <i < j <d, we have (cf. (4.8))

lgki — grj| <1 — Beo for all k & {i, j}.

A crucial consequence of this is that if ge; —ge; ¢ C, for some r < Bey, then either |g;; —gi;| > 1—r
or |gji — g;5| > 1 — r must hold.

4.3. Bounds for off-diagonal symmetric pairs. The next lemma shows that if a lattice A in
K, has a representative as in Lemma 4.5, then its entries satisfy the desired bounds for proving
Proposition 4.2.

Lemma 4.6. Let A > 1, 0 < gy < (164)7" and 0 < ry < 1e9. Let g = (g;j) € G and r € (0,79),
and assume that gZ¢NC, = {0} and that there exist B € [1, A] and u € Up., such that ||g—u|| < 0.
Then

(4.6) 0<gi—(1—r)<gr foral 1<i<d,
and
(4.7) 19i95i| Kaeor forall 1<i<j<d.

Proof. Let us write € = Beg. Note that ||g — u|| < ep < e and u € U, together imply that

(4.8) —14+3<gj<s+2 and gyl <e VI<i<j<d,
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as well as |g;; — 1] < e for all 4. The last inequality can be sharpened using Lemma 4.3. Indeed, we
have £ < & since Agg < 75; hence the above inequalities imply that ||g — /|| < % for some u’ € U.
Hence Lemma 4.3 applies, yielding that (4.6) holds.

Now let 1 < i < j < d be given. We separate the proof of (4.7) into three cases. (Note that (4.7)
holds trivially if g;; = 0 or g;; = 0; hence we may without loss of generality assume g;;g;; # 0.)

Case I: g;; > 0 and g;; > 0. In this case we will build the proof on the fact that ge; — ge; ¢ C,,
which holds since gZ? N C, = {0}. Using (4.8) and r < rg < 2rg < € < 7=, it follows that
lgri — gkjl <1 —e <1 —rforall k ¢ {i,5}. Hence we must have either |g;; — g;;| > 1 — 7 or
lgji — gj;1 > 1 —r. If |gis — gij| > 1 —r, then because of g;; > 1 —r and 0 < g;; < % + 2¢ it follows
that gi; —g;; > 1 —r, and so by (4.6), 0 < g;; < r. Similarly if |gj; — gj;| > 1 —7 then 0 < g;; < .
In both cases, it follows that (4.7) holds for our 4, j.

Case II: g;; < 0 and gj; < 0. In this case we will prove the desired bound by proving the stronger
assertion that either |g;;| < Cr or |gj;| < Cr, with C = 12d(0/8)?>~?. Assume the opposite, i.e.
assume that

(4.9) gi; < —Cr and  gj; < —Cr (C :=12d(g/8)*"%).
We will prove that this leads to a contradiction.

Set J := (—4(1—7),5(1—7)), so that £C, = J4. For each k ¢ {i, j} we introduce the following
open interval:

(4.10) T == Jr 0 (g + Tr) O gk + T

Using |gril, |9k, |gki—9r;] < 1—€ (see (4.8)) it follows that T, has length |Z,| > (1—7)—(1—¢) > €0.
Define Z;, C Zj, to be the open interval of length %50 with the same center as Zy. Let us also set
;= (3(1—=7r)+gij,3(1 —r)) and Z; = (g;; — (1 —r), 2). Then by construction,

(4.11) LT, Lin(gu+Jd)=92, Lin(g+I) =2,
and
(4.12) Z; C gjj + Trs ing, =a.

Furthermore, |Z;| = |g;;| and % < |Zj| < 3. Now let U be the open box U = Iy x -+ x Zy. Then
vol(U) > %] 9ij] - (+20)?=2 > dr, where we used the first part of our assumption (4.9). Note also that
|Zi| < 2 for all k. Hence by Lemma 2.5, U N Cyza, # D, i.e. there exists some v € gZ¢ such that

Un(v+1ic) # 2.

It follows from the disjointness relations in (4.11) and (4.12) that U is disjoint from the three
cubes ge; + %CT, ge; + %CT and %CT; hence v ¢ {0, ge;, ge;}. Let us fix a point y e U N (v + %CT).
Then the line y + Re; goes through both the cubes v + %CT and ge; + %CT (the latter holds since
T C gij+ Ty for all k # i; see (4.10) and (4.12)); hence since these two cubes are disjoint, we must
have v; > g;; +1 —r. It also follows from y; € v; + J, and y; € Z; that v; < y; + %(1 —r)<1l-—r.
In summary:

(4.13) gij+1—r<v;<1l—r

Similarly, using the fact that the line y 4+ Re; goes through the two disjoint cubes v + %CT and %CT,
and also using y; € v; + J, and y; € Z;, it follows that

(4.14) l-r<wvj<yj+3(1-r)<?i
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Next for each k ¢ {3, j} since yi € I and yi € v, + Jr, we have that both of the intervals
(yx — 880, yi) and [yg, yk + = Eo) are contained in Ik, and at least one of them is contained in vy + J;;
hence there exists an open subinterval Z;, of 7N (v + J;) of length 1 5€0. Let us also set Zj = (:2,), Z)
and 7} = (gji + $(1—=7r),v; — 2(1—r)), and then let ¢’ be the open box U’ = I{ x --- x . Using
(4. 14) we have |Z}| > —gji; hence vol(U') > (320)%72 - &5 +1gji| > dr, where we used the second part
of our assumption (4.9). Note also that |Zj| < 2 for all k; for k = j this uses v; < 2 (see (4.14))
and gj; > —¢ (see (4.8)). Hence, by Lemma 2.5, U' N € a4, # @, i.e. there exists some v’ € gZ.?
such that

Unw+3C) #o.

Choose a point z € U'N (v’ +3C,). Note that for every k ¢ {i, j} we have I, C (g; + ;) N (v + T;)
by construction. Furthermore, using 1 —r < g;; < 14 ¢ we have Z] C g;; + J;, and using (4.13) we
have Z! C v; + J,. Hence the line z + Re; goes through of the cubes ge; + %CT and v + %Cr. Of
course this line also goes through the cube v’ + %CT. Note also that z; € I]’-, and by construction,
IJ’» is disjoint from and lies between the two intervals g;; + J, and v; + J,. Hence we must have
v’ ¢ {ge;,v}; thus the three cubes ge; + %CT, v+ %CT and v’ + %CT are pairwise disjoint, and the
two intervals g;; + J, and v; + J, must lie at a distance > 1 — r from each other. However, this is
impossible, since v; — g;; < % +¢e < 2(1 —r). This completes the proof in Case II.

Case III: g;;g5; < 0. If gj; < 0 then let us swap the values of ¢ and j; thus from now on we have
gji > 0 and g;; < 0, but either ¢ < j or ¢ > j. If gj; < g;; — (1 —r), then g;; < r by (4.6), and so
(4.7) holds for our ¢, j. Hence from now on we may assume g;; > g;; — (1 — ). Now set:

Ti = (gij + 5(1 = 1), 95 — 5(1 = 1));
Zj = (975 — 3(1 = 1) g5i + 5(1 = 7));
and Zj, = (gri + Jp) N (g + Jp)  for k ¢ {3, j}.

These are non-empty intervals. Indeed, Z; is non-empty since g; > 1 —r and g;; < 0; Z; is
non-empty because of our assumption g;; > g;; — (1 —r), and for each k ¢ {i,j}, it follows from
lgki — grj| < 1 —€ (see (4.8)) that 7}, is non-empty with |Z;| > (1 —7) — (1 —¢) > 0. Now for
each k ¢ {i,j} we choose an open subinterval Zj, of Z;, of length min {3, \Ik\} and then define U
to be the open box U =71 x --- x Z;. We claim that

(4.15) UNCya, =0

Indeed, assume the opposite; then there is some v € gZ¢ with N (v + %CT) # &. By construction,
Z; is disjoint from both the intervals g;; + J, and g; + J;; hence U is disjoint from the two
cubes ge; + %CT, ge; + %CT, and thus v ¢ {ge;,ge;}. Let x be a point in U N (v + %CT). Then
x; € I; N (v; + J»). Note also that the three intervals g;; + J,, Z;, gi + J» are adjacent to each
other in this order along the real line, with the length of Z; being

Tl =gi—9i;—1—-r)<l+e+(3-3)—(1—-r)=3-2e+r<g<1l-r

But v; + J. has length 1 — r; hence there exists a number x; € v; + Jr lying either in g;; + J, or
9ij + Jr- Noticing also that z € Zr, C (gr; + jr) (grj + Jy) for all k # 4, it now follows that
the point x 4 (zj — z;)e; lies in the cube v + 3 1C,. and also in one of the two cubes ge; + ic, or
ge; + 2C’ . This is a contradiction against the fact that v+ 5 1e, is disjoint from both ge; + 3 C and

gej + %CT; hence we have completed the proof of (4.15).
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We have |Zy| < 2 for all 1 < k < d; hence Lemma 2.5 applies, giving vol(U/) < dr. But |Z;| > 3eo
for all k ¢ {i,7}, and |Z;| > |gi;|; thus

|94 (956 — 955 + 1 — 1) = lgi;||Z;] < vol(U) < .

Furthermore, |g;;](g;; — (1 —7)) < r by (4.6). Adding the last two bounds, we conclude that (4.7)
holds for our 4, j. d

4.4. Proof of Proposition 4.2. Finally, we can give the

Proof of Proposition 4.2. Choose 0 < a < 1and A > 1 as in Lemma 4.5. Fix a number 0 < 8 < %
so small that for every matrix g € G which has distance (w.r.t. || - ||) less than 8 to a matrix in
Uy, we have |det§ — 1| < &, where § is the top left (d — 1) x (d — 1) block of g. Fix a number
0<eg < min{a,ﬂ/(2A)}, and for this gy, take ro > 0 as in Lemma 4.5. Note that the defining
property of rq trivially remains valid if we decrease ry; hence we may assume that 0 < rg < %60.

Let C' > 0 be the maximum of the implied constants in the two “<” bounds in Lemma 4.6, for our
fixed d and &.

Now let r € (0,r79) and A € K, be given. This means that A N C, = {0}, and a fortiori,
ANC,, = {0}. Hence by our choice of A,a,cp,79 (see the statement of Lemma 4.5), there exist
g €G weW,Bec[l,A] and u € Ug., such that A = ¢'Z% and ||¢’ — wuw™"| < gy. Note
that the norm || - || is preserved by left and right multiplication by elements from W; hence letting
g = (gi5) = wlg'w we have ||g — ul| < e, and also gZ¢NC, = wl(¢’Z? N C,) = {0} (this is
true since wZ¢ = Z% and C, = w™'C,). Hence by Lemma 4.6, and by our choice of C, we have
0<gii—(1—r)<Crforalliand |g;jgj| < Cr for all i # j. Furthermore, it follows from u € Up,
and ||g —u|| < g that ||g — /|| < (B +1)gg for some u’ € Up; hence a fortiori ||g — u'|| < 24gp < 3,
which implies that |detg — 1| < % by our choice of 8. It also follows that |g;;| < % + 24g9 < 1
for all i # j. Hence g € K,.¢, and thus ¢’ = wgw™ € wK,cw™" and A = ¢Z% € 7(w K, cw™?),
finishing the proof. O

5. MEASURE ESTIMATES OF THE THICKENINGS

Fix m,n € Nand let d = m+n. Let o € R™ and 8 € R" be two fixed weight vectors as in
Theorem 1.2. As mentioned in Remark 9, in order to incorporate the case of general weights, we
need to consider a more general one-parameter subgroup of G associated to o and 3. Explicitly,
for any s € R let us define

(5.1) gs = gg’ﬁ = diag(e®®,...,em% e~ e7Pn%) e G.

Let A : X4 — [0,00) be the function defined in (1.4). The main result of this section is an
asymptotic estimate for the measure of the thickened set

ﬁr = U g_sA_l[O,r],

0<s<1

when r > 0 is small.

Theorem 5.1. Let »x; = d2+72d_4 and \g = @ be as in Theorem 1.2. Then
~ 1
hd (Ar) =4 17 logM (—), asr — 0T,
r
where the implicit constant is independent of r and the two weight vectors o and (3.

Just as for Theorem 2.1, we prove Theorem 5.1 by proving the upper and lower bounds separately.
24



5.1. Proof of the upper bound. Note that for any (z,y) € R™ x R",
gos (B) = (e %2y, ..., e g, Py, . ePrsy ).
This implies that
|A(g—sA) — AA)| < max{ov, ..., am,B1,. .., Bn}ls] <|sl, VseR, Ae Xy
Hence
(5.2) g_sA7! [0,7] C A0, + Is|], VseR.
Given any r € (0,1), let ¢ = [1/r]. Using (5.2) and the fact that 1/q < r, we have

q—1
U saor=J U 9-rgo-sA Ug kg A0, 2],

0<s<1 k=0 0<s<1/q

implying that (using the G-invariance of ug and ¢ < 1)

q—1
pa(4;) < Z,ud(g_k/q Ao, 2r]) < r_lud(A_l[O, 2r]).
k=0
Finally, by Theorem 1.3 we get
ud(ﬁr) &g ripFatt joghd <1> = ¥ Joghd <l), asr — 0.
r r

This finishes the proof of the upper bound in Theorem 5.1.

5.2. Proof of the lower bound. In this subsection we prove the lower bound in Theorem 5.1.
By the discussion in the beginning of Section 2, we may replace the set A~1[0,7] by K., that is, it
suffices to prove the following lower bound

(5.3) ,ud< U J_s Kr> >4 17 logM (%), asr — 07,

0<s<1

The following lemma is the crucial ingredient in our proof of (5.3). Let ¢y be the small parameter
which we fixed in Section 2.2; after possibly shrinking ¢y, we may without loss of generality assume
that 0 < ¢ < (3e)~L. For r € (0,c0/d), let K, C K, be as in (3.18).

Lemma 5.2. For any r € (0,c0/d) and s € [r,1), the two sets K, and g_s K, are disjoint.

Proof. Assume the opposite; then there exist r € (0,¢9/d), s € [r,1) and A € K, such that
g sA € K,. By the definition of K, in (3.18), we now have A = pbh___,bdilumZd for some vectors

bij,...,bg) €RY (j=1,...,d—1) and & € (0,cp/d)? ! satisfying (3.10), (3.11), (3.12) and

= (
13); moreover, we also have g_ SA = py g,luw’Zd for some vectors b = (b] bélj)t € R?
1,.

—

A 1jo o

b;
3.
J — 1) and 2’ € (0,cp/d)?! which again satisfy (3.10), (3.11), (3.12) and (3.13).

(4

and 221 a; = 1, there exists an index 1 < ¢ < m such that o; > %

Because of a € (R+()™

Fixing such an i, we consider the vector

_ _ t
Y=, ya) = gosbi = (€7 b1s, .. e by, € b1, €700g5)

By (3.10) we have |bj;| < cg for all j # 4, and 1 — 57 < by < 1. Hence |y;| < eco for all j # i (since

0<8<1andﬁgg1foralllgﬁgn),and0<yi<e_ai5<e_5/m<1—%<1—ﬁ. We have

b, € A~ {0} and thus y = g_sb; € g_sA ~ {0}; also g_sA € K, C K,, and hence y ¢ C,. But for
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all j # i we have |y;| < eco < 3 < 1—r (indeed, recall that 0 < ¢y < (3e)71); also y; > 0; hence
y ¢ C, implies y; > 1 — r. In summary:

lyjl <eco (Vj#i) and 1—-r<y; <1l-—q.
Furthermore, b} € g_ A, since g_sA = pp _p 1um/Zd; and by (3.10) we have [b’;]| < co for all j # i

1 Yq—
and 1 — g5 < bj; < 1. It follows that [b}; —y;| < (e +1)cp < (e + 1)(3e)™! < 5 <1—rforall j#i,
and |b};, —y;| < r < 1—7; hence b —y € C,. Note also that b, —y € g_sA, and b, —y # 0, since
yi < 1— 95 < b;; hence we have obtained a contradiction against g_sA € K, C K. This completes

the proof of the lemma. O

It follows from Lemma 5.2 that for any r € (0, ¢o/d), the sets g_g, K., for k running through the
integers in the interval 0 < k < 1/r, are pairwise disjoint. (Indeed, if g_x, K, N g_xr K, # & for
some 0 < k < k' < 1/r then K, N 9y K, # @, contradicting Lemma 5.2.) Hence, using also
K, D K,, we have

w( U g—sKr> ZMd( U g—krﬁ,) = Y palg-w K,) = #(2Zn[0,1/r)) - pa(K,),

0<s<1 0<k<1/r 0<k<1/r

Here #(Z N [0,1/7‘)) > =1 and for r sufficiently small we have Md(Kr) > pratl logAd(%) by
(3.21). Hence we obtain the lower bound (5.3), and the proof of Theorem 5.1 is complete. O

6. SOME PRELIMINARIES FOR THEOREM 1.2
In this section we collect some preliminary results for our proof of Theorem 1.2.

6.1. Dynamical interpretation of weighted i-Dirichlet matrices. Let m,n € N and let
a € R™ and B € R” be two fixed weight vectors as before. Let tg > 0 and let v : [tg, c0) — (0, 00)
be a continuous decreasing function which tends to zero at infinity. In this subsection we give
a dynamical interpretation of 1o g-Dirichlet matrices which generalizes [25, Proposition 4.5]; see
Proposition 6.2. Let us first introduce the following modified Dani Correspondence which is a
special case of [19, Lemma 8.3].

Lemma 6.1. Fiz m,n € N and let d = m +n. Let typ > 0, and let ¢ : [tg,00) — (0,00) be a
continuous, decreasing function satisfying (1.8) and (1.9). Then there exists a unique continuous,
decreasing function

r=ry: s, 00) = (0,00), wheresozmlogto—ﬁlogzb to),
v [50,00) = ( 7

d
such that
(6.1) the function s — s+ mr(s) is increasing,
and
(6.2) Y (es_m(s)) =76 for all s > so.

Conversely, given sg € R and a continuous, decreasing function r : [sg,00) — (0,00) satisfying
(6.1), there exists a unique continuous, decreasing function ¢ = 1, : [tg,00) — (0,00) with tg =
e 0= (0) satisfying (1.8), (1.9) and (6.2). Furthermore, for any fized a, 8 > 0 the series

(1= koo(k)*(—log (1 — kib(k)) )’
> K

(6.3)
k>to
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diverges if and only if the series
1
a16eP
(6.4) E r(k)* log (1 + " )

diverges.

Proof. The ¢ and r-functions determine each other uniquely via the relation

(65) w(t)l/mes/m — tl/ne—s/n — e—r(s)’

which captures the moment when the as-flow transforms the long and thin ‘rectangle’
{(z,y) eR™ xR" : [lzf|™ < (1), [lyl" <t}

determined by (1.2) into a cube (with side length 2e="()). Here a, = diag(e®/ ™I, e %/"1,), as
defined in the introduction. This correspondence between 1 (-) and r(-) is a special case of [19,
Lemma 8.3], as here we assume that ¢(-) additionally satisfies (1.8) and (1.9), which on the r-
function side corresponds respectively to the assumptions that r(-) is decreasing and r(s) > 0 for
all s > sg. The equivalence of these additional assumptions is easily checked using the following
three relations, which follow from (6.5):

(6.6) e~ ) — 14p(t), s = % logt — glog P(t), and t =),

Finally we prove the equivalence of the divergence of the two series. If lim; o, t1)(t) < 1 then
both the functions 1 — ti(t) and r(s) are bounded away from zero (and positive), which implies
that the two series in (6.3) and (6.4) are divergent. Hence from now on we may assume that
limy—so0 tp(t) = 1. Then limy_,o 7(s) = 0 (by (6.6)), and Fy(t) := 1 —t1(t) is a decreasing function
taking values in the interval (0,1) and satisfying lim;_, Fys(t) = 0. After enlarging so (thus also
enlarging ty) we may assume that 0 < r(s) < 1/d for all s > sg. Then by (6.6) we have, with
t=1t(s) = e>0):

(6.7) gr(s) < Fyt)<dr(s) and e t<t<ef, Vs> sp.

It follows that r(s)® logﬁ(l + %) =da,8 Fy(t)® logﬁ(ﬁ) for all s > sg. Hence, using also
eP~t < t(k) < e (see (6.7)), the fact that Fy(t) is decreasing, and D ek <jcekl % =1 (Vk>1), we
have for all sufficiently large integers k:

1 1 1 1
k) log?(1+ — ap Fu(FHolog? (————— ) <, “Fy()* log? ( ——
r(k)* log ( +r(k)) Ldya,8 Fp(e" ") log (Fw(ek—l)) <ap H<§< 3 w(5)* log (F¢(j)>’
e <j<e

and similarly

1 1 1 1
r(k)*log? (1 4+ —= ) >qa.p Fy(e)*log? (=) >, SFy(j)*log? ().
< r(k:)) g (Fd,(e’f)) 5ek<jz<:ek+lj v (Fd,(j))

1

It follows that the series in (6.4) diverges if and only if > y JTVE () log”? (m) diverges, that is,

if and only if the series in (6.3) diverges. O

Remark 12. Let ¢ and 7 be as in Lemma 6.1 with lim; . t¢(t) = 1. Let Fy(t) = 1 —ty)(t) be as
above. Assume that the series (6.3) (and thus also the series (6.4)) diverges for some «, § > 0. It is
then not difficult to see from the proof of Lemma 6.1 that for any 3’ > 8 and for all large s1 > so,

2 T(k)alogﬁl(“rﬁ) A k—1F¢(k)“10g6’(%).

so<k<si to<k<eS1
27



In particular it follows that for any 3 > 3 we have the following equivalence:
Zso<k§sl T(k)a lOgﬁ (1 + ﬁ)

2
<Zso<k§81 T(k)a logﬁ (1 + %))

lim inf =0
S51—00

—~

S iohen K Fp(k)*log” (7
<= liminf fo=h=h (Fw k)>

e (ZtoSkSt1 k=1 Fy (k) log” (le(’“)>>2

Similarly, the above two limits inferior remain bounded simultaneously.

We now state the dynamical interpretation of v, g-Dirichlet matrices.

Proposition 6.2. Let ¢ be as in Theorem 1.2, and let r = 1y, be as in Lemma 6.1. Let {gs}ser be
the one-parameter subgroup associated to the two fixed weight vectors a and B3 as in (5.1). Set

wy r=max{ma;,nf; : 1 <i<m,1<j<n} and wy:=min{ma;,nf; : 1<i<m,1<j<n}
Then for any A € My, n(R) we have, with Aa as in (1.5):

(1) if A(gsAa) > wir(s) for all sufficiently large s, then A is 1 g-Dirichlet;
(2) if A(gsAa) < war(s) for an unbounded set of s, then A is not o g-Dirichlet.

Remark 13. When a = (L,...,1) € R™ and 8 = (,...,1) € R", then w; = wy = 1 and

m’ m 'n
Proposition 6.2 recovers [25, Proposition 4.5].

Proof of Proposition 6.2. For any t > max{to, 1}, define
Ri =R = {(x,y) eR™ X R" : ||2]0 < (1), |yllp < t},

so that (p,q) € Z™ x (Z" ~. {0}) is a solution to (1.7) if and only if (Ag — p,q) € R;. On the other
hand, the lattice A4 consists exactly of the points

Im A —Pp _ Aq_p m n
(2 N ()-("77)  waez sz

Moreover, if (Ag — p,q) € Ay NR; is nonzero for some (p,q) € Z™ x Z", then we must have
q # 0. Indeed, otherwise we would have ||Ag — plla = ||P|la > 1, but (Ag — p,q) € R; implies
that ||Ag — plla < ¥(t) < 1/t <1 (since t > max{tg, 1}), contradicting ||Aq — p||o. > 1. Thus there
exists a solution (p,q) € Z™ x (Z™ ~ {0}) to (1.7) if and only if Ay NR; # {0}, implying that
A € My, n(R) is 9)q g-Dirichlet if and only if Ay NR; # {0} for all sufficiently large ¢t. Now let
s = s(t) = & logt — 5 log(t); then s — oo if and only if £ — oo, and by (6.5) we have

g:Re = { (@, y) ER™ X R" : [|a'a < ™™, [lyllg < e} =i,
It follows that A is 9o g-Dirichlet if and only if gsAa N Es # {0} for all sufficiently large s. Next,

note that we have the following simple relation:
(68) (_e—wlr(s)je—wlr(s))d C&C (_e—wzr(s),e—wgr(s))d’
with wj,wy defined as in the statement of the proposition. Note also that A(gsAa) > wir(s) is
equivalent with g;A4 N (—e‘wl"(s),e_“”(s))d
(6.8) we have

A(gsAa) > wir(s) for all sufficiently large s = gsAa N Es # {0} for all sufficiently large s,

and the latter condition implies that A is 1) g-Dirichlet. We have thus proved part (1) of the
proposition. Similarly, part (2) follows using the second inclusion relation in (6.8). d
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Let ¥ and r = ry, be as above. For any integer k > sq, let us define

B = U g-sATH0,wor(k +5)] and By := U g_sATH0,wir(k + 5)].
0<s<1 0<s<1

It follows that for any A € X4, we have gxA € B, (respectively gxA € Bj) if and only if there
is some k < s < k + 1 such that gsA € A7L[0,war(s)] (respectively gsA € A7L[0,wir(s)]). In
particular, in view of Proposition 6.2, a given matrix A € M,, ,(R) is ¢ g-Dirichlet if gpAs ¢ By
for all sufficiently large k, or equivalently, if gyA4 € By holds only finitely often. Similarly, A is
not v g-Dirichlet if gyA4 € B, holds infinitely often.

6.2. Effective equidistribution and doubly mixing for certain g,-translates. Let m,n € N
and d = m + n be as before. Let

Y={As:Ae My,(R)} = My,,(R/Z)
be defined as in (1.5), and recall that ) is equipped with the probability Lebesgue measure, Leb.

As mentioned in Remark 9, we will need an effective equidistribution and doubly mixing result
for the gs-translates {gs)}s>o which is analogous to (1.14) and (1.15) respectively. In fact, we will
state a corollary of a more general effective mixing result of arbitrary order proved by Bjorklund
and Gorodnik [1, Theorem 2.2]. To state their result, let us first fix some notation.

Let g = sly(R) be the Lie algebra of G. For each Y € g, let us denote by Dy the corresponding
Lie derivative (a first order differential operator) on C°°(G) defined by

Dy()(9) = THep(tV o)y feC(E)

Here exp : g — G denotes the usual exponential map from g to G. Note that this definition
naturally extends to the function space C°(X,) since we can view elements in C2°(Xy) as right
I-invariant smooth functions on G. Fix an ordered basis {Y7,...,Y,} of g. Then every monomial
Z = Yfl .- Y defines a differential operator of degree deg(Z) := 1 + --- + £, via

¢ lq
Dz ::DY110---ODYG.

Now for each ¢ € N we define the “L?, degree ¢” Sobolev norm on C2°(Xy) by

, 1/2
9 1= d
171z (Z{ [ DA )

deg(2)<
where the summation is over all the monomials Z in {Y7,...,Y,} with degree no greater than /.
Fix a metric dist(+,-) on Xy = G/T" which is induced from a right G-invariant Riemannian metric
on G. We also define the following Lipschitz (semi-)norm on C2°(Xy) with respect to this metric:

o |f(x1) — f(z2)]
1/ lleip = SUP{ dist(z1, z2)
Let us also write || - ||co for the uniform norm on C.(X). Finally, for any f € C2°(X,) we define

() = mae { ) Flleos 1 s 1122}

We can now state the result which we need from [1].
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Theorem 6.3 ([1, Corollary 2.4]). There exist £ € N and 6 > 0 such that for every b € N and any
foeC>®0), fi,..., fo € CX(Xy) and s1,...,8, > 0, we have

b
/fo (Aa) (Hfz gs: AA> dA = Leb(fo) Hud ) + On g, ( ~0D(e1,-0 >HNZ<fz-)>,

=1 =1 =1
where D(sy,...,sp) = min{s;,|s; —s;j| : 1 <i%# j <b}.

(In fact, in [1, Corollary 2.4], the error term is also explicit in terms of fj.)

Taking fo = 1 on Y and b = 1,2, we get the following effective equidistribution and doubly
mixing of the family of gs-translates {gs)}s=0 in Xg.

Corollary 6.4. Let £ € N and 6 > 0 be as in Theorem 6.3. Then for any f, f1, fo € CX(Xy) and
S,81,82 > Oa
(6.9 [ $0:80) a8 = ) +0 (7 N).

and

(6.10) /y F1(95A0) fa(gia ) dA = pa(f)pa(fo) + O (7 minlrnlor=lAG (RN (£2) )

6.3. Smooth approximations and estimates on norms. In this subsection we prove the ex-
istence of smooth functions ¢ € C2°(X,4) bounding our shrinking targets from above and below in
an appropriate sense, with control on the norm Ny(¢). We follow the strategy of [21, Theorem 1.1]
while allowing the small identity neighborhoods of G (against which we convolve) to shrink.

Recall that

U g_sATH0,7] (0<r<1).
0<s<1

Lemma 6.5. Let € > 0. For any 0 < r < 1, there exists ¢, € C°(Xy) satisfying Xz, S ¢r < XZ,,
and, for any ¢ € N:

(6.11) Ni(by) <eger ™™, with Li=1+ max{o (+e—4 %} .

(Note that the implied constant in the bound in (6.11) is independent of 7.)

To prepare for the proof, let us define, for any r > 0,
O, = { G Ll gt - 1 }
vi={ge G max{llg ~ Ll g™ ~ Ll < 17~

Here the norm is the supremum norm on the matrix space My 4(R). Clearly, O, is an open neigh-
borhood of the identity element in G and it is invariant under inversion. Let v be the normalized
Haar measure of G as in Section 2.1; recall that v locally agrees with pg.

We will need the following auxiliary lemma.

Lemma 6.6. For every 0 < r < 1, there exists a function 0, € C°(Q) satisfying 6, > 0, supp(6,.) C
O,/2, fG 0r-(9)dv(g) = 1 and |[Dz(0:)||zo(q) <ed pl-d®=t for every monomial Z = Ylél..-YaZ“,
where ¢ =deg(Z) =01+ -+ {,.

(The implied constant in the bound on ||Dz(0;)|| 1) depends only on £ and d, and not on 7.)
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Proof (sketch). Let ¢ : @ — R% (a = d? — 1) be an arbitrary C* coordinate chart of an open
neighbourhood € of I; in G, with ¢(I;) = 0. Let n € C°(R®) be a fixed bump function in R?, i.e.
a function satisfying n > 0 and fRa n dx = 1. We may assume that the support of 7 is contained
in the unit ball centered at the origin, Bf. For each t > 0 define n; € C2°(R®) through

@) =t 0t 'z) (xR,
and note that supp(n;) C Bf and [, n; dz = 1. Let us choose the constant ¢ > 0 so small that

B¢ C () and o }(BL) C O,/ for all 0 < r < 1. This is possible since the matrix entries of g

and g~! are C™ functions of g € G. Now we may simply set, for each 0 < r < 1,
0, == v, - (ncr © 90)7

where v, > 0 is chosen so as to make [0, dv = 1. One verifies that the limit lim, o+ v, exists
and is a positive real number. Using this fact, and recalling a = d? — 1, all the properties stated in
the lemma are straightforward to verify. O

Proof of Lemma 6.5. We claim that for any 1,79 > 0,
(6.12) O Ary C Ay

First we note that for any h € My 4(R) and v € R%, ||hwv|| < d||h||||v||. This implies that for any
r >0 and any g € Oy, and v € RY,
lgvll < [[v]l +[I(g — La)v[l < (1 +7)[lv]].
Hence for all r > 0,
A(A) — A(gA) < log(l + T‘) <r, Vg€ O, A Xy
Similarly, since O1q, is invariant under inversion, we also have
Algh) = A(A) = A(gA) = A(g'gA) <7, Vg€ O, A€ Xy
Thus
OlorlA_l[O,Tg] C A_I[O,Tl + 7’2], vV ry,re > 0.

Now to prove the relation (6.12), in view of the definition of &T, it suffices to show that for any
g€ 0,,0<s<1and A € A7L[0,79] there exists some 0 < s’ < 1 such that

99-sA € g_y A0, 71 + 2],
or equivalently, gsgg9_sA € A7Y0,7; + ro]. We take s = s. By direct computation and using
a;,B; € (0,1) for all 1 <i <m,1 < j <mn, we have

max {[lgsg9—s — Lall, [1(9s99-s) " = Lall} = max {[lgs(g — La)gsll, lgs(g™" = La)g—s| }
o 1 1

<e*max{|g— Il g7 — L} <e T0d < a°

Thus ¢gs99—s € O1or,, implying that
gsg.g—sA S 0107‘1 A—l[o’ 7"2] C A—l[o’ ™ + T2]-
This finishes the proof of (6.12).

Given any 0 < r < 1, we now choose 0, as in Lemma 6.6, and then define our approximating
function ¢, € C°(X,) as the convolution

@)= 04 x5, ,(0) = [ 0o, ,(7') (o)
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It follows from #, > 0 and fG 0.dv = 1 that ¢, takes values in [0,1]. Moreover, for any
g € supp(f,) C O,y (so that g~ ! is also contained in O, /2 since O, 5 is invariant under inver-
sion) and for any x € A,, we have by (6.12)

1

g x€ Or/2£7’ - z:ar/27

implying that for any z € ﬁr,
0@ = | O, 07 g = [ 6lg) dvlg) =1L
supp(6;) '

supp(6r)
Thus xz < ¢r. Next, we claim that supp(¢,) C A,,. To prove this, note that since supp(f,) is
compact and contained in O, , there exists some € € (0,7/2) such that supp(0,) C O, /o_.. Now
if € supp(¢,) then there exists some 2’ € O, x with ¢,.(z') > 0; and by the definition of ¢, there
then exists some g € supp(6,) C O, j2_ such that g~'z’ € £3T/2. Hence 2’ € Or/g_eﬁgr/g C Aoyee,
and (since O, is invariant under inversion) z € O.2' C O, 527,_5 - 327,. We have thus proved
that supp(¢,) C Ao, Using this inclusion together with the fact that ¢, takes values in [0, 1], we
conclude that ¢, < XR,,- (Note that ¢, < XR,, follows already from the easier fact that for any

&' € Xy, ¢r(2') > 0 implies 2/ € Ag,. However we need some control on supp(¢,) below when we
discuss derivatives of ¢,.)

For the norm bounds, we first note that using the invariance of the Haar measure, for any Y € g
we have Dy (¢,) = (Dy (6,)) * XXy, s More generally, for any monomial Z in {Y3,...,Y,},

(6.13) Dyz(¢r) = (DZ(GT)) * X53r/2'

1—d?

Recall from Lemma 6.6 that supp(6,) C O, 5 and [|Dz(0,)|| 1 (q) <iya 7'7% 7%, where £z is the

d?—

degree of Z. Furthermore, it is easily verified that v(0,5) <q 7 1. Using these facts, we have,

for every x € X4 and every monomial Z of degree £z < /£,

(6.14)  |Dz(¢,)(z)| =

/ (o )DZ(QT)(Q)X33T/2 (g7'2) dv(g)| <ae r' = 20(0, ) < r 2.
supp(Vr

Hence, using also supp(¢,) C A,, and Theorem 5.1, we get

d

x _ id g g
1901z e na(Bar)rt <ger T 1700,

Finally, using the fact that for any 0 < r < 1, the support of ¢, is contained in the fixed
precompact set Ay, we have ||¢; ||Lip <a SUPzex, SUPjeq1,... ) |Dy, (¢r)(x)|, and hence by (6.14),

HgerLip <4 7'_1-
Now the bound in (6.11) follows, via the definition of the norm N,. O

7. PROOF OF THEOREM 1.2

In this section, building on the analysis developed in the previous section, we give the proof
of Theorem 1.2. We keep the notation as in the previous section. In particular, throughout this
section, we fix constants 6 > 0 and ¢ € N as in Corollary 6.4, and for each 0 < r < 1 we fix a
function ¢, € C°(X,) as in Lemma 6.5. Taking € = 1 in Lemma 6.5 we have that the norm bound

in (6.11) holds for L :=1 —|—max{0,€—|— 1-— % - %}
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7.1. Application of effective equidistribution. For any 0 < r < 1, taking f = ¢, in the
effective equidistribution result (6.9) and applying the norm estimate (6.11), we get for any s > 0,

(7.1) /y Or(g:M) dA = pal6,) + Og (7 r )

When r is small, the above integral should be expected to be small as well; however, the error term
in (7.1) blows up as r — 0%. To remedy this issue, for r very small we will instead prove an upper
bound on the integral, obtained by applying (7.1) for a suitable enlargened r-value. The result is
as follows:

Lemma 7.1. Let n:= ﬁ. There exists ro € (0, %) such that for any 0 <r < rg and s > 0,
=g 1 logd (L) ifr>e,
(7'2) / ¢T’(95AA) dA
Y g e Fans/? if r <e .

In particular, for any sequence {pgtren C (0, %) with limy_, o pr. = 0, we have

(73 S [ ontndnaa=oe = St (o) <o

k k

Proof. First we note that by Theorem 5.1 and the relation Xk, < o < X&,, (see Lemma 6.5), we

have pg(¢,) =<q r* log™ (%) Furthermore, if > ™", then the ratio of the main term and the
error term in (7.1) satisfies:

pa(¢r) _ raloght(L
6_687"_1’ - 6_657"_1’

) > log)‘d (%),

which we can force to be as large as we like by taking the constant r( sufficiently small (in a way
which only depends on d). Hence it follows from (7.1) that (7.2) holds in the case r > e~ "5,

Next assume r < e™ ™. Set p := 2¢7". If p < rg, then by what we proved in the previous
paragraph,

[ 0sa) = g (1) g e
Y

and hence the bound in (7.2) follows, since ¢, < X, < XA, < ¢, (again see Lemma 6.5). In the

remaining case when p > rg, we have s <4 1 and e~ *ans/2 >4 1, and hence the bound in (7.2)
holds simply because of ¢, < 1. This completes the proof of (7.2).

For the last part of the lemma, since limy o pr = 0, after possibly deleting finitely many
terms from the two sums in (7.3), we may assume pj < ro for all appearing terms. Next, using the

second bound in (7.2) and the fact that both of the series >°, e=#4"%/2 and > pp <e—nk 0% log (p%)

converge, it follows that the two divergence statements in (7.3) remain unaffected if all the terms
for which p, < e~ are removed from the respective series. After this operation, the equivalence
in (7.3) is an immediate consequence of the first relation in (7.2). O

7.2. The convergence case. This case is now easily handled using Lemma 7.1.

Proof of the convergence case of Theorem 1.2. Let r = ry : [sg,00) — (0,00) be the continuous,

decreasing function corresponding to v as in Lemma 6.1. First note that since the series (1.10)

converges, we have lim;_, t1(t) = 1 (or equivalently, lims_,o 7(s) = 0 as seen from the proof of
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Lemma 6.1). Moreover, by the last part of Lemma 6.1, the fact that the series (1.10) converges
implies that the series 3, 7(k)* log*® (1 + T(lk)) also converges.

Now for each k& > sg let us define

Br= |J g-sA7'0,wir(k+5)] and Eyp:={Aa €Y : gpla € By},
0<s<1

where w; := max{ma;,nfB; : 1 <i<m,1 <j <n}isasin Proposition 6.2. In view of Proposition
6.2 (and the paragraph after it), it suffices to show that for Leb-a.e. Ay € Y, gxAa € By for only
finitely many k > sq, or equivalently, that the limsup set lim sup,_,., E} is of zero measure. Thus
in view of the Borel-Cantelli lemma, it suffices to show that >, Leb(E}) < oc.

To prove this, we will approximate the shrinking targets { By }x~s, from above. Since r(s) — 0
as s — 00, by enlarging s if necessary (equivalently, enlarging ¢y as in Lemma 6.1), we may assume
wir(s) € (0,1) for all s > so. Moreover, by Lemma 6.1, 7(-) is decreasing; thus with pj, := wir(k),
we have

(7.4) Ek C Apkv Vk> S0.-

Recall that for each 0 < r < 1 we have fixed a function ¢, € C°(X4) as in Lemma 6.5. Now for
each k > so, we have xp < XX, < ¢, (by (7.4) and Lemma 6.5), implying that
k

(7.5) Leb(Ey) = /yXBk(gkAA) dA < /y(bpk(gkAA) dA.

Next, it follows from py = wir(k) and the convergence of 3°, r(k)** log*? (1+ ﬁ) that the series

>k pZd logAd(plk) also converges; in addition, limy_, o pr = 0 since limg_, 7(k) = 0. Hence by the
last part of Lemma 7.1 combined with (7.5), we have Y, Leb (E}) < oo, finishing the proof. O

Remark 14. Let (m,n) = (2,1); thus d = 3. In [5, Theorem 1.1}, Chow and Yang proved an
effective equidistribution result for certain Diophantine lines in ) translated under the full (two
dimensional) diagonal subgroup of G along certain restricted directions. In particular, their result
implies the following: Let (a,b) € R? be a Diophantine vector (see [5, p. 2] for the definition), and
let J C R be a compact subinterval. Then these exist constants ¢ € N, ¢ € (0,1) and § > 0 such

that for any pair of weights o = (#IC,, ﬁ) with 0 < ¢ < ¢, for any f € C°(X3) and for any s > 0
1 e

(76) [ 1 @) do = (1) + 0 ().

where g, = g = diag(e®', 2%, ¢~%) with a as above, v(z) := (az + b,z)! € R? and || - |Lge the

“L*°, degree "7 Sobolev norm defined by
Ifllzss == >~ 1Dz(f)llco-
deg(Z)<t/

Here || - ||co is the uniform norm on CZ°(X3) as before. On the other hand, it is easy to see from
Lemma 6.6 and the relation (6.13) that there exists L' > 1 such that

(7.7) Il <o ™™,  VO<r<l.

Using a similar analysis with (7.6) and (7.7) in place of (6.9) and (6.11) respectively, we can
conclude that if the series (1.10) (with d = 3) converges, then for Leb-a.e. z € J the column vector
v(z) = (az + b, z)" is 1o 1-Dirichlet.
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7.3. The divergence case. In this subsection we prove the divergence case of Theorem 1.2. We
first record from [29] the following divergence Borel-Cantelli lemma which we will use.

Lemma 7.2. Let (X, ) be a probability space. Let {hy}ren be a sequence of measurable functions
on X taking values in [0,1]. Let by, := p(hy). Suppose Y, by, = oo and

fX ( 1= k:l .Z') - fikl bl)2 du(‘r)
(7.5) lim nf o
: (Zh )
Then for p-a.e. x € X, hi(x) > 0 infinitely often.

=0 for some k1 € N.

Proof. Let Y7,Y5,... be the sequence of random variables defined by Yy(z) = Zfiﬁ h(x) (ke

N). Note that
/ (Z hi( Z bi > () = (Y2 1) = 1 (Ver—kr41) s

i=kq i=kq

hence (7.8) implies that lim supy,_,.. #(Y%)?/u(Y;?) = 1. Therefore by part (iii) of the main theorem
in [29], for p-a.e. z we have limsupy,_, o Yi(z)/p(Yr) > 0. Also u(Yy) = Zfi,fll_l b; — 0o as k — oo.
Hence it follows that for p-a.e.  we have limy_,o Yi(x) = +00, and in particular h;(z) > 0 for
infinitely many 3. O

Remark 15. If one replaces the assumption (7.8) by the weaker assumption that
ks 2
o fx ( ik hi(@) = 2232, bi) du(x)
llim inf 5
—00 k
’ (Zlikl bl)
then by the application of part (iii) of the main theorem in [29] we get instead

Y5 () }) 1
z € X : limsu >0 > —.
: <{ oo’ 1(Y3) “ 1t 0

In particular, there is a positive measure set of 2 € X such that h;(z) > 0 infinitely often.

=:C < oo for some k1 € N,

Proof of the divergence case of Theorem 1.2. First we note that in view of Remark 2 we may as-
sume limy_,o t1)(t) = 1. Let r = ry, be the continuous, decreasing function corresponding to 1 as
in Lemma 6.1; then from the proof of that lemma we have lims_,o, r(s) = 0. Also by Lemma 6.1,
since the series (1.10) diverges, the series >, r(k)* log™ (1 + %) also diverges. Moreover, by
Remark 12, condition (1.11) is equivalent to

Zso<k§sl T(k)%d lOg)\d+1 (1 + r(l ))

k
2
(Zso<k§sl T(/ﬁ)%d lOg)\d (1 + r(lk))>

(7.9) lim inf

8§1—00

Now for any k > sg let
Bi= |J 907 0,war(k +5)]

be as before with wy := min{ma;,nB; : 1 <i <m,1 < j < n} as in Proposition 6.2. In view of
Proposition 6.2 (and the paragraph after it) it suffices to show that for Leb-a.e. Ay € Y, grAa € B,
infinitely often.
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In this case we will approximate the shrinking targets {By},~, from below. Recall that for
each 0 < r < 1 we have fixed a function ¢, € C°(X,) as in Lemma 6.5. Again we may assume
war(s) € (0, %) for all s > sp, and since r(-) is decreasing, we have Aww(kﬂ) C By, implying that,
with pg 1= wor(k +1)/2:

Let us set, for each k > s,

< .
wor(k+1) XE]C’ Vk > 50

by = /y Fr(geha) dA = /y 6, (geha) dA.

Then, similarly to the proof of the convergence case, by applying the last part of Lemma 7.1 and
using the relation pj, = wor(k+41)/2 and the facts that the series 3°, 7(k)*¢ log (1+ %) diverges
and lim,_,o 7(s) = 0, it follows that the series ), by also diverges.

Now for each k > sg, let hy be the function on ) defined by hx(A4) := fr(gxAa). Then in view
of the definition of fj := ¢,, and the relation X%, < @p, < XZ,,, " the function h; takes values in
k k

[0,1], and

/ hio(A ) dA = / FelgrAa) dA = by,
Yy Yy

We will apply Lemma 7.2 to the probability space (¥, Leb) and the sequence {hy}i~s,- We have
already seen that ), by = oo; thus in view of Lemma 7.2 it suffices to show that {hyj }x~s, satisfies
condition (7.8).

Let us take C' > 0 sufficiently large so that for all £ > C, pi € (0,7¢), where r¢ is the constant
as in Lemma 7.1. For any ko > ki > C, let us denote

2

ko ko
Qbo ;:/y S-S b | da= 3 /(hi(AA)hj(AA)—bibj) dA.

ik i=ky ey <i,j<ks ’Y

Using the fact that for each k1 < i < ko,

/ (hi(Aa) —b}) dA < / hi(Aa) dA = b;,
Y hY
we have
ko
Qkth < Z bl + 2 Z / (hz(AA)hJ(AA) — b,b]) dA.
i=k ki <i<j<ks’Y

Fix k1 <1 < j < ko; we will use two different estimates for the term fy (hi(AA)hj (Ay) — bibj) dA
depending on whether min{i,j — i} is large or small. First, applying the effective doubly mixing
(6.10) to the pair (f;, f;), we get

@10 [ R aAa) 4= nalfomat) + O (¢TI FONS)).
On the other hand, by (6.9) we have

(7.12) b = palfi) + O (6—5%( fk)) . VE>C.
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Combining (7.12), (7.11), the norm estimate Ny(f) = Ni(ép,) <a pp = (by (6.11)) and noting that
fy hj(Aa) dA = fy fi(giMa) fi(gjAa) dA, we have

/y(hi(AA)hj(AA) —b;bj) dA‘ g eI gkl < emomintid =l 2k,

On the other hand, using the trivial estimate |h;h; — b;ibj| < h;hj + bib; < h; 4+ b; we have

(7.13) ‘/ (hi(Aa)hj(Aa) — b;bj) dA‘ < / (hj(Aa) +b;) dA = 2b;.
y Yy
Combining these two bounds, we conclude:
k2 k2 ]_1 . PR
(7.14) Qi iy <d Z b; + Z Z min {e“gmln{l’]_l}pj_%, bj} .
i=kq j=ki1+1i=k;

In order to bound the above inner sum we replace &y by 1 and use the symmetry ¢ — j — 7 to get

(7.15) § min {e“gmm{i’j_i}pj_%, bj} <2 Zmln{ 2L ,b; }

1=kq

In the last sum, all terms are < b;, and there are at most Oy (log (2 + bj_1 p;%)) terms which are
equal to b; (indeed, remember that § depends only on d). Furthermore, if there are any terms
which are less than b;, then these are bounded above by b;, bje_‘s, bje_%, ..., and so their sum is

Og4(bj). It follows that the last sum in (7.15) is Oy (bj min {j, log (2 + bj_lpj—zL) })7 and hence from
(7.14) we get

ko
Qky by <d Z b; + Z b; min {j,log(Z—i—b p] } < Z b; min {j,log(2 +b7 1 —2L)}‘
i=k1 j= =ki1+1 j= =k
Let n = o +L be as in Lemma 7.1 and set « : %77. Then by (7.2) we have for each k; < j < ko:
=4 plogM (L) if p; >e W
=q p;loght () if pj > e,
Y <Lge ™ if pj <e M.

Thus for any ky > ki > C we have (recalling that p; = war(j +1)/2)

1
Qkiey <a D, € ™j+ > pi 10gAd<p )log <2+p a2l log‘Ad(p >>
J

k1 <j<ko k1<j<ky J
(p'<e*"’) (pj>e™")
ko+1 1
<y 1+ Z P log)‘dﬂ( ) <1+ > r(iyoght (14 T>
Jj=k1 j=ki+1 '7)
Similarly, by (7.16), for any fixed k1 > C' we have as ky — oo:

ka2 1 ko+1 1
Z bj > Z Py log)‘d< ) > Z Py logAd< > >0, Z 7(j)7 log (1 + —,),
j=k1 k1<j<ks Pj j=k1+1 T(‘])

(pj>e="7)
where the second relation holds since the series zj iy Pj d log)‘d( L ) diverges (this follows from the

relation p; = wor(j+1)/2 and the fact that the series ()™ logAd (1+ e )) diverges), while the

same sum restricted to those j for which p; < e~ is convergent.
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Combining the last two bounds, we conclude that for any k1 > C, and for ks sufficiently large,
ko+1 -\ 3¢, Ag+1 1
Qley ko 1+ 3 2 1 7(j)7 log™ (1+ m)

7 Sdon ka+1 A 14)?
<Zj2:k1+l r(j)7log™ (1 + m))

k
Since the series 3, r(j)™ log (1+ ﬁ) diverges, condition (7.9) implies that the limit inferior
of the expression in the right hand side of (7.17) tends to zero as ks — oco. Hence (7.8) holds.
We have also noted that ), b, = oco. Hence by Lemma 7.2, for Leb-a.e. A € M,, ,(R/Z) we
have hx(Aa) = fri(gxAa) > 0 infinitely often. Together with (7.10), this implies that for Leb-a.e.

A € My, ,(R/Z), the lattice gyAa belongs to supp(fi) C B) for infinitely many k& € N. This
finishes the proof. O

(7.17)

Remark 16. For the divergence case in Theorem 1.2, we note that if one replaces the assumption
(1.11) by the weaker assumption that

-1 , Ag+1 1
g oSkt K Fu () log™ (=)

o (Ejmgkgtlk_lfh(kymlogAd<fiﬁﬁ))2

then, in view of Remark 12, Remark 15 and the estimate (7.17), we can conclude that, under this
weaker assumption, DI, g(1)¢ is of positive Lebesgue measure.

< 00,
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