
September 7, 1999

Approximation by polynomials

Christer O. Kiselman

Contents:
1. Introduction
2. The Weierstrass approximation theorem
3. Estimates for the Bernstein polynomials
4. Weierstrass’ original proof
5. The Stone–Weierstrass approximation theorem
6. Chebyshev’s theorems
7. Approximation by polynomials and trigonometric polynomials
8. The nonexistence of a continuous linear projection
9. Approximation of functions of higher regularity

10. Inverse theorems
References

Introductory remarks
These notes comprise the main part of a course on approximation theory presented at Upp-
sala University in the Fall of 1998, viz. the part on polynomial approximation. The material
is mainly classical. As sources I used Cheney [1966], Dzjadyk [1977], Korovkin [1959], and
Lorentz [1953], as well as papers listed in the bibliography. The emphasis is on explaining
the main ideas behind the most important techniques.

The last part of the course was on rational approximation and is not included here. I
followed mainly Cheney [1966, Chapter 5, pp. 150–167]. I also discussed Padé approximation
briefly, following Cheney [1966, Chapter 5, pp. 173–177] and the introduction in Rudälv
[1998].

I am grateful to Tsehaye Kahsu Araaya for remarks to the manuscript.

1. Introduction
What is approximation theory? Maybe at the end of this course we will be able to
give a mature answer to this question. For the time being, let me just sketch a kind
of formal framework for the problems we are going to study.

We have a metric space X and we want to approximate a given element x ∈ X
by an element a of some subset A of X. The elements of A are “nice” or “tractable”
and we want to make the distance between x and a as small as possible: we call this
“to make a good approximation of x by elements of A.”

A metric space X is a set X together with a metric d. That d is a metric means
that it is a function d:X2 → R which satisfies three properties: it is positive definite:

(1.1) d(x, y) > 0 for all x, y ∈ X with equality precisely when x = y;

it is symmetric:

(1.2) d(x, y) = d(y, x) for all x, y ∈ X;
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and it satisfies the triangle inequality:

(1.3) d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X.

Any normed space gives rise to a metric space: we can define the distance
between x and y as d(x, y) = ‖x − y‖ or, more generally, as d(x, y) = ‖x − y‖α for
any α satisfying 0 < α 6 1.

To any element x of X and any subset A of X we associate the distance d(x,A)
from x to A, which by definition is

(1.4) d(x,A) = inf
a∈A

d(x, a), x ∈ X, A ⊂ X.

Obviously we have 0 6 d(x,A) 6 +∞ with equality at the second place if and only
if A is empty and equality at the first place if and only if a belongs to A, the closure
of A. So the elements x such that d(x,A) = 0 are those which can be approximated
arbitrarily well by nice elements. If d(x,A) > 0 there is a certain unavoidable error.

A very common situation is that we have an increasing sequence (Am) of sets
whose union is dense in X, so that d(x,Am)→ 0 as m→∞ for every x ∈ X. Then
an interesting question is how fast the convergence is and how the rate of convergence
depends on properties of the element x.

It may or may not happen that the infimum in (1.4) is a minimum. In other
words, it may happen that there exists an element a, called a best approximant, such
that

d(x, a) = d(x,A),

but it may also be the case that

d(x, a) > d(x,A) for all a ∈ A.

In the latter case we are interested in constructing a sequence (aj) of elements of A
such that d(x, aj) → d(x,A) as j → ∞. We call such a sequence an approximating
sequence. In the first case we may ask if there is a unique best approximant: the set

{a ∈ A; d(x, a) = d(x,A)},

may be empty, have exactly one element, or may have more than one element.

Exercise 1.1. Consider the spaces lpn, i.e., Rn with the norm

‖x‖p = (
∑
|xj |p)1/p when 1 6 p < +∞; ‖x‖∞ = max |xj |.

Let A be a closed, convex and nonempty subset of Rn. Prove that there is always a
unique best approximant when 1 < p < +∞. Prove by examples that there does not
necessarily exist a unique closest element in the remaining cases p = 1,+∞. What
about 0 < p < 1?

A classical case when we always have a unique best approximant is the following.
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Theorem 1.2. Let H be a real or complex Hilbert space and A a nonempty, closed
and convex subset of H. Then for any point x ∈ H there is a unique closest point
π(x) in A. Any approximating sequence must tend to π(x).

Proof. We may take H as a real Hilbert space. (Why?) After a translation we may
assume that x = 0. Let aj be points in A such that d(0, aj) = ‖aj‖ tends to d(0, A)
when j →∞. We note the identity

‖ 1
2aj + 1

2ak‖
2 + ‖ 1

2aj −
1
2ak‖

2 = 1
2‖aj‖

2 + 1
2‖ak‖

2,

which is easy to verify if we use the definition ‖x‖ =
√

(x |x) of the norm in a Hilbert
space in terms of the inner product (x |y), x, y ∈ H. Then

1
4‖aj − ak‖

2 = 1
2‖aj‖

2 + 1
2‖ak‖

2 − ‖ 1
2aj + 1

2ak‖
2 6 1

2‖aj‖
2 + 1

2‖ak‖
2 − d(0, A)2,

since 1
2aj + 1

2ak belongs to A in view of the convexity. We see that the right-hand
side tends to zero as j, k → ∞. This implies that (aj) is a Cauchy sequence, and it
must therefore have a limit in H. The limit cannot depend on the sequence, for if we
take two sequences (aj) and (bj) and mix them, the new sequence (a0, b0, a1, b1, a2, ...)
must converge by the same argument. We call the limit π(0); by translation we define
π(x) ∈ A.

Exercise 1.3. Prove that the mapping π:H → A is continuous; more precisely that

‖π(x)− π(y)‖ 6 ‖x− y‖, x, y ∈ H.

Prove also that the set A is contained in a half-space as soon as x /∈ A: in the real
case every a ∈ A must satisfy (a − x |π(x) − x) > ‖π(x) − x‖2. What about the
complex case?

Exercise 1.4. Prove that if A is a closed linear subspace, then x−π(x) is orthogonal
to π(x). Prove that we get two idempotent mappings π and I −π, and determine all
possible relations between the subspaces kerπ, ker(I − π), imπ, im(I − π).

So Hilbert space is an easy case where the best approximant is unique. How-
ever, there are other interesting cases when we can prove uniqueness of the best
approximant.

Now we may perhaps dare to say that approximation theory is the study of
approximating sequences, best approximants and their uniqueness or nonuniqueness
in cases where X is a space of interesting functions, and A is some subspace of nice
functions, like polynomials, trigonomentric polynomials,...

2. The Weierstrass approximation theorem
The best starting point for these lectures is the classical Weierstrass1 approximation
theorem. It says that for any continuous real-valued function f on the interval [0, 1]
and any integer k > 1 there is a polynomial pk such that |f(x)− pk(x)| 6 1/k for all

1Karl Theodor Wilhelm Weierstraß, 1815–1897, my advisor5.
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x ∈ [0, 1]. However, the degree of pk may have to be much larger than k; we shall
return to that story.

Taylor polynomials can serve as approximants—if we are lucky. Given a function
with derivatives of all orders at a point a ∈ R, its Taylor2 polynomial of degree m at
a is

(2.1) Tm(f)(x) =
m∑
0

f (j)(a)(x− a)j/j!, x ∈ R, m ∈ N.

If the Taylor polynomials converge to f on some interval ]a− r1, a+ r2[ containing
a, then f is the restriction to that interval of a holomorphic function defined in a disk
in the complex plane, {z ∈ C; |z − a| < max(r1, r2)}, thus a rather special function.
In particular we see that if f is identically zero near a, then we cannot hope for the
Taylor polynomials to converge to f at a point where f is nonzero. To approximate
continuous or even general C∞ functions we need to find other polynomials.

Theorem 2.1 (The Weierstrass approximation theorem). Let f ∈ C([0, 1]) and let ε
be a positive real number. Then there exists a polynomial P such that |f(x)−P (x)| < ε
for all x ∈ [0, 1].

There are many generalizations of this theorem. For instance, we could let f be
complex-valued, or take values in a real or complex vector space of finite dimension.
That is easy. We could let f be a function of several real variables. Then it is also
easy to formulate the result. And we could let f be a function of several complex
variables. That would require a more profound study, with skillful adaptions of both
hypothesis and conclusion. Finally, of course, we may try to let the functions take
their values in an infinite-dimensional space.

We start with a trivial identity:

(2.2) 1 = 1m = (x+ (1− x))m =
m∑
0

(
m

k

)
xk(1− x)m−k, x ∈ R, m ∈ N.

Here, as usual,

(2.3)
(
m

k

)
=

m!
k!(m− k)!

m, k ∈ N, k 6 m,

is the binomial coefficient.3 The formula holds for integers m, k with 0 6 k 6 m. It
is, however, often convenient to define the coefficient for all k ∈ Z and then set it
equal to zero when k is negative or larger than m. Indeed, there is no way you can
choose m + 1 apples from m apples. This convention allows us to work more easily
with sums, whose limits need not always be indicated.

2Brook Taylor, 1685–1731.
3Read “m choose k” in English, “m super k” in Esperanto, and “m över k” in
Swedish.
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What could we learn from (2.2) except that 1 can be written in many ways?
Well, the function x 7→

(
m
k

)
xk(1− x)m−k has a peak at x = k/m. The maximum is

equal to(
m

k

)(
k

m

)k (
1− k

m

)m−k
=
(
m

k

)
kk(m− k)m−k

mm
≈
√

m

2πk(m− k)
.

The approximation holds when k as well as m−k are large, thus for m large and k/m
near the middle of [0, 1]. In particular, for k ≈ m/2, the maximum is ≈

√
2/πm. We

have used here Stirling’s4 formula, a simple version of which is

(2.4) Γ(x) = (x− 1)! ≈
√

2πe−xxx−1/2, x� 0.

More precisely, there is an asymptotic expansion valid as |z| tends to +∞ in any
sector | arg z| 6 π − ε, ε > 0, whose first terms are

(2.5)
Γ(z) = (z − 1)!

=
√

2πe−zzz−1/2

(
1 +

1
12z

+
1

288z2
− 139

51840z3
− 571

2488320z4
+O(z−5)

)
.

For large m the function xk(1−x)m−k is pointed. However, it is not very pointed,
in the following sense. Let us say that the practical support of a nonnegative function
is the set where its value is at least 2−7 of its maximum, or perhaps the precise
practical support where the value is at least 2−10 of the maximum. Then the practical
support of xk(1−x)m−k near k = m/2 is an interval of length approximately 3.12/

√
m

(for the precise practical support, the interval is not much longer, viz. 3.72/
√
m). The

terms in the sum define a partition of unity over the interval [0, 1]. However, it is
not like the partitions we use in distribution theory when the supports are almost
disjoint and one of the function is equal to 1 in a large compact set. In the sum (2.2)
the supports overlap massively; using the notion of practical support again we see
that 3.12

√
m of the terms overlap near x = 1/2. See the figures.

Anyway, it is reasonable to expect that

∑
f(k/m)

(
m

k

)
xk(1− x)m−k, x ∈ R, m ∈ N∗ = Nr {0},

which is a polynomial of degree m, would be a good approximation to f on [0, 1]. So
let us define

(2.6) Bm(f)(x) =
m∑
0

f(k/m)
(
m

k

)
xk(1− x)m−k, x ∈ R, m ∈ N∗.

We shall call Bm(f) the Bernstein5 polynomial of f of degree m.

4James Stirling, 1692–1770.
5Sergej Natanovič Bernstein, 1880–1968.
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Figure 1. The polynomials pm,k(x) =
(
m
k

)
xk(1− x)m−k for m = 10, k = 0, 1, ..., 10.

We remark that the functions x 7→
(
m
k

)
xk(1−x)k all have the same integral over

[0, 1], viz. 1/(m+ 1). It follows that the integral of Bm(f) is a Riemann sum for f :

(2.7)
∫ 1

0

Bm(f)(x)dx =
1

m+ 1

m∑
0

f(k/m).

Proposition 2.2. The mapping Bm: [0, 1]R → Pm maps the real-valued functions on
[0, 1] into the space Pm of polynomials of degree at most m, m ∈ N∗. It is linear. It is
increasing, i.e., Bm(f) 6 Bm(g) if f 6 g; equivalently, it is positive, i.e., Bm(f) > 0
if f > 0. Moreover Bm(1) = 1 and Bm(x)(x) = x. Finally,

(2.8) Bm(x2)(x) = x2 +
1
m
x(1− x), x ∈ R, m > 1.

Thus the restriction of Bm to the affine functions is the identity in P1. The restriction
of Bm to P2 is not exactly the identity, since if p(x) = a0 +a1x+a2x

2 is a polynomial
of degree at most 2, then

(2.9) Bm(p)(x) = a0 +
(
a1 +

a2

m

)
x+

(
a2 −

a2

m

)
x2.

Thus Bm maps P2 into itself and differs from the identity by an error which is nowhere
larger than |a2|(4m)−1 and in particular tends to zero as m→ +∞.
Proof. The linearity and positivity of Bm is clear. The fact that Bm(1) = 1 is just
the identity (2.2) which was the starting point of these deliberations. To see that
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Figure 2. The polynomials pm,k(x) =
(
m
k

)
xk(1 − x)m−k for m = 100, k = 49, 50.

(Illustrating massive overlapping.)

Bm(x)(x) = x we perform the following calculation.

Bm(x) =
m∑
1

(
m

k

)
k

m
xk(1− x)m−k =

m∑
1

(
m− 1
k − 1

)
xk(1− x)m−k

= x
m−1∑

0

(
m− 1
j

)
xj(1− x)m−1−j = xBm−1(1) = x, m > 2.

The calculation supposes that m > 2, since Bm−1 is not defined otherwise; however,
it is easy to verify that B1(x) = x separately.

Finally, for f(x) = x2 we first perform the same trick as in the case of Bm(x)
above to get

Bm(x2) =
m∑
1

(
m

k

)
k2

m2
xk(1− x)m−k = x

m−1∑
0

j + 1
m

(
m− 1
j

)
xj(1− x)m−1−j .
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Figure 3. The polynomials pm,k(x) =
(
m
k

)
xk(1−x)m−k for m = 1000, k = 499, 500.

(They are indistinguishable.)

Following Dzjadyk [1977:317] we now divide the last expression into two: the first
with j, the second with 1, thus Bm(x2) is equal to

x
m− 1
m

m−1∑
1

j

m− 1

(
m− 1
j

)
xj(1− x)m−1−j +

x

m

m−1∑
0

(
m− 1
j

)
xj(1− x)m−1−j

= x
(

1− 1
m

)
Bm−1(x)(x) +

x

m
Bm−1(1)(x) = x2 +

1
m
x(1− x), m > 2.

Here we need m > 2 to give a sense to Bm−1. However, Bm(x2)(x) = x = x2 +
1
mx(1− x) for m = 1, so (2.8) holds also then. This proves the proposition.
Proof of Theorem 2.1. This proof is due to Bernstein [1912]. Let f be any continuous
function on [0, 1] and let p be a polynomial of degree 2 which majorizes f . Then
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Bm(f) 6 Bm(p) = p + a2x(1 − x)/m 6 p + |a2|/(4m), where a2 is the coefficient
for x2 in p. So p + |a2|/(4m) is a majorant of Bm(f). Now a continuous function
is the infimum of all its majorants of degree 2. More precisely, if a number ε > 0 is
given, we can find a δ > 0 such that f(x) 6 f(x0) + ε when x and x0 are any two
points with |x− x0| 6 δ, for f is uniformly continuous. Also f is bounded on [0, 1],
say |f | 6 M . Then p(x) = f(x0) + ε + a2|x − x0|2 is a majorant of f if we choose
a2 = 2M/δ2. Taking the Bernstein polynomials of f and p we get

Bm(f) 6 Bm(p) = p+
a2

m
x(1− x) 6 p+

a2

4m
.

At the point x0 the values are

Bm(f)(x0) 6 p(x0) +
a2

4m
= f(x0) + ε+

a2

4m
.

For large m we get
(2.10) Bm(f)(x0) 6 f(x0) + 2ε.
In fact, we have to choose m > 1

4a2ε
−1 = 1

2Mδ−2ε−1. Therefore (2.10) holds for
a large m and for all x0. By the same argument we get an estimate from below:
Bm(f) > f − 2ε. Thus |Bm(f)− f | 6 2ε and the theorem is proved.

While we are at it, we can easily generalize the proof to other operators than
Bm.

Theorem 2.3. Let Am:C(I) → C(I), m ∈ N∗, where I = [0, 1], be positive linear
operators such that Am(1) = 1, Am(x)(x) = x+αm(x), and Am(x2)(x) = x2+βm(x).
Then
(2.11)

‖Am(f)− f‖∞ 6 ω(δ)
(

1 + δ−2 sup
y∈I
|βm(y)− 2yαm(y)|

)
, δ > 0, m ∈ N∗,

where ω is the modulus of continuity of f :
ω(δ) = sup

x,y∈I

(
|f(x)− f(y)|; |x− y| 6 δ

)
.

Proof. When |x− y| 6 δ we have f(x)− f(y) 6 ω(δ) by definition. When |x− y| > δ
we can divide the interval between x and y into not more than 1 + |x− y|/δ intervals
of length at most δ, so that

f(x)− f(y) 6 ω(δ)(1 + |x− y|/δ).
Thus in all cases

f(x)− f(y) 6 ω(δ)(1 + δ−2(x− y)2), x, y ∈ I, δ > 0.
Here the right-hand side is a polynomial of degree at most two in x for fixed y, so if
we apply the mapping Am in the variable x we obtain

Am(f)(x)− f(y) 6 ω(δ)
[
1 + δ−2

(
x2 + βm(x)− 2y(x+ αm(x)) + y2

)]
.

We now choose x = y and get
Am(f)(y)− f(y) 6 ω(δ)

(
1 + δ−2(βm(y)− 2yαm(y))

)
6 ω(δ)

(
1 + δ−2 sup

y∈I
|βm(y)− 2yαm(y)|

)
.

We now apply this result to −f to get an inequality in the other direction. Combining
the two we get (2.11) as claimed.
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Corollary 2.4. For any continuous function f with modulus of continuity ω, the
Bernstein polynomials Bm(f) satisfy

‖Bm(f)− f‖∞ 6 5
4ω(1/

√
m), m ∈ N∗.

Proof. With the notation of the theorem we have in this case αm = 0, |βm(x)| 6
(4m)−1, so that the right-hand side of (2.11) becomes ω(δ)(1 + (4mδ2)−1). We just
have to choose δ = 1/

√
m to complete the proof.

Exercise 2.5. We have seen that ‖Bm(f) − f‖∞ 6 Cω(1/
√
m), where the best

constant C is at most 5/4. Prove that the best constant cannot be smaller than one.
Thus 1 6 C 6 5/4; it appears that the exact value of C is not known.

The Bernstein polynomials do not give the best possible approximation: we shall
see that there are polynomials P of degree m such that ‖P − f‖∞ 6 Cω(1/m).

Exercise 2.6. Prove that if Am, m ∈ N∗, are positive linear operators such that
Am(1)(x) = 1 +αm(x), Am(x)(x) = x+ βm(x), and Am(x2)(x) = x2 + γm(x), where
αn, βm, and γm tend to zero uniformly as m → ∞, then Am(f) → f uniformly for
all f ∈ C(I).

Exercise 2.7. Prove that Bm(f)(x)→ f(x) if f is bounded on [0, 1] and continuous
only at the point x.

Exercise 2.8. Prove the formula Bm(f)′ = Bm−1(g), where

g(x) = m
[
f(m−1

m x+ 1
m )− f(m−1

m x)
]
,

a difference quotient of f adjusted so that only values of the argument in [0, 1] appear.
Deduce that if f is a polynomial of degree at most q, then Bm(f) is of degree at most q
(and thus of degree 6 min(m, q)). Generalize to higher order difference quotients.

Exercise 2.9. Now do everything in several variables: define for f ∈ C([0, 1]n),

Bm(f)(x) =
∑
k∈Nn

f(k/m)
(
m

k

)
xk(1− x)m−k, x ∈ Rn, m ∈ (N∗)n,

where
(
m
k

)
, k/m and xk have to be suitably defined. Prove that these Bernstein

polynomials converge uniformly to f ∈ C([0, 1]n).

3. Estimates for the Bernstein polynomials
We shall now take a closer look at the Bernstein polynomials, essentially following
Lorentz [1953]. Let us define

(3.1) pmk(x) =
(
m

k

)
xk(1− x)m−k, m ∈ N∗, 0 6 k 6 m,

and

(3.2) Tms(x) =
m∑
k=0

(k −mx)spmk(x), m ∈ N∗, s ∈ N.
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Since pmk has degree m, it follows that Tms has degree at most m + s. However,
we shall see that Tms is of degree at most s in x: a lot of cancellation takes place.
Even more remarkable is the fact that Tms(x) is a polynomial also in m. We shall
determine its degree.

To understand the role of the Tms let us remark that Bm(f) =
∑
f(k/m)pmk

and that, if we define uas(x) = (x− a)s, x ∈ [0, 1], s ∈ N, then

Bm(uas)(x) =
∑

uas(k/m)pmk(x) = m−s
∑

(k −ma)spmk(x),

so that

(3.3) Bm(uas)(a) = m−sTms(a), a ∈ [0, 1], s ∈ N.

We can expect Bm(uas)(a) to be smaller than Bm(uas)(x) when x is at some distance
from a, since |uas| has its minimum at a.

We have actually already studied Tm0, Tm1 and Tm2. Indeed,

Tm0(x) = 1, Tm1 = 0, and Tm2(x) = mx(1− x).

The first formula is just (2.2); the other two follow from Proposition 2.2. For larger
values of s we can state the following.

Proposition 3.1. For a fixed s ∈ N, Tms is a polynomial in x and m. Its degree
in x is at most s. Its degree in m is b 1

2sc (the integer part of 1
2s), thus equal to 1

2s
when s is even and equal to 1

2 (s− 1) when s is odd.

Proof. We have

T ′ms(x) = −msTm,s−1(x) +
m∑
0

(k −mx)sp′mk(x)

= −msTm,s−1(x) +
m∑
0

(k −mx)s+1

(
m

k

)
xk−1(1− x)m−k−1

= −msTm,s−1(x) +
1

x(1− x)
Tm,s+1.

We rewrite this as a recursion formula

Tm,s+1(x) = x(1− x)[T ′ms(x) +msTm,s−1(x)],

from which we can read off that the degrees in x and m are at most what is stated,
starting from what we already know about the polynomials for s = 0, 1, 2. It remains
to be seen that the degree in m is not less than b 1

2sc. However, it is possible to keep
track of the coefficient of ms in Tm,2s and Tm,2s+1 (the leading coefficient) and show
that it does not vanish.

Exercise 3.2. Show that
∞∑
s=0

1
s!
Tms(x)ys = [e−xy(1− x+ xey)]m.
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From this formula various properties of the Tms can be deduced.
Since the degree in m of Tm,2s is s, there exists, for each s ∈ N, a constant As

such that
0 6 Tm,2s(x) 6 Asms, x ∈ [0, 1], m ∈ N∗.

This also yields an estimate for Bm(ua,2s)(a):

(3.4) 0 6 Bm(ua,2s)(a) = m−2sTm,2s(a) 6 Asm−s.

Theorem 3.3. Let f be a bounded function on [0, 1] such that f ′ exists near a given
point a in that interval and such that f ′′(a) exists. Then

(3.5) Bm(f)(a) = f(a) +
a(1− a)

2m
f ′′(a) + o(1/m), m→∞.

Proof. We already know that the result is true when f is a polynomial of degree at
most 2. For every positive ε there is a constant M such that

f(x) 6 p(x) + ε(x− a)2 +M(x− a)4, x ∈ [0, 1],

where p is the polynomial of degree at most 2 which agrees with the derivatives up
to order 2 of f at the point a. Then by (2.9),

Bm(f)(x) 6 p(x) + ε(x− a)2 +
x(1− x)

2m
(p′′(a) + 2ε) +MBm(ua4)(x), x ∈ [0, 1].

In particular, taking x = a, we obtain

Bm(f)(a) 6 p(a) +
a(1− a)

2m
(p′′(a) + 2ε) +MBm(ua4)(a), a ∈ [0, 1].

Thus, in view of (3.4),

m(Bm(f)(a)− f(a)) 6
a(1− a)

2
(f ′′(a) + 2ε) +MA2m

−1, a ∈ [0, 1],

and we can conclude that

lim
m→∞

m(Bm(f)(a)− f(a)) 6
a(1− a)

2
(f ′′(a) + 2ε).

Since ε is arbitrarily small, we get an inequality which, together with the inequality
in the opposite direction, proves (3.5).

Thus for smooth functions the error ‖Bm(f) − f‖∞ behaves like C/m (and no
better, unless of course f ∈ P1), whereas it is like ω(1/

√
m) > C/

√
m (and no better)

for general continuous functions.

Exercise 3.4. Let f be a smooth function such that lots of derivatives vanish at a
particular point a: f ′′(a) = f ′′′(a) = · · · = f (q)(a) = 0. Prove that then Bm(f)(a)
converges to f(a) fast.
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Let us also consider the function ψaδ defined by ψaδ(x) = 0 when x ∈ [0, 1],
|x− a| < δ, and ψaδ(x) = 1 elsewhere in [0, 1]. We can compare it with ua,2s:

0 6 ψaδ 6 δ−2sua,2s, a ∈ [0, 1], δ > 0, s ∈ N.

This gives

Bm(ψaδ)(x) 6 δ−2sBm(ua,2s)(x), x, a ∈ [0, 1], s ∈ N,

and, in particular at the point a,

0 6 Bm(ψaδ)(a) 6 δ−2sBm(ua,2s)(a) = m−2sδ−2sTms(a), a ∈ [0, 1], s ∈ N.

This means that we have proved a useful estimate

∑
|k/m−a|>δ

pmk(a) =
m∑
k=0

ψaδ(k/m)pmk(a) = Bm(ψaδ)(a)

6 δ−2sBm(ua,2s)(a) = m−2sδ−2sTm,2s(a).(3.6)

Thus estimates for Tm,2s will yield estimates for sums of pmk over those k that satisfy
|k/m − a| > δ. For example it follows from (3.4) that, for any given positive δ and
any s ∈ N,

(3.7) Bm(ψaδ)(a) 6 m−2sδ−2sTm,2s(a) 6 Asδ−2sm−s.

Exercise 3.5. Calculate Bm(f)( 1
2 ) for f(x) = |x− 1

2 |, x ∈ [0, 1]. (The answer should
be compared with Bernstein’s result [1913] that for the best polynomial approxima-
tion of f the error is O(1/m) and no better; as well as with Stahl’s result [1992] on
rational approximation that Emm(|x|; [−1, 1]) = 8e−π

√
m(1 + o(1)), m → ∞. Here

Emm denotes the error when approximating by rational functions whose numerator
and denominator are of degree at most m.)

4. Weierstrass’ original proof
We shall take a look at Weierstrass’ original proof of his theorem, Weierstrass [1885].
He used convolution by a kernel which is an entire function, and then the Taylor
polynomial of the convolution product. So to describe this we have to define convo-
lution.

Let f and g be two functions defined on all of Rn. Then their convolution product
is denoted by f ∗ g and defined by

(4.1) (f ∗ g)(x) =
∫

Rn

f(y)g(x− y)dy, x ∈ Rn,

whenever the integral has a sense. We can for instance take f ∈ C0(Rn), g ∈ C(Rn)
or the other way around, i.e., we take two continuous functions (so that the integral
over a bounded set exists) and then require that one of them have compact support
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(so that the integral over all of Rn exists). Or we can impose some growth at infinity.
More advanced integrals can be used; it is proved in Lebesgue integration theory that
(4.1) exists for almost all x ∈ Rn if f, g ∈ L1(Rn), and that the convolution product
is then itself an element of L1(Rn). But in that case the integral in (4.1) may not
exist for certain values of x.

Given now f ∈ C(I), I = [0, 1], we first have to extend it to the whole axis. This
is easy: we just put f(x) = f(0) for negative x and f(x) = f(1) for x > 1. The new
function is then an element of C(R). Or we can extend it to an element of C0(R)
by declaring it to be zero for x 6 −η as well as for x > 1 + η, and then define it as
a first-degree polynomial in [−η, 0] and [1, 1 + η]; thus f ∈ C0(R). Here η is a fixed
positive number. Either way the integral

(Wm ∗ f)(x) =
∫

R

Wm(y)f(x− y)dy, x ∈ R,

exists if we let W be the function

(4.2) W (x) = Ce−x
2
, x ∈ R,

with the constant C determined such that∫
R

W (x)dx = 1,

and
Wm(x) = mW (mx), x ∈ R, m ∈ N∗.

It is now a well-known result that Wm ∗ f converges to f uniformly. Indeed, we
have the following theorem.

Theorem 4.1. Let Kj, j ∈ N∗, be integrable functions on the real axis which satisfy:
(a) supj

∫
R
|Kj |dx < +∞;

(b)
∫
R
Kjdx→ 1 as j →∞;

(c)
∫
|x|>δ |Kj |dx→ 0 as j →∞ for every positive number δ.

Then Kj ∗ f → f uniformly as j →∞ for every f ∈ C0(R).

If Kj > 0 we can simplify the hypotheses to:
∫
R
Kjdx→ 1 and

∫
|x|>δKjdx→ 0.

Exercise 4.2. Prove this theorem. Determine the constant C in (4.2).

ObviouslyKm = Wm satisfies the hypothesis of the theorem, so we get a sequence
of continuous functions fm = Wm ∗ f which converges to f ∈ C0(R).

However, Wm is not only a continuous function on the real axis; it is also the
restriction to R of an entire function, i.e., a function which is holomorphic in the
whole complex plane.
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Lemma 4.3. Let W (z) = Ce−z
2
, z ∈ C, and define

(W ∗ f)(z) =
∫

R

W (z − y)f(y)dy =
∫ 1+η

−η
W (z − y)f(y)dy, z ∈ C,

for any function f ∈ C0(R) with support in [−η, 1 + η] for a fixed positive η. Then
W ∗ f is holomorphic everywhere in C.

Sketch of proof. We have

W (z − y) =
∑
j∈N

cj(z − y)j

with uniform convergence when |z−y| 6 R and R is any positive number. Therefore
we can integrate W (z − y)f(y) with respect to y termwise:

(W ∗ f)(z) =
∑
j∈N

cj

∫ 1+η

−η
(z − y)jf(y)dy.

Now
∫ 1+η

−η (z − y)jf(y)dy is a polynomial in z, thus an entire function. The series
converges uniformly for |z| 6 R − 1 − η and its sum must therefore be holomorphic
for |z| < R− 1− η, hence everywhere.

Exercise 4.4. Complete the proof with all details.

Exercise 4.5. Give an alternative proof thatW ∗f is entire by studying the difference
quotient

(W ∗ F )(a+ z)− (W ∗ F )(a)
z

and proving that it converges to (W ′ ∗f)(a) as z → 0, where W ′ denotes the complex
derivative of W , W ′(z) = (d/dz)Ce−z

2
= −2Cze−z

2
.

Now for entire functions the Taylor polynomials (see (2.1)) serve very well as
approximants. We thus take the Taylor polynomials of Wm ∗ f to a degree which is
so large that the error on the interval [−η, 1 + η] is not more than 1/m. This proves
the theorem.

Landau6 [1908] gave a similar proof: he took Kj as a polynomial Lj of degree
2j:

Lj(x) = αj
(
1− (x/c)2

)j
, x ∈ R,

where c is a fixed number larger than 1, and the constant αj is chosen so that

αj

∫ c

−c

(
1− (x/c)2

)j
dx = 1.

We assume that f ∈ C0(R) has its support in [−η, 1 + η], where 1 + 2η = c. We
see that Kj ∗ f = Lj ∗ f is a polynomial in this case. Landau’s proof is thus like

6Edmund Georg Hermann Landau, 1877–1938.



16 C. O. Kiselman

Weierstrass’ except that the last step, when we approximated an entire function by
polynomials, is unnecessary.

5. The Stone–Weierstrass approximation theorem

An order relation in a set X is a relation (a subset of X2) which satisfies three
conditions: it is reflexive, antisymmetric and transitive. This means, if we denote the
relation by 6, that for all x, y, z ∈ X,

x 6 x;

x 6 y and y 6 x implies x = y;

x 6 y and y 6 z implies x 6 z.

An ordered set is a set X together with an order relation.
A lattice is an ordered set L where each set consisting of two elements has an

infimum and a supremum (a greatest minorant and a least majorant). This means
that for any two x, y ∈ L there exists a and b in L such that a 6 x, y, and such that
z 6 x, y implies z 6 a; and similarly for b: x, y 6 b, and x, y 6 z implies b 6 z. The
supremum and infimum are of course unique. It is customary to denote the infimum
and supremum of two elements x, y by x ∧ y and x ∨ y, respectively.

A sublattice is defined just like a subgroup: that L1 is a sublattice of L means
that for all x, y ∈ L1, x ∧ y and x ∨ y, when calculated in L, are elements of L1.

A lattice is said to be complete if any subset has an infimum and a supremum.

Example 5.1. The space of real-valued continuous functions on a topological space is
a lattice. The space C1(Rn) of continuously differentiable functions on Rn is not a
sublattice of C(Rn). It is not even a lattice on its own.

Example 5.2. The set [−∞,+∞]R
n

of all functions defined on Rn and with values in
the extended real line [−∞,+∞] = R∪{−∞,+∞} is a lattice under the usual order
for real numbers, extended in an obvious way to the two infinities. The subset of all
convex functions is ordered in the same way, and is also a lattice under this order.
However, the convex functions CVX(Rn) do not form a sublattice of [−∞,+∞]R

n

.
The supremum of two convex functions is equal to the pointwise supremum of them:

f ∨ g = max(f, g),

but the infima are different in the two lattices: the infimum in the lattice of convex
functions is

f ∧cvx g = sup
[
h;h ∈ CVX(Rn), h 6 f, g

]
,

where the supremum is calculated in [−∞,+∞]R
n

and has a sense because that
lattice is complete.

Lemma 5.3. Let A be a closed subalgebra of C(K), the algebra of all real-valued
continuous functions on a compact topological space K. Then A is a sublattice of
C(K).
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Proof. In C(K) the lattice operations can be defined in terms of the absolute value:

f ∧ g = 1
2 (f + g − |f − g|), and f ∨ g = 1

2 (f + g + |f − g|),

so it is clearly enough to prove that f ∈ A implies |f | ∈ A. We know that f ∈ A
implies P ◦ f ∈ A for all polynomials in one variable with P (0) = 0 (we never said
that A should contain the constants). Therefore it is enough to find a sequence of
polynomials (Pk) such that Pk(0) = 0 and Pk(x)→ |x| uniformly on [−1, 1]. Indeed,
if f ∈ A, then |f | 6 c for some constant c > 0 and cPk(f/c) tends to |f | uniformly
on K. (This, of course, is a special case of the Weierstrass approximation theorem.)

One way to find such a sequence of polynomials is to use the binomial series
with exponent 1

2 . We first have to extend the definition of the binomial coefficients
(2.3) to non-integers:

(5.1)
(
z

k

)
=
z(z − 1) · · · (z − k − 1)

k!
, z ∈ C, k ∈ N.

We know that, for complex t such that |1− t2| < 1,

|t| =
√

1− (1− t2) =
∞∑
0

( 1
2

j

)
(−1)j(1− t2)j

= 1−
∞∑
1

1 · 3 · 5 · · · (2j − 3)
2jj!

(1− t2)j = 1−
∞∑
1

(2j − 3)!!
(2j)!!

(1− t2)j .

Here (−1)!! = 1. Thus the series representation holds in particular for real t satisfying
0 < t 6 1. But a closer analysis shows that it is valid also for t = 0, even uniformly
for −1 6 t 6 1. For these values of t the last series is majorized termwise by

∞∑
1

(2j − 3)!!
(2j)!!

= 1.

We can now define

Pk(t) =
k∑
1

(2j − 3)!!
(2j)!!

(1− (1− t2)j).

We note that Pk(0) = 0 as desired and that Pk(t) → |t| uniformly for t ∈ [−1, 1].
The lemma is proved.

Lemma 5.4. Let L be a sublattice of C(K), where K is a compact space. Suppose
that every function f ∈ C(K) can be approximated by functions in L at two arbitrary
points, i.e., that to every f ∈ C(K), every ε > 0, and every s, t ∈ K there exists
gst ∈ A such that |gst(x)− f(x)| < ε for x = s, t. Then L is dense in C(K).

Proof. Fix an arbitrary function f ∈ C(K) and define

Ust = {x ∈ K; gst(x) < f(x) + ε} and Vst = {x ∈ K; gst(x) > f(x)− ε}.
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For any fixed s the family (Ust)t∈K is an open covering of K. Since K is compact,
we can choose points t1, ..., tm in K such that Ust1 ∪ · · · ∪ Ustm = K. Then define
Vs = Vst1 ∩ · · · ∩ Vstm and gs = gst1 ∧ · · · ∧ gstm ∈ L. We now have gs < f + ε in
all of K, for if x is an arbitrary point in K, then x belongs to some Ustj and then
gs(x) 6 gstj (x) < f(x) + ε. Moreover, in Vs we have gs > f − ε, for x ∈ Vs implies
gstj > f(x)− ε for all j, hence gs =

∧m
j=1 gstj > f(x)− ε.

Now Vs is open as a finite intersection of open sets; (Vs)s∈K is an open covering
of K. Choose finitely many points s1, ..., sn in K such that Vs1 ∪ · · · ∪ Vsn = K and
define g = gs1 ∨ · · · ∨ gsn ∈ L. In all of K we now have |f − g| < ε, for gsj < f + ε
for all j, which implies g = gs1 ∨ · · · ∨ gsn < f + ε, and, on the other hand, if x ∈ Vsj
then g(x) > gsj (x) > f(x)− ε, so that g > f − ε in the union of the Vsj , which is all
of K.

Theorem 5.5 (The Stone7–Weierstrass theorem). Let A be a subalgebra of C(K),
where K is a compact topological space. Suppose that A separates points in K, i.e.,
that for every pair of points s, t ∈ K with s 6= t there exists a function g ∈ A such
that g(s) 6= g(t). Then either there exists a point p ∈ K such that

A = Cp(K) = {f ∈ C(K); f(p) = 0},

or else A = C(K).
A special case is Weierstrass’ approximation theorem: take A =

⋃
Pm
∣∣
I
, the al-

gebra of all polynomials restricted to an interval I. We also immediately get the
generalization to the case of a compact set K in Rn.
Proof. Suppose first that there exists, to any given s ∈ K a function h ∈ A such that
h(s) 6= 0. Then, given any two points s, t ∈ K, s 6= t, there exists g ∈ A such that
0 6= g(s) 6= g(t) 6= 0. Indeed, if it happened for instance that g(s) = 0, then we can
replace g by g + λh, where h is a function such that h(s) 6= 0 and λ is sufficiently
small. Then there exist, given arbitrary numbers a, b ∈ R, real numbers c, d such
that {

cg(s) + dg2(s) = a

cg(t) + dg2(t) = b,

for the determinant of the system is g(s)g(t)(g(t)− g(s)) 6= 0. Since cg+ dg2 belongs
to A and A is a lattice according to Lemma 5.3, A satisfies the hypotheses of Lemma
5.4, and we conclude that A = C(K).

If, on the other hand, there exists a point p ∈ K such that all elements g of A
satisfy g(p) = 0, we can apply what we already proved to the algebra A+ R. To any
given f ∈ Cp(K) there exists a g ∈ A and a k ∈ R such that |f −g−k| < ε. We note
that k must satisfy |k| = |f(p)− g(p)−k| < ε, so that |f − g| 6 |f − g−k|+ |k| < 2ε.
This proves that A is dense in Cp(K).
Remark. In the complex case things are different. We can let A be the algebra of
functions which are continuous on the closed unit disk K in C and holomorphic in
its interior. Then A is closed and separates points in K but is different from C(K).
However, if we consider algebras A such that f ∈ A implies f ∈ A, then the results

7Marshall Harvey Stone, 1903 04 08–1989 01 09.
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hold as in the real case; we just apply what we have proved to the algebras ReA and
ImA.

6. Chebyshev’s theorems
Let us consider the space C(I), where I is a compact interval of the real line. It is
a Banach space of infinite dimension, and its subspace Pm

∣∣
I
, the restrictions to I of

polynomials of degree at most m, is a finite-dimensional subspace. The distance from
a function f to this subspace is also the greatest lower bound for the errors when
approximating the function f by polynomials of degree at most m:

(6.1) Em(f) = d(f,Pm) = inf
(
‖f − p‖; p ∈ Pm

)
.

(To simplify notation I shall sometimes write Pm where I should have written Pm
∣∣
I
.)

Since Pm is closed in C(I) (see proof below), this distance is zero if and only if f
itself is a polynomial of degree at most m. The Weierstrass approximation theorem
says that the error Em(f) tends to zero as m→∞, and we even have an idea of how
fast it can tend to zero—see Corollary 2.4 and Theorem 3.3.

In this section we shall first prove that the infimum in (6.1) is attained, and then
that it is attained at a unique point, although the norm we are using, the supremum
norm ‖ · ‖ = ‖ · ‖∞, is very far from being a Hilbert norm.

Theorem 6.1 (Borel [1905]). The infimum in (6.1) is attained for some polynomial
in Pm.

Proof. We shall use the theorem that a continuous function on a compact set attains
its infimum. So we first have to prove that the function ϕ(p) = ‖p − f‖ is a con-
tinuous function of p ∈ Pm. But what does that mean? We can use the topology
induced from C(I), or we can consider the topology from Rm+1, using the coeffi-
cients (a0, a1, ..., am) ∈ Rm+1 as coordinates for p(x) =

∑m
0 ajx

j . However, these
two topologies agree; it is a well-known theorem that a finite-dimensional space can
have only one Hausdorff (separated) vector space topology. In this particular case it
is easy to argue as follows. We first note that

‖p‖ = sup

∣∣∣∣∣
m∑
0

ajx
j

∣∣∣∣∣ 6 sup
06j6m

sup
x∈I
|x|j

m∑
0

|aj | = C‖a‖1,

so that the norm of p calculated in C(I) is majorized by a constant times the l1 norm
of the coefficient vector. Therefore the supremum norm ‖p‖ of p is a continuous
function on Rm+1. Its infimum on the unit sphere of Rm+1 is attained and therefore
cannot be zero. This gives an inequality in the other direction, and shows that the
two norms are actually equivalent. (It follows that Pm is closed in C(I): Pm is
complete for the norm in Rm+1 and therefore for the norm induced by C(I), hence
closed in C(I).)

It is easy to see that ϕ(p) = ‖p−f‖ is a continuous function of p for the topology
induced by C(I):

ϕ(p)− ϕ(q) = ‖p− f‖ − ‖q − f‖ 6 ‖p− q‖.
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If we interchange the roles of p and q we see that

|ϕ(p)− ϕ(q)| 6 ‖p− q‖, p, q ∈ Pm.

But from what we have remarked, this implies that ϕ(p) depends continuously on p
if we use its coefficients as coordinates.

Now Rm+1 is not compact, so we have to restrict the function ϕ to a compact
subset. Indeed ϕ is large outside some compact set. To see this we remark that

ϕ(p) = ‖p− f‖ > ‖p‖ − ‖f‖ = ‖p‖ − ϕ(0) > ϕ(0) if ‖p‖ > 2ϕ(0),

so that the infimum of the whole space Pm is the same as the infimum over the ball
K = {p; ‖p‖ 6 2ϕ(0)}. The set K is closed and bounded in Rm+1, and therefore ϕ
as a function of (a0, ..., am) attains its infimum there, and this infimum must be the
same as the global infimum. This proves the theorem.

Thus there exists for every m ∈ N a best approximant pm to a given continuous
function f ∈ C(I). It is easy to see that for m = 0 this polynomial, a constant, is
unique and equal to the mean values of sup f and inf f . The best approximant is
however unique for all m as was proved by Chebyshev. We shall first introduce his
criterion for a function to be a best approximant.

Theorem 6.2 (Chebyshev8 [1854]). Let a function f ∈ C(I) be given on I = [a, b].
Then a polynomial p ∈ Pm is a best approximant of f in the supremum norm if and
only if there exist at least m+2 points xj in [a, b] with a 6 x1 < x2 < · · · < xm+2 6 b,
such that the difference r = f − p takes alternating values at the xj and its absolute
value at each of the points is ‖r‖: (−1)jr(xj) is independent of j and |r(xj)| = ‖r‖
for all j.

The points xj are called deviation points.9

Example 6.3. Let a = −4π, b = 4π and f(x) = sinx. The zero polynomial satisfies
the criterion in the theorem for m = 6, so it follows that the zero polynomial is a
best approximant to f in P6.

Example 6.4. Let a = −1, b = 1 and take f(x) = xm, m ∈ N∗. Let the best
approximant (unique as we shall prove) in Pm−1 be pm−1. Then

xm − pm−1(x) = 2−m+1 cos(m arccosx) = 2−m+1Tm(x),

where the last equation defines a polynomial Tm, called the Chebyshev polynomial of
degree m. See Figure 4. The error is thus 2−m+1. The criterion is satisfied, as can
be easily verified.

Proof. Necessity. Assume that p is a best approximant of f . If f itself is a polynomial
of degree m, then r is zero and the criterion is trivially satisfied for p = f . Otherwise
we have ‖r‖ > 0 and we first note that we must have sup r = ‖r‖ and inf r = −‖r‖.

8Pafnutij L′vovič Čebyšev, 1821–1894.
9In Russian the set of these m+ 2 points is called čebyševskij al ′ternans.
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Figure 4. The Chebyshev polynomial T40.

Indeed, if for instance we had sup r = ‖r‖ − 2δ with δ > 0, then we could find a
better approximant q = p− δ:

‖f − q‖ = ‖f − p+ δ‖ = max(sup(r + δ),− inf(r + δ)) = ‖r‖ − δ < ‖r‖.

Let us call a point x such that r(x) = ‖r‖ a positive deviation point and similarly a
point x such that r(x) = −‖r‖ a negative deviation point. Thus we have proved that
there are at least one positive and at least one negative deviation point. For m = 0
the proof of the necessity is now complete. Otherwise we go on to find zeros zj of r
with the property that each of the intervals

[a, z1], [z1, z2], ..., [zk−1, zk], [zk, b]

contains only positive or only negative deviation points. To fix ideas we may assume
that the first deviation point is positive. Then we choose z1 as the largest zero such
that [a, z1] contains only positive deviation points; then we choose z2 as the largest
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zero such that [z1, z2] contains at least one negative deviation point but no positive
deviation point, provided there is such a zero; otherwise we stop and let k = 1. We
go on; for compactness reasons the procedure must stop and there is a last zero zk.
There are now k zeros z1, ..., zk of r and there are k + 1 deviation points xj with
x1 < z1 < · · · < zk < xk+1. If k 6 m we find that the polynomial p + q, where
q(x) = δ(x−z1) · · · (x−zk) for a small |δ| is a better approximant than p if we choose
the sign of δ so that q becomes positive in [a, z1[ . Since this is against the hypothesis,
we must have k > m + 1, and therefore there are at least k + 1 > m + 2 deviation
points, as claimed.

Sufficiency. Let p be a polynomial of degree at most m which satisfies the
criterion in the theorem, and assume that there is another polynomial q ∈ Pm which
gives a better approximation, i.e., ‖f − q‖ < ‖f − p‖, in particular

|f(xj)− q(xj)| 6 ‖f − q‖ < ‖f − p‖ = |f(xj)− p(xj)|

at every deviation point xj for p. This implies that the sign of

q(xj)− p(xj) = (f(xj)− p(xj))− (f(xj)− q(xj))

is the same as the sign of f(xj)− p(xj), so that p− q changes its sign at least m+ 1
times in [a, b]; it follows that p − q has at least m + 1 zeros. Since p − q is not
identically zero and of degree at most m, this is impossible. Therefore there are no
better approximants than p.

A variant of the last argument gives an even better result: the uniqueness of the
best approximant:

Theorem 6.5. For every f ∈ C(I) and every m ∈ N there exists a unique polynomial
pm in Pm such that

‖pm − f‖ = inf
(
‖p− f‖; p ∈ Pm

)
.

Proof. We argue as in the proof of the sufficiency in the last proof. Assume that
p and q are both best approximants. Then also their mean value 1

2p + 1
2q is a best

approximant, for

Em 6 ‖f − ( 1
2p+ 1

2q)‖ 6
1
2‖f − p‖+ 1

2‖f − q‖ = Em,

where Em = d(f,Pm) = ‖f − p‖. By Theorem 6.2 there must exist m+ 2 deviation
points xj for 1

2p+ 1
2q, which means that

Em = |f(xj)− ( 1
2p(xj) + 1

2q(xj)| 6
1
2 |f(xj)− p(xj)|+ 1

2 |f(xj)− q(xj)| 6 Em.

It follows from this not only that the xj are deviation points also for p and q:

|f(xj)− p(xj)| = |f(xj)− q(xj)| = Em,

but even that the differences f(xj)−p(xj) and f(xj)−q(xj) must have the same sign.
Hence the differences are equal: f(xj) − p(xj) = f(xj) − q(xj) for j = 1, ...,m + 2.
The polynomial p− q has m+ 2 zeros and is of degree at most m. Hence it vanishes
identically: p = q and the best approximant is unique.

There is a variant of Theorem 6.2 for periodic functions.
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Theorem 6.6. Let a continuous function f be defined on the real axis with period
2π. Then a trigonometric polynomial T of order m is a best approximant of f in
the supremum norm if and only if there exist at least 2m+ 2 points tj in an interval
[a, a+ 2π[ with a 6 t1 < t2 < · · · < t2m+2 < a+2π, such that the difference r = f−T
takes alternating values at the tj and its absolute value at each of the points is ‖r‖:
(−1)jr(tj) is independent of j and |r(tj)| = ‖r‖ for all j.
The proof of this theorem is like that of Theorem 6.2. The polynomial q in the proof
of the necessity has to be replaced by

q(t) = δ sin
t− z1

2
sin

t− z2

2
· · · sin t− zk

2
.

Definition 6.7. Let a metric space M be given. A set of m+ 1 functions ϕ0, ..., ϕm ∈
C(M) is called a Chebyshev system if M contains at least m+1 points and if a linear
combination

∑
cjϕj can have m+ 1 different zeros only if all coefficients cj vanish.

Examples. The system ϕj(z) = zj , j = 0, ....,m is a Chebyshev system on C,
as well as on every subset of C containing at least m + 1 points. The system
1, eiz, e−iz, ..., eimz, e−imz as well as the system 1, cos z, sin z, ..., cosmz, sinmz are
Chebyshev on the strip a 6 Re z < a+ 2π for any a ∈ R, and of course also on any
subset of the strip containing at least 2m + 1 points, in particular on the interval
[a, a+ 2π[. However, it is not Chebyshev on the interval [0, 2π], since sinmt vanishes
at 2m + 1 points t = kπ/m, k = 0, ..., 2m. (It is obvious that we should count in
R modulo 2π.) It follows that the system 1, cos t, cos 2t, ..., cosmt is Chebyshev on
[0, π[ and the system sin t, sin 2t, ..., sinmt is Chebyshev on ]0, π[.
Example. The functions ϕ0(x) = x2 − x, ϕ1(x) = x2 + x, ϕ2(x) = x2 + 1 form a
Chebyshev system on the real axis. Any two of these three functions do not form a
Chebyshev system.

There is a criterion for being Chebyshev in terms of determinants:

Exercise 6.8. Let a metric space M be given with at least m + 1 points. Then
ϕ0, ..., ϕm ∈ C(M) is a Chebyshev system if and only if the determinant det(ϕj(xk)),
j, k = 0, ...,m, is nonzero for every choice of different points x0, ..., xm in M .

Exercise 6.9. Let a Chebyshev system ϕ0, ..., ϕm on a metric space M be given and
let x0, ..., xm be different points. Then for any real numbers yj , j = 0, ...,m, there
exists a linear combination P of the ϕk such that P (xj) = yj .

The importance of the notion of Chebyshev system for unique best approximants
is made clear by the following theorem.

Theorem 6.10 (Haar10 [1918], Kolmogorov11 [1948]). Let K be a compact subset
of Rn containing at least m + 1 points and let ϕ0, ..., ϕm be m + 1 real-valued or
complex-valued continuous functions on K. Then there is a unique best approximant
in the supremum norm among the linear combinations of ϕ0, ..., ϕm for an arbitrary
continuous function on K if and only if ϕ0, ..., ϕm is a Chebyshev system.

10Alfred Haar, 1885–1933.
11Andrej Nikolaevič Kolmogorov, 1903–1987.
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I shall not give the proof here. Let me mention that it uses the exercises 6.8 and 6.9
and the arguments developed in the proof of Theorems 6.2 and 6.5.

Nice as this theory may be, it is of limited interest in several variables, for
Mairhuber [1956] has proved that if there exists a Chebyshev system with m > 1 on
a compact space K, then K is homeomorphic to a circle or a subset of a circle. So
approximation in several variables is different, and the reader is asked to ponder the
following exercise:

Exercise 6.11. Let K = [0, 1]2 ⊂ R2 and define ϕ0(x) = 1, ϕ1(x) = x1, ϕ2(x) = x2.
Then there exist functions in C(K) which do not admit a unique best approximant
among the linear combinations of ϕ0, ϕ1, ϕ2.

7. Approximation by polynomials and trigonometric polynomials
The purpose of this section is twofold: to introduce results on trigonometric polyno-
mials and approximation by them and, secondly, to prove best possible results—it
turns out that the Bernstein polynomials do not give the best possible approximation.

Let us review first some elementary results from the theory of Fourier series.
We shall work with periodic functions; it is convenient to let the period be 2π. Let
us denote by C2π(R) the space of continuous functions on the real line which are
periodic with period 2π. It is the same thing as the continuous functions on the
quotient space R/2π = R mod 2π, thus C2π(R) = C(R/2π).

A function f in C2π(R) has a Fourier series

(7.1) f(x) ∼ 1
2a0 +

∞∑
k=1

(ak cos kx+ bk sin kx),

where the Fourier coefficients ak, k ∈ N, and bk, k ∈ N∗, are defined by

(7.2) ak =
1
π

∫ 2π

0

f(x) cos kx dx, bk =
1
π

∫ 2π

0

f(x) sin kx dx.

We also know about two important kernels, the Dirichlet12 kernel Dm and the Fejér13

kernel Fm. To wit:

(7.3) Dm(x) = 1
2 + cosx+ cos 2x+ · · ·+ cosmx =

sin(m+ 1
2 )x

2 sin 1
2x

,

(7.4) Fm(x) =
1
m

m−1∑
0

Dk(x) =
1

2m

(
sin m

2 x

sin 1
2x

)2

.

The function Dm is not positive, and its total mass
∫ 2π

0
|Dm(x)|dx tends to infinity

like logm. The kernel Fm, on the other hand, is positive.

12Peter Gustav Lejeune Dirichlet, 1805–1859.
13Lipót Fejér, 1880–1959, my great-grand-advisor.
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We define the convolution product f ∗ g of two functions in C2π(R) as

(7.5) (f ∗ g)(x) =
1
π

∫ 2π

0

f(y)g(x− y) dy, x ∈ R.

With this normalization we have f ∗ 1 = a0 = twice the mean value of f . Also
(f ∗ cos)(0) = a1, and so on for the higher Fourier coefficients. More generally,

(f ∗ (t 7→ cos kt))(x) =
1
π

∫ 2π

0

f(y) cos k(x− y) dy

=
1
π

∫ 2π

0

f(y) cos kx cos ky dy +
1
π

∫ 2π

0

f(y) sin kx sin ky dy

= ak cos kx+ bk sin kx.

Summing over k = 0, ...,m, we see that f ∗Dm is nothing but the partial sum of the
Fourier series.

We also know from some course on Fourier analysis that the convolution product
f ∗Dm converges uniformly to f if f is of class C1, but that there exist continuous
functions such that this partial sum does not converge at a given point. On the other
hand, the convolution f ∗Fm always converges uniformly to f if f is continuous. This
yields the Weierstrass approximation theorem for trigonometric polynomials:

Theorem 7.1. Let f ∈ C2π(R) and let ε be a positive number. Then there exists a
trigonometric polynomial T such that |T (x)− f(x)| < ε for all x ∈ R.

Proof. The Fejér kernel does the job: f ∗Fm, m ∈ N∗, are trigonometric polynomials,
and they converge uniformly to f for every f ∈ C2π(R) as m→∞.

We shall now try to improve the results of Corollary 2.4, which gave us poly-
nomials converging to f with an error 5

4ω(1/
√
m).

We shall sum Fourier series in a more general way. Let us define

σm(x) = 1
2 +

∞∑
k=1

ρmk cos kx, x ∈ R, m ∈ N∗,

where the ρmk, m, k ∈ N∗, are real numbers and where for each fixed m, ρmk = 0
for large k. So the Dirichlet kernel is the special case when ρmk = 1 for k = 1, ...,m
and zero otherwise; the Fejér kernel the special case when ρmk = 1 − k/m for k =
1, ...,m− 1 and zero otherwise. The convolution

(7.6) (f ∗ σm)(x) =
1
π

∫ 2π

0

f(y)σm(x− y)dy = 1
2a0 +

∞∑
k=1

ρmk(ak cos kx+ bk sin kx)

is well defined for any integrable periodic function, in particular for any function in
C2π(R), and is a trigonometric polynomial of order at most equal to the largest k
such that ρmk is nonzero.
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We shall define a kernel, known as the Jackson14 kernel as follows:

Jm(x) =
6m

2m2 + 1
Fm(t)2 =

6m
2m2 + 1

 1
2 +

m−1∑
j=1

(1− j/m) cos jx

2

(7.7)

= 1
2j0 +

2m−2∑
k=1

jk cos kx.

It is clear that Jm is a positive trigonometric polynomial of order 2m− 2. It is also
obvious that cmF 2

m should be a good kernel in the sense of Theorem 4.1 (adapted to
the case of periodic functions) for some choice of cm > 0. So the only thing we need
to check is that cm = 6m/(2m2 + 1) gives the right mean value. This is easy:

j0 =
1
π

∫ 2π

0

Jm(t)dt =
6m

2m2 + 1

[
1
2 +

m−1∑
1

(1− k/m)2

]

=
6m

2m2 + 1

(
1
2 +

(m− 1)m(2m− 1)
6m2

)
= 1,

where the second equality follows from the orthogonality of the cosine functions on
[0, 2π].

Exercise 7.2. Calculate j1 = ρ2m−2,1 for the Jackson kernel.

Lemma 7.3. The first moment of the Jackson kernel can be estimated as follows:

1
π

∫ π

0

tJm(t)dt 6
3π
4m

, m ∈ N∗.

Proof. The integral in question is equal to

3
2πm(2m2 + 1)

[∫ π/m

0

+
∫ π

π/m

]
t

(
sin mt

2

sin t
2

)4

dt

6
3

4πm3

[∫ π/m

0

tm4dt+
∫ π

π/m

t
π4

t4
dt

]
6

3π
4m

.

Exercise 7.4. Prove that the first moment of the Fejér kernel satisfies

c
logm
m

6
∫ π

0

tFm(t)dt 6 C
logm
m

, m > 2,

for some positive constants c, C.

14Dunham Jackson, 1888–1946.
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Let us now estimate how far the trigonometric polynomial f ∗ Jν is from f in
supremum norm. We note that

f(x)− (f ∗ Jν)(x) =
1
π

∫ 2π

0

[
f(x)Jν(t)− f(x− t)Jν(t)

]
dt,

so that

|(f − f ∗ Jν)(x)| 6 1
π

∫ π

0

[
|f(x+ t)− f(x)|+ |f(x− t)− f(x)|

]
Jν(t)dt(7.8)

6
2
π

∫ π

0

ω(t)Jν(t)dt 6 ω(1/ν)
2
π

∫ π

0

(νt+ 1)Jν(t)dt

6 ω(1/ν)
(

2ν
3π
4ν

+ 1
)

= ω(1/ν)
(

3π
2

+ 1
)
6 6ω(1/ν).

Now f ∗Jν is of order 2ν− 2. Given any m, we define ν = m/2 + 1 in case m is even,
and ν = (m− 1)/2 + 1 in case m is odd. Then f ∗ Jν is of order at most 2ν − 2 6 m
and ω(1/ν) 6 2ω

(
1

m+1

)
in all cases, so that

‖f − f ∗ Jν‖ 6 6ω(1/ν) 6 12ω
(

1
m+1

)
.

Theorem 7.5. (P. P. Korovkin [1959]). Suppose that we have real numbers ρmk,
k,m ∈ N∗, satisfying

(7.9) σm(x) = 1
2 +

m∑
k=1

ρmk cos kx > 0, x ∈ R,

and

(7.10) ρm1 → 1 as m→∞.

Then the convolution f ∗ σm converges uniformly to f for any f ∈ C2π(R).

This theorem is a consequence of the following more precise result:

Theorem 7.6. (P. P. Korovkin [1959]). If the ρmk are chosen so that σm > 0, then

(7.11) ‖f ∗ σm − f‖∞ 6 ω(δ)
(

1 +
π√
2δ

√
1− ρm1

)
, δ > 0, m ∈ N∗,

where ω denotes the modulus of continuity of f .

The remarkable thing here is that conditions (7.10) and (7.11) involve only ρm1,
whereas the ρmk for k > 2 do not appear—they play a role of course in the positivity
condition.
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Lemma 7.7. The first moment of the kernel σm can be estimated as follows:

1
π

∫ π

0

tσm(t)dt 6
π

2
√

2

√
1− ρm1, m ∈ N∗.

Proof. We use first the estimate t/π 6 sin(t/2), and then the Hölder inequality:

1
π

∫ π

0

tσm(t)dt 6
∫ π

0

sin
t

2
σm(t)dt =

∫ π

0

sin
t

2

√
σm(t)

√
σm(t)dt

6

√∫ π

0

sin2 t

2
σm(t)dt

√∫ π

0

σm(t)dt.

Here the expression under the first radical sign is∫ π

0

( 1
2 −

1
2 cos t)σm(t)dt =

π

4
− π

4
ρm1,

and the expression under the second radical sign is π/2. This proves the lemma.
Proof of Theorem 7.6. The proof is just like the one for the Jackson kernel: we first
use the inequality ω(t) = ω((t/δ)δ) 6 (1 + t/δ)ω(δ), where δ is independent of m,
and then Lemma 7.7 to estimate the first moment:

|f(x)− (f ∗ σm)(x)| 6 2
π

∫ π

0

ω(t)σm(t)dt 6 ω(δ)
2
π

∫ π

0

(1 + t/δ)σm(t)dt

= ω(δ)
(

2
π

∫ π

0

σm(t)dt+
2
πδ

∫ π

0

tσm(t)dt
)
6 ω(δ)

(
1 + 2

π

2
√

2δ

√
1− ρm1

)
.

Corollary 7.8. For the Fejér kernel we have

‖f ∗ Fm − f‖∞ 6
(

1 +
π√
2

)
ω(1/

√
m), m ∈ N∗.

Proof. We know that the Fejér kernel is positive and that it satisfies ρm1 = 1− 1/m.
We choose δ = 1/

√
m in Theorem 7.6 to conclude.

Theorem 7.9 (Jackson’s first theorem). For any f ∈ C2π(R) and every m ∈ N∗

there exists a trigonometric polynomial T of order at most m such that

‖f − T‖∞ 6 6ω
(

1
m+1

)
.

Proof. Following Korovkin we shall define polynomials σm > 0 with

ρm1 = cos
π

m+ 2
> 1− π2

2(m+ 2)2
,



Approximation by polynomials 29

so that √
1− ρm1 6

π√
2(m+ 2)

,

which is a better estimate than that for the Fejér kernel. With this estimate we may
choose δ = 1/(m+ 1) in (7.11) and obtain

ω
(

1
m+1

)(
1 +

π(m+ 1)√
2

√
1− ρm1

)
6 ω

(
1

m+1

)(
1 +

π(m+ 1)√
2

π√
2(m+ 2)

)
6 ω

(
1

m+1

)(
1 +

π2

2

)
6 6ω

(
1

m+1

)
,

the estimate in Theorem 7.9. (The Jackson kernel has ρ2m−2,1 = 1 − 3
2m2 , thus√

1− ρ2m−2,1 =
√

3/2

m , almost as good as for the Korovkin kernel.)
So we shall find a positive kernel with this wonderful property. Define

σm(t) = Am|a1 + a2z + a3z
2 + · · ·+ am+1z

m|2,

where

z = cos t+ i sin t, Am =
1

2(a2
1 + · · ·+ a2

m+1)
, and ak = sin

kπ

m+ 2
.

We find that
(7.12)

ρm1 =
a1a2 + a2a3 + · · ·+ amam+1

a2
1 + a2

2 + · · ·+ a2
m+1

=

∑m
1 sin kπ

m+2 sin k+1
m+2

sin2 π
m+2 + sin2 2π

m+2 + · · ·+ sin2 (m+1)π
m+2

.

This expression can be calculated, using the formula

cos
π

m+ 2
sin2 kπ

m+ 2
= 1

2 sin
(k − 1)π
m+ 2

sin
kπ

m+ 2
+ 1

2 sin
kπ

m+ 2
sin

(k + 1)π
m+ 2

.

Summing over k = 1, ...,m+ 1 we get a left-hand side equal to

cos
π

m+ 2

m+1∑
1

sin2 kπ

m+ 2
,

and a right-hand side equal to the numerator in the last expression in (7.12). This
proves that ρm1 = cos π

m+2 .

Exercise 7.10. We have seen that for the Jackson kernel and the Korovkin kernel
we have

√
1− ρm1 = O(1/m), m → ∞, which yields a good approximation. Show

that we cannot have
√

1− ρm1 = o(1/m), m→∞, as long as σm > 0.

Exercise 7.11. Prove that for the Jackson kernel we have

lim
m→∞

m2(Jm ∗ f − f) =
3
2
f ′′
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for functions of class C2. Cf. Theorem 3.3.

It is known that one has

(7.13) Em(f) 6
λ

2(m+ 1)
, m ∈ N, f ∈ C([0, 1]),

for functions with Lipschitz constant λ on [0, 1]. It is easy to see that this estimate
cannot be improved. To do so we can use a simple sawtooth function: define f to
take the values (−1)k at the points x = k/(m+ 1), k = 0, ...,m+ 1, and to be affine
in between these points. Then its Lipschitz constant is λ = 2(m + 1), and by the
Chebyshev criterion (Theorem 6.2), the best approximant in Pm is zero. Therefore
Em(f) = ‖f‖ = 1. We see that in any estimate Em(f) 6 Cλ/(m+ 1) we must have
C > 1

2 . For the interval [−1, 1] the estimate is Em(f) 6 λ/(m+ 1) and it is also best
possible.

Similarly for the periodic case it is known that

(7.14) Em(f) 6
πλ

2(m+ 1)
m ∈ N, f ∈ C2π(R),

if λ is the Lipschitz constant of f . Here we define a function which takes the value
±1 at the points kπ/(m + 1), k = 0, ..., 2m + 2, and is affine in between. There are
2m + 2 deviation points in a period [0, 2π[; note that 0 = 2π in the quotient space.
This function shows that in any estimate Em(f) 6 C/(m+1) we must have C > π/2.

For general continuous functions the best estimate is

(7.15) Em(f) 6 ω(π/(m+ 1)) m ∈ N,

a result due to Kornejčuk [1962]. It can be shown using piecewise affine functions
that this estimate is also best possible among those with Em(f) 6 Cω(1/(m + 1)).
However these piecewise affine functions are a little more complicated to describe
than those we used in the Lipschitz case.

A more careful analysis yields an improvement of Theorem 7.9:

Theorem 7.12. There exists a constant C such that

Em(f) 6 Cω2

(
1

m+1

)
, m ∈ N, f ∈ C2π(R),

where
ω2(δ) = sup

x,t∈R

[
|f(x+ 2t)− 2f(x+ t) + f(x)|; |t| 6 δ

]
is the second modulus of continuity.

Proof. We estimate like in (7.8) but a little more carefully, using the fact that Jν is
even:

f(x)− (f ∗ Jν)(x) =
1
π

∫ 2π

0

[
f(x)Jν(t)− f(x− t)Jν(t)

]
dt

=
1
π

∫ π

0

(2f(x)− f(x− t)− f(x+ t))Jν(t)dt,
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so that
|(f − f ∗ Jν)(x)| 6 2

π

∫ π

0

ω2(t)Jν(t)dt.

We then use the fact that ω2(t) = ω2((m+1)t·(1/(m+1))) 6 (1+(m+1)t)2ω2

(
1

m+1

)
to deduce that

‖f − f ∗ Jν‖ 6 ω2

(
1

m+1

) ∫ π

0

(1 + (m+ 1)t)2Jν(t)dt,

and the last integral is bounded; the second moment
∫ π

0
t2Jν(t)dt can be estimated as

in Lemma 7.7 and one can prove that it does not exceed a constant times (m+ 1)−2.
This proves the theorem.

There are higher moduli of continuity. We first define the differences

∆1
tf(x) = f(x+ t)− f(x),

∆p+1
t f(x) = ∆1

t∆
p
t f(x), p ∈ N∗.

Then the pth modulus of continuity is

ωp(f ; δ) = sup
x,t∈R
|t|6δ

|∆p
t f(x)|.

One can prove a generalization of Theorem 7.12:

(7.16) Em(f) 6 Cpωp
(
f ; 1

m+1

)
.

The sequence of errors Em(f) tends to zero if f is continuous as we know. But
how slowly? In fact arbitrarily slowly as the next theorem shows.

Theorem 7.13. Given any decreasing sequence (εm)m∈N of positive numbers tending
to zero there exists a function f ∈ C([−1, 1]) such that Em(f) > εm, m ∈ N.

Proof. Put αk = εk−1 − εk > 0 and define f =
∑∞

0 αkT3k , where Tm denotes
the Chebyshev polynomial of degree m. Since ‖Tm‖ 6 1 and

∑
αk < +∞, f is

continuous. We claim that P =
∑m

0 αkT3k is the best approximant of degree at most
3m. Consider the error function r = f − P =

∑∞
m+1 αkT3k . If we can show that it

has at least 3m + 2 deviation points it will follow by Chebyshev’s criterion that P
is a best approximant. Put xj = cos(jπ/3m+1), j = 0, ..., 3m+1. For k > m + 1 we
have T3k(xj) = cos(3kjπ/3m+1) = (−1)j (here it is important that 3kj/3m+1 has the
same parity as j). Thus T3k(xj) does not depend on k so

r(xj) = (−1)j
∞∑

k=m+1

αk = (−1)jεm,

and we have

εm = |r(xj)| 6 ‖r‖ 6
∞∑
m+1

αk = εm,
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showing that the xj are in fact deviation points, and that there are at least 3m+1+1 >
3m+2 of them. So P is indeed a best approximant and Em(f) > E3m(f) = ‖r‖ = εm.

8. The nonexistence of a continuous linear projection
Let us denote by πm(f) the polynomial in Pm closest to f . In view of Theorem
6.5 there is thus a well-defined operator πm:C(I) → Pm. We may inquire as to its
properties. Obviously it is idempotent, πm ◦ πm = πm; it is a projection onto Pm.
Moreover, it is positively homogeneous, i.e., it satisfies πm(λf) = λπm(f) for every
positive λ. It is easy to see by examples that πm(f + g) 6= πm(f) + πm(g) in general.
So πm is certainly nonlinear. The Weierstrass theorem says that πm(f)→ f for the
norm in C(I) as m→∞. The operator is also continuous, as we shall prove now:

Theorem 8.1. Let πm(f) denote the polynomial of degree at most m ∈ N which
is closest to f ∈ C(I) in the supremum norm. Then πm is a continuous operator;
more precisely, for every m ∈ N and every f ∈ C(I) there exists a positive number
C = Cm,f such that for all g ∈ C(I),

‖πm(g)− πm(f)‖ 6 C‖g − f‖.

Lemma 8.2. For every m ∈ N and every f ∈ C(I) there exists a positive number
γ = γm,f such that for every polynomial Q ∈ Pm we have

‖Q− f‖ > ‖πm(f)− f‖+ γ‖Q− πm(f)‖.

Thus the function Q 7→ ‖Q − f‖ on Pm, which attains its infimum at Q = πm(f),
has a sharp minimum at that point: the value increases fast as we move away from
πm(f).
Proof. If f ∈ Pm, then πm(f) = f and the inequality holds with γ = 1. Now
assume that ‖πm(f) − f‖ > 0. According to Theorem 6.2 we have m + 2 deviation
points xj and signs θj = ±1 such that, for every j = 1, ...,m + 2, ‖πm(f) − f‖ =
θj(πm(f) − f)(xj). For any Q ∈ Pm r {0} we have maxj θjQ(xj) > 0, for if we
assume that the maximum is nonpositive we would get θjQ(xj) 6 0 for all j, hence,
since θj+1 = −θj , that Q has at least m + 1 zeros counting multiplicities. In fact,
we can prove inductively that Q must have k − 1 zeros in [x1, xk]. First, assume for
definiteness that Q(x1) 6 0, Q(x2) > 0 and so on. If Q has a zero in [x1, x2[, we
are done for k = 2. If not, then x2 must be a zero. If Q has a zero in ]x2, x3[ we
have two different zeros in [x1, x3[ ; if not, Q is either positive or negative throughout
]x2, x3[. In the first case Q(x3) = 0; in the second, x2 must be a double zero, so that,
in either case, there are two zeros in [x1, x3] counting multiplicities. It is now clear
how to go on. Thus we have proved by contradiction that max θjQ(xj) > 0. In view
of the compactness we even have

(8.1) inf
‖Q‖=1

max
j
θjQ(xj) = γ > 0.

The choice of points xj implies that

‖Q− f‖ > θj(Q(xj)− f(xj)) = θj(πm(f)− f)(xj) + θj(Q− πm(f))(xj)
= ‖πm(f)− f‖+ θj(Q− πm(f))(xj).
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We now take the maximum over all j:

‖Q− f‖ > ‖πm(f)− f‖+ max
j
θj(Q− πm(f))(xj) > ‖πm(f)− f‖+ γ‖Q− πm(f)‖,

applying (8.1) in the last step to the normalized polynomial (Q−πm(f))/‖Q−πm(f)‖.
Proof of Theorem 8.1. Choose γ according to Lemma 8.2 so that ‖Q − f‖ >
‖πm(f) − f‖ + γ‖Q − πm(f)‖ for all Q ∈ Pm. In particular we may apply this
inequality to Q = πm(g) and obtain

‖πm(f)− f‖+ γ‖πm(g)− πm(f)‖ 6 ‖πm(g)− f‖ 6 ‖πm(g)− g‖+ ‖g − f‖
6 ‖πm(f)− g‖+ ‖g − f‖ 6 ‖πm(f)− f‖+ ‖f − g‖+ ‖g − f‖
= ‖πm(f)− f‖+ 2‖g − f‖.

Subtracting ‖πm(f) − f‖ from the first and the last expression above we see that
γ‖πm(g)− πm(f)‖ 6 2‖g − f‖, proving the theorem with the constant C = 2/γ.

For trigonometric polynomials we have a similar projection τm:C2π(R) → Tm.
Theorem 8.1 has a counterpart for τm and even for general Chebyshev systems, since
the characterization of best approximant, which was used in Lemma 8.2, holds also
in these cases.

We now ask whether there exists an operator like πm or τm which in addition is
linear. The answer is in the negative as is shown by the following result.

Theorem 8.3 (Kharshiladze and Lozinskij15; Lozinskij [1948]). Let there be given,
for each m ∈ N, a continuous linear projection Lm of C2π(R) onto the space of
trigonometric polynomials of order at most m. Then there exists an f ∈ C2π(R) for
which {‖Lm(f)‖;m ∈ N} is unbounded.
A key step in the proof is an estimate from below of the norm of any projection.

Proposition 8.4. Let L be a continuous linear projection of C2π(R) onto the sub-
space Tm of trigonometric polynomials of order at most m. Then ‖L‖ > ‖Sm‖, where
Sm denotes the operator assigning to f its partial Fourier series up to order m, i.e.,
Sm(f) = f ∗Dm as defined by (7.3) and (7.5).

Proof. Define the translation operator Ta by

Ta(f)(x) = f(x− a), x ∈ R, a ∈ R.

Then Ta ◦ L ◦ T−a is also a projection. We let L̃ be the mean value of Ta ◦ L ◦ T−a
over all translations:

L̃(f)(x) =
1

2π

∫ 2π

0

(Ta ◦ L ◦ T−a)(f)(x)da, x ∈ R.

We claim that L̃ = Sm. To prove this it is enough to prove that L̃(fk) = Sm(fk),
where fk(x) = eikx, k ∈ Z, for the linear combinations of these functions are dense in

15Sergej Mihailovič Lozinskij, born 1914.
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C2π(R). Now if |k| 6 m, Smfk = fk and T−afk ∈ Tm, so that L◦T−a(fk) = T−a(fk)
and (Ta ◦ L ◦ T−a)(fk) = fk. Consequently the mean value L̃(fk) is also equal to
fk. On the other hand, if |k| > m, then Sm(fk) = 0. Now T−a(fk) = eikafk so that
(Ta ◦ L ◦ T−a)(fk) = eikaL(fk)(x − a). But L(fk) ∈ Tm, so that, for any fixed x,
a 7→ L(fk)(x− a) is orthogonal to a 7→ eika for |k| > m. Thus also L̃(fk) = 0.

Now that we know that L̃ = Sm we can easily finish the proof of the proposition:

‖L̃(f)‖ = sup
x

∣∣∣∣ 1
2π

∫ 2π

0

(Ta ◦ L ◦ T−a)(f)(x)dx
∣∣∣∣ 6 ‖Ta ◦ L ◦ T−a‖‖f‖ 6 ‖L‖‖f‖,

thus ‖Sm(f)‖ = ‖L̃(f)‖ 6 ‖L‖‖f‖. Taking the supremum over all f we get ‖Sm‖ 6
‖L‖ as claimed.
Proof of Theorem 8.3. We have ‖Lm‖ > ‖Sm‖, and the latter norm is

‖Sm‖ = sup
‖f‖61

∣∣∣∣ 1π
∫ 2π

0

Dm(x)f(x)dx
∣∣∣∣ =

1
π

∫ 2π

0

|Dm(x)|dx.

It is not difficult to prove that the latter quantity tends to infinity (in fact like a con-
stant times logm). So ‖Lm‖ tends to infinity. We now apply the Banach–Steinhaus
theorem, also known as the uniform boundedness principle: if {‖Lm(f);m ∈ N‖} is
bounded for all f , then also {‖Lm‖;m ∈ N} is bounded.

One could also consider the functionals f 7→ Lm(f)(0) to get a function f such
that the set {Lm(f)(0);m ∈ N} is unbounded.

The Kharshiladze–Lozinskij theorem was formulated here for periodic functions
but has counterparts for C(I).

9. Approximation of functions of higher regularity
In this section we shall consider functions of higher regularity, meaning functions
that are k times continuously differentiable for some k ∈ N. Let us write Ck2π(R) for
the functions in Ck(R) which are periodic with period 2π.

The smallest error when approximating by trigonometric polynomials of order
at most m will be denoted by Em(f), thus

(9.1) Em(f) = inf(‖P − f‖∞;P ∈ Tm).

Theorem 9.1. There exist a constant C0 such that for all k ∈ N, all f ∈ Ck2π(R)
and all m ∈ N,

Em(f) 6
(

C0

m+ 1

)k
‖f (k)‖.

Proof. In the proof we shall need to consider another error,

(9.2) em(f) = inf(‖P − f‖∞;P ∈ Tm without constant term),

i.e., when we approximate by trigonometric polynomials with mean value zero. Ob-
viously Em(f) 6 em(f). We know from Jackson’s theorem that Em(f) 6 Cm‖f ′‖ for
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every f ∈ C1
2π(R), where Cm = C0/(m+ 1). (We proved that one can take C0 = 6;

the best result is actually C0 = π/2; cf. (7.13).) It is an important observation that
the proof actually gives also that

(9.3) em(f) 6 Cm‖f ′‖

with the same constant if f has mean value zero. This follows from the fact that the
approximation is given by a convolution that reproduces the mean value, so that the
approximant has mean value zero if the function has mean value zero, a fact that can
be read off from (7.6); the mean value of f ∗ σm is a0/2, the same as for f .

Given f ∈ C1
2π(R) without constant term we choose p ∈ Tm as the trigonometric

polynomial which is the best approximant to f ′ with mean value zero, thus ‖f ′−p‖ =
em(f ′). Let P ∈ Tm be the primitive function to p with mean value zero. Then, using
(9.3),

em(f) = em(f − P ) 6 Cm‖f ′ − p‖ = Cmem(f ′).

Thus em(f) 6 Cmem(f ′) if f has mean value zero. Repeated application gives
em(f) 6 Ckmem(f (k)) if f is of class Ck, for f ′ and all higher derivatives have mean
value zero. Thus, given any f ∈ Ck2π(R), we conclude that

Em(f) = Em(f − a0/2) 6 em(f − a0/2) 6 Ckmem(f (k)) 6 Ckm‖f (k)‖.

This completes the proof.

Theorem 9.2. For every f ∈ C1
2π(R) we have

Em(f) 6
C

m+ 1
ω
(
f ′, 1

m+1

)
, m ∈ N.

Proof. From Theorem 7.12 we know that Em(f) 6 Cω2

(
1

m+1

)
. It is easy to see that

ω2(f ; δ) 6 δω(f ′; δ). Combining the two inequalities we get the desired conclusion.

Using (7.16) we can prove like in Theorem 9.2 that

Em(f) 6
Cp

(m+ 1)p
ω
(
f (p); 1

m+1

)
for every f ∈ Cp2π(R), p ∈ N.

10. Inverse theorems
The theorems we have considered so far are traditionally called direct theorems
(smoothness implies good approximation); we now come to the inverse theorems,
i.e., those where we assume that we have a certain degree of approximation and con-
clude that the function possesses a certain smoothness. We shall consider here the
case when the error Em(f) is O(m−α) for some real α.

First a famous inequality:

Theorem 10.1 (Bernstein’s inequality). Any trigonometric polynomial T of order
m satisfies ‖T ′‖∞ 6 m‖T‖∞.
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Lemma 10.2. Let P be a polynomial of degree m− 1. Then

(10.1) sup
x∈[−1,1]

|P (x)| 6 m sup
x∈[−1,1]

|
√

1− x2P (x)|.

Proof. Let xj = cos((2j − 1)π/2m), j = 1, ...,m, be the zeros of the Chebyshev
polynomial Tm. Let M denote the right-hand side of (10.1). If x happens to belong
to the interval [xm, x1], it is easy to prove that |P (x)| 6M :

√
1− x2 >

√
1− x2

1 =
√

1− cos2
π

2m
= sin

π

2m
>

1
m
,

so that |P (x)| 6 m
√

1− x2|P (x)| for these values of x.
The case when x is close to±1 remains to be studied. The Lagrange interpolation

theorem with nodes xj takes the form

P (x) =
m∑
1

P (xj)
Tm(x)

T ′m(xj)(x− xj)
=

1
m

m∑
1

P (xj)
Tm(x)(−1)j−1 sin tj

x− xj
,

where tj = (2j−1)
m

π
2 , for it is easy to prove that T ′m(xj) = (−1)j−1m/ sin tj . Say for

definiteness that x1 < x 6 1. Then since |P (xj) sin tj | 6M/m and all the differences
x− xj are positive, we obtain

|P (x)| 6 M

m2

m∑
1

∣∣∣∣Tm(x)
x− xj

∣∣∣∣ =
M

m2

∣∣∣∣∣
m∑
1

Tm(x)
x− xj

∣∣∣∣∣ .
The last sum is just the derivative of Tm (think of the logarithmic derivative of Tm)
and we note that T ′m(cos t) = m sinmt/ sin t is bounded by m2 in absolute value.
Hence |P (x)| 6M also for these values of x.

Lemma 10.3. Let S be an odd trigonometric polynomial of order m. Then

‖S/ sin ‖ 6 m‖S‖.

Proof. Using the well-known formula

sin(k + 1)t
sin t

= cos kt+
sin kt
sin t

cos t

we can prove by induction that sin kt/ sin t is a polynomial in cos t of order k − 1.
Hence S(t) = P (cos t) sin t for some algebraic polynomial P of degree m−1. We now
apply Lemma 10.2 to P to conclude.
Proof of Theorem 10.1. Consider the function f(s, t) = 1

2 (T (s + t) − T (s − t)).
For fixed s, the trigonometric polynomial t 7→ f(s, t) is odd and of order at most
m. Clearly |f(s, t)| 6 ‖T‖, so by Lemma 10.3, |f(s, t)/ sin t| 6 m‖T‖. Hence also
T ′(s) = limt→0(f(s, t)/ sin t)(sin t/t) is bounded by m‖T‖ in modulus.
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Theorem 10.4 (Markov’s16 inequality). Every polynomial P of degree m satisfies
‖P ′‖∞ 6 m2‖P‖∞, where the norms are supremum norms on [−1, 1].

Proof. The function T (t) = P (cos t) is a trigonometric polynomial of order m, so
Bernstein’s inequality implies |T ′(t)| = |P ′(cos t) sin t| 6 m‖P‖, which can be written
|P ′(x)

√
1− x2| 6 m‖P‖ for x ∈ [−1, 1]. We now apply Lemma 10.2 to P ′ to conclude:

‖P ′‖ 6 m2‖P‖.
For any α with 0 < α 6 1, let us define a class Lipα(R) of functions, consisting

of those whose modulus of continuity satisfies ω(δ) = O(δα), δ → 0. The elements of
Lip1(R) are called Lipschitz functions.

Theorem 10.5. Let f ∈ C2π(R) and fix 0 < α < 1. Then Em(f) = O(m−α) as
m→∞ if and only if f ∈ Lipα(R).

Proof. That functions in Lipα can be approximated as indicated is Jackson’s first
theorem. Assume conversely that we know that Em(f) = O(m−α). Thus there exists
trigonometric polynomials Tm of order at most m such that ‖f − Tm‖ 6 Cm−α,
m > 1, for some constant C independent of m. The convergence of the sequence
(Tm) to f is in general too slow for a telescoping series to be useful. We shall take a
subsequence (T2j ), which converges faster. By the triangle inequality we have

|f(x+ t)− f(x)| 6 |f(x+ t)− T2k(x+ t)|+ |T2k(x+ t)− T2k(x)|+ |T2k(x)− f(x)|.
Here the first and third terms on the right do not exceed C2−αk, and the second term
can be estimated by |t|‖T ′2k‖. To estimate this derivative we shall use the telescoping
series

T ′2k = T ′1 +
k∑
1

(T ′2j − T
′
2j−1),

together with the estimate

(10.2) ‖T2j − T2j−1‖ 6 ‖T2j − f‖+ ‖f − T2j−1‖ 6 C(2−αj + 2−α(j−1)) = C12−αj .

The last inequality implies in view of Bernstein’s inequality that

‖T ′2j − T
′
2j−1‖ 6 C12j2−αj ,

so that

‖T ′2k‖ 6 C2 +
k∑
1

C12j(1−α) 6 C2 + C32k(1−α),

where C2 is a bound for T ′1. Putting things together we have

|f(x+ t)− f(x)| 6 2C2−αk + |t|
(
C2 + C32k(1−α)

)
,

where k is still to be chosen. Given t with |t| 6 1 we pick k such that 2k 6 1/|t| < 2k+1

and see that |f(x+ t)− f(x)| 6 C4|t|α for a new constant C4, |t| 6 1. For larger |t|
this is true at the expense of a larger constant. This completes the proof.

Exercise 10.6. Prove that if f is a periodic function with Em(f) = O(1/m), then
its modulus of continuity satisfies ω(δ) 6 Cδ log δ, 0 < δ < 1

2 , for some constant C.

It is to be noted that the proof of Theorem 10.5 breaks down for α = 1. Indeed
the result is not true in that case. Instead, we have the following theorem.
16Andrej Andreevič Markov, 1856–1922.
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Theorem 10.7 (Zygmund’s17 Theorem). Let f ∈ C2π(R) be given. Then Em(f) =
O(1/m), m→∞, if and only if ω2(δ) = O(δ), δ → 0.

Exercise 10.8. Construct a function such that ω2(δ) = O(δ), δ → 0, but which is
not Lipschitz.

Proof of Theorem 10.7. Theorem 7.12 proves one direction. To prove the other
direction, assume that Em(f) = O(1/m), m→∞, and write f = limT2j , where T2j

is a trigonometric polynomial of order at most 2j such that ‖f −T2j‖ 6 C2−j . Thus
we can use a telescoping series

(10.3) f = lim
k→∞

T2k = T1 +
∞∑
1

(T2j − T2j−1) =
∞∑
0

Vj ,

where V0 = T1 and Vj = T2j − T2j−1 , j > 1. The second difference of f can then be
estimated by ∣∣∆2

tf
∣∣ 6 m−1∑

0

∣∣∆2
tVj
∣∣+ 4

∞∑
m

‖Vj‖,

where we still can choose m. From (10.2) we see that ‖Vj‖ 6 C12−j , j > 1. The
second difference is easy to estimate by the second derivative, so we can conclude,
using Bernstein’s inequality, that for |t| 6 δ,

∣∣∆2
tf
∣∣ 6 m−1∑

0

δ2‖V ′′j ‖+ C22−m 6
m−1∑

0

δ222j‖Vj‖+ C22−m 6 C1δ
22m + C22−m

when |t| 6 δ. We now choose m so that 2m 6 δ−1 < 2m+1 and get the desired result.

Theorem 10.9 (Bernstein). Let f ∈ C2π(R) and fix k ∈ N and α ∈ [0, 1[. Then

Em(f) 6 Cm−k−α, m ∈ N,

if and only if f ∈ Ck(R) and f (k) ∈ Lipα(R).

Proof. We shall prove only one direction: we assume that f admits the approximation
Em(f) 6 Cm−k−α and shall prove that f (k) exists and is in Lipα(R). We have a
representation f =

∑∞
0 Vj as in (10.3) where now

‖Vj‖ 6 ‖T2j − f‖+ ‖f − T2j−1‖ 6 C(2j)−k−α + C(2j−1)−k−α = C12−j(k+α).

From Bernstein’s inequality we deduce that

‖V (k)
j ‖ 6 (2j)k‖Vj‖ 6 C12jk2−jk−jα = C12−jα.

Hence
∑
V

(k)
j converges uniformly to some continuous function g, and since termwise

integration is allowed we see that f (k) exists and is equal to g. Now

E2j (f (k)) 6
∥∥∥f (k) −

∑j
0 V

(k)
i

∥∥∥ ,
17Antoni Zygmund, 1900–1992.
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for
∑j

0 V
(k)
i is a trigonometric polynomial of order at most 2j . However,∥∥∥f (k) −

∑j
0 V

(k)
i

∥∥∥ =
∥∥∥∑∞j+1 V

(k)
i

∥∥∥ 6 C22−jα,

which shows that E2j (f (k)) 6 C22−jα. For any m ∈ N we now choose j such that
2j 6 m < 2j+1, which yields the estimate

Em(f (k)) 6 E2j (f (k)) 6 C22−jα 6 2αC2m
−α.

Now Theorem 10.5 implies that f (k) ∈ Lipα(R).
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