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1. Introduction

D igital geometry is, simply put, the geometry of the computer screen. Mathematical
morphology is, in equally simple words, the theory and practice of transformations

of sets and functions with an emphasis on their shape. In many cases these transfor-
mations have been known for a long time, but they have come into focus for the same
reason as digital geometry: the operations can actually be performed on a computer.

1.1. Why digital geometry?

There is a universal answer (Why not? ) to all such questions, but I shall nevertheless
try to give some motivation for this relatively new field and why I think it is worthwhile
as a mathematical theory.

Points, straight lines and planes have been studied for well over two millenia, and
certain curves, like ellipses and hyperbolas, have been an object for our curiosity for
almost as long. Other, less well-known curves, like lemniscates and cardioids, have
been studied for several centuries. In the study of these curves we rely very much on
the fact that we can draw them on paper. But with the advent of computers we have
acquired a new method of drawing pictures. On the computer screen we see images,
and the images consist of little picture elements, pixels, that the eye puts together
to form geometric objects. A straight line is therefore not what Euclid understood
by a straight line, but rather a finite collection of dots on the screen, which the eye
nevertheless perceives as a connected line segment. Is there a geometry for these
images on the screen? The answer is in the affirmative. We shall not be content with
the images as more or less accurate approximations of ideal straight lines or curves:
we can treat these finite sets of points with the same accuracy as Euclid had in his
geometry. This is digital geometry. (Figure 1.)

The field is young in comparison with Euclid’s: the notion of a straight line was
clarified in 1974 by Azriel Rosenfeld. We can also talk about curves in the digital
plane. In fact, we can take any notion in Euclidean geometry, try to translate it to
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digital geometry, and see if a certain result in Euclidean geometry becomes true in a
digital interpretation. The Jordan curve theorem is an instructive example.

For an elementary discussion of digital geometry and in particular of the Jordan
curve theorem, see (Kiselman 2003, ms).

The plane may be divided into triangles, rectangles, or hexagons. These are the
most common tesselations of the plane. The centers of the pixels form, respectively, a
hexagonal, rectangular, or triangular pattern (Figures 2 and 3). In all these cases we
may use a pair of integer coordinates to indicate the location of a pixel. This is obvious
and easy in the rectangular case, but useful also in the other two cases, although we
need to be careful about the metric then. Therefore we often speak of Z2 as the set of
pixels, although, speaking more precisely, a pair of integers x = (x1, x2) ∈ Z2 is just
the address of a pixel.

1.2. Why mathematical morphology?

The field that has become known as mathematical morphology is quite old in a sense;
it is about operations on sets and functions that have been around for a long time, but
which are now being systematized and studied under a new angle, precisely because it
is possible to actually perform operations on the computer and see on the screen what
happens.

My personal view is that morphology has its origin in our trying to understand a
complicated world. The world is so complex that the human mind—and the human
eye—cannot perceive all its minute details, but needs a simplified image, a simplified
structure. The need to simplify a complicated object is, in this view of things, the basic
impulse behind mathematical morphology, and this is what mathematical morphology
does. Related to this is the fact that an image may contain a lot of disturbances, or
rather, it almost always does. Therefore, most images need to be tidied up. Hence
another need to process images; it is related to the first, for the border line between
dirt and other kind of disturbances is not too clear.

Let us think first of Euclidean geometry, and consider cardinalities. The set N
of nonnegative integers is infinite, and its cardinality is denoted by card(N) = ℵ0.
The set of real numbers R has the same cardinality as the set of all subsets of N,
thus card(R) = 2ℵ0 . The points in the Euclidean plane have the same cardinality:
card(R2) = card(R). But the set of all subsets of the line or the plane has the larger
cardinality 22ℵ0 , which is too much for our brains to keep track of. There are simply
too many sets in the plane: we need to restrict attention to some not too large subclass
of this huge class, a subclass consisting of nice sets. For instance, the set of all disks
has a much smaller cardinality, because three numbers suffice to determine a disk in
the plane: its radius and the two coordinates of its center. Similarly, four numbers
suffice to specify a rectangle [a1, b1] × [a2, b2] with sides parallel to the axes; a fifth is
needed if we want to rotate it. This leads to the idea of simplifying a general, all too
wild set, to some reasonable, more well-behaved set.

It is true that one can think of a Euclidean line as containing only denumerably
many points. We can define a line as the set of solutions in Q2 of an equation a1x1 +
a2x2 + a3 = 0 with integer coefficients. Then two lines which are not parallel intersect
in a point with rational coordinates. The cardinality of the set of all subsets of Q2

is 2ℵ0 , so there are fewer sets to keep track of than in the real case. However, the
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conclusion is more or less the same: there are too many subsets of the plane to grasp.
If we consider digital geometry we can make a similar discussion about cardinality.

On a computer screen with, say, 1,024 pixels in a horisontal row and 768 pixels in a
vertical column there are 1, 024× 768 = 786, 432 pixels. On such a screen a rectangle
with sides parallel to the axes is the Cartesian product

R(a, b) = [a1, b1]Z × [a2, b2]Z

of two intervals; we need to consider all pairs of integers (aj, bj) such that 0 6 a1 6
b1 < 1, 024 and 0 6 a2 6 b2 < 768. We can form

1
2
· 1, 024 · 1, 025 · 1

2
· 768 · 769 ≈ 1.55 · 1011

such rectangles. Let us for instance ask if a given subset A is close to a rectangle
R(a, b). We can measure the distance between two sets A and B in some way, for
instance simply by computing

d(A,B) = card(ArB) + card(B r A),

the number of pixels that belong to one of the sets but not to the other. Then the
problem is to compute d(A,R(a, b)) for all permissible values of a and b, i.e., in 1.55·1011

cases. At least one of the rectangles is closest to A in this metric. Thus to find the
best-fitting rectangle to an arbitrary set is a finite optimization problem . . .

But the number of rectangles is very small compared with the number of arbitrary
sets. To describe a subset of the screen we need to specify for each pixel whether
it belongs to the set or not. This means that there are 2786,432 ≈ 10236,740 different
subsets of the screen, or binary images. A binary image is a black-and-white image,
i.e., we only specify whether a point belongs to the set or to the background. (If we
want to consider gray-level images, or color images, the cardinality goes up of course.)
The really pure mathematician then says: there are only finitely many binary images.
But the number of binary images must be compared with other finite numbers. Some
astronomers estimate the mass of the universe at 1053 kg, which is 6 × 1079 proton
masses or 1083 electron masses. One sometimes talks about “astronomical numbers,”
which Webster defines as “enormously or inconceivably large” numbers. This metaphor
has not only faded; it is actually misleading in the world of image analysis.1

Thus, although the number of binary images on a computer screen is finite, it is so
huge that the conclusion must be the same as in the case of the infinite cardinal 22ℵ0 :
there are too many; we cannot search through the whole set; we must simplify. This
leads, again, to image processing and mathematical morphology, this time of subsets
of Z2, or, a little more generally, of Zn, the set of all n-tuples of integers.

When we discuss mathematical morphology we want to keep both cases in mind,
i.e., both the vector space Rn of all n-tuples of real numbers (the addresses of points
in space) and the digital space Zn (the addresses of pixels or voxels). The latter covers
the case of rectangular pixels or voxels, but, as already pointed out, also triangular and

1In case you think that this conclusion depends on the universe having a rather low density, please
calculate the mass of a fictitious universe with a radius of 14× 109 light years ≈ 1.3× 1026 m and the
density of a neutron star, say 1017 kg/m3. The conclusion is the same.
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hexagonal pixels in the plane. What is common to Rn and Zn is that they form an
abelian group. Therefore we shall always start the discussion assuming that the space,
called image carrier, is just an abelian group. When necessary we shall then specialize
to Rn and Zn. In many ways, Rn will guide us in the perhaps less familiar study of
Zn.

Serra (1982:6---15) lists “four principles of quantification.” These are about our ways
to gather information about the external world. They apply also, but not exclusively,
to image analysis. Let us discuss them briefly in mathematical terms.

Serra’s first principle is “compatibility under translation.” Mathematically speak-
ing, this means that if we translate the object (i.e., move it some distance without
rotating it) and then do something to it, the result should be the same as if we per-
form the two operations in the other order. For a mapping, this simply means that
f(A+b) = f(A)+b, which we may express as f◦Tb = Tb◦f , where ◦ denotes composition
of mappings defined by (f ◦Tb)(x) = f(Tb(x)), thus a kind of commutativity, writing Tb

for the translation translation Tb(A) = A+b. We say that f commutes with translations.
However, when it comes to applications of this idea to images on the computer screen,
we are in deep trouble. On a finite screen like {x ∈ Z2; 0 6 x1 < 1, 024, 0 6 x2 < 768}
almost nothing can commute with translations. To escape from this difficulty we in-
troduce the ideal, infinite, computer screen with sets of addresses equal to Z2. The
principle is equally useful in Rn and Zn.

Serra’s second principle is “compatibility under change of scale.” For a mapping
this means that it commutes with homotheties (or dilatations), i.e., mappings of the
form x 7→ λx. So f(λA) = λf(A) for (say) positive number λ. This is not problematic
if we are in Rn, but it certainly is if we are in Zn. This principle will therefore need to
be suitably interpreted in Zn.

The third principle is that of “local knowledge.” This principle says that in order
to know some bounded part of f(A), we shall not need to know all of A, only some
bounded part of A. Mathematically speaking: for every bounded set Y , there exists
a bounded set Z such that f(A ∩ Z) ∩ Y = f(A) ∩ Y . To know the result f(A) in
an arbitrary bounded set Y , we need not know all of A; it is enough to know how
A looks in some bounded set Z, maybe a little larger than Y . The principle of local
knowledge shall therefore not be understood in the topological sense: the key notion
is boundedness.

Serra’s fourth principle of quantification is that of “semicontinuity.” It means that
if a decreasing sequence (Aj) of closed sets tends to a limit A, thus A =

⋂
Aj, then

f(Aj) tends to f(A). Thus if Aj is close to A in some sense and Aj contains A, then
f(Aj) must be close to f(A). To express this property as semicontinuity, one must
define a topology.

2. Preordered sets

2.1. Preorders and orders
For the morphological operations on the computer screen we need to consider sets of
sets. The set of all subsets of a given set is ordered by the inclusion relation, which
is an example of an abstract order relation. It is therefore convenient to introduce
notions that will be useful in the general theory of order relations. In this chapter we
shall do so.
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Let us define first the notion of preorder, which is even more fundamental than that
of order.

Definition 2.1.1. A preorder in a given set X is a relation (a subset of X2) which is
reflexive and transitive.

The definition means, if we denote the relation by 6, that for all x, y, z ∈ X,

(2.1.1) x 6 x,

and

(2.1.2) x 6 y and y 6 z implies x 6 z.

Definition 2.1.2. An order is a preorder which is antisymmetric.

This means that the relation shall satisfy

(2.1.3) x 6 y and y 6 x implies x = y.

(Sometimes one calls such a relation a partial order.)

A preordered set is a set together with a preorder; an ordered set a set together with
an order.

A basic example of an ordered set is the set power set P(W ) of all subsets of a set
W , with the order relation given by inclusion, thus A 6 B being defined as A ⊂ B for
A,B ∈P(W ).

Suppose that we have two preorders defined in a set X; denote them by 6 and 4.
The preorder 6 is said to be finer than the preorder 4, and 4 is said to be coarser
than 6, if x 6 y implies x 4 y for all x, y.

There is a finest preorder in a set, viz. when we define x 6 y to mean that x = y.
This preorder is of course an order; let us call it the discrete order. There is also a
coursest preorder in any set X, when we declare that x 6 y for all x, y ∈ X. Let us
call this the chaotic preorder. The set of all preorders on any set is thus an ordered set
with a largest and a smallest element.

Given any preorder we define [a,→[ as the set of all x such that a 6 x and ]←, a]
as the set of all x such that x 6 a. The sets [a,→[ and ]←, a] determine a for all a ∈ X
if and only if 6 is an order.

Definition 2.1.3. An equivalence relation is a preorder which is symmetric.

Given a preorder 6 in X, we can introduce an equivalence relation ' in X by defining
x ' y to mean that x 6 y and y 6 x. If 6 is an order, then ' is just equality. We can
form the quotient space X/' of all equivalence classes of X modulo '. The equivalent
classes are just

[a,→[ ∩ ]←, a] = {x ∈ X; a 6 x 6 a}, a ∈ X.

In this quotient space, 6 induces an order (exercise 2.1).

In preordered spaces the increasing mappings are of importance:



Section 2.2. Closure operators 7

Definition 2.1.4. If f : X → Y is a mapping from a preordered set X to a preordered
set Y , then we say that f is increasing2 if

(2.1.4) for all x, x′ ∈ X, the relation x 6X x′ implies f(x) 6Y f(x′).

We shall write Incr(X,Y ) for the set of all increasing mappings X → Y . We may think
of Incr(X, Y ) as an analogue of the linear mappings from a vector space into another.

A preorder 6 is finer than another preorder 4 if and only if the identity mapping
(X,6)→ (X,4) is increasing.

Note that if X has the discrete order, where x 6 y means x = y, then Incr(X, Y )
consists of all mappings X → Y ; Incr(X, Y ) = Y X . The conclusion is the same if Y
is equipped with the chaotic preorder. If on the other hand Y has the discrete order,
then Incr(X, Y ) consists of those mappings X → Y that are constant on any chain of
comparable elements, thus f(xj) is constant if x1 6 x2 > x3 6 · · · 6 x2n. Let us say
that a preordered set X is connected if, given any elements a, b ∈ X, there exists a
finite chain of elements x1 6 x2 > x3 6 · · · 6 x2n passing through a and b. Then any
mapping f ∈ Incr(X, Y ) is constant if X is connected and Y has the discrete order.
The same conlusion holds if X has the chaotic preorder and Y is ordered.

Another interesting property is obtained when we turn around the implication sign
in (2.1.4).

Definition 2.1.5. Let us agree to call a mapping f : X → Y coincreasing if it satisfies

(2.1.5) for all x, x′ ∈ X, the relation f(x) 6Y f(x′) implies x 6X x′.

Increasing does not imply coincreasing; coincreasing does not imply increasing; cf.
exercise 2.2. If X is ordered, then a mapping is coincreasing if and only if it is injective
and the mapping f(x) 7→ x is increasing.

2.2. Closure operators

Definition 2.2.1. A closure operator3 (or closing4) in an ordered set X is a mapping
X 3 x 7→ x ∈ X which is increasing, idempotent, and extensive5 (or expanding); in
other words, which satisfies the following three conditions for all x, y ∈ X:

(2.2.1) x 6 y implies x 6 y;

(2.2.2) x = x;

(2.2.3) x 6 x;

2Sometimes these mappings are called isotone (Birkhoff 1948:49) or order preserving.
3Ore (1944:494) and Birkhoff (1948:49) used the term closure operation; the latter attributed the

concept to Moore (1910:53---80). However, although Moore wrote about closure and closure properties,
he did not give a clearcut definition. Everett (1944) used closure operator. Dubreil & Dubreil-Jacotin
(1964:9, 177) calls the operator fermeture de Moore.

4This term seems to have been introduced by Matheron (1975:18). In Matheron (1967:18) he used
the French term fermeture for the notion.

5Birkhoff (1948:49).
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When checking (2.2.2) it is of course enough to prove that x 6 x if we have already
proved (2.2.3).

The element x is said to be the closure of x. Elements x such that x = x are called
closed (for this operator). An element is closed if and only if it is the closure of some
element (and then it is the closure of itself).

Sometimes we shall consider operators that are defined only on a subset of X.
Let f : Y → X be a mapping, where Y ⊂ X. Then it is not obvious what idem-

potency shall mean, for the composition f(f(y)) need not be defined. We solve this
problem by a modified definition; see Kiselman (1969:336).6

Definition 2.2.2. We shall say that γ : Y → X, where Y is a subset of an ordered set
X, is a closure operator if it satisfies the following two conditions for all x, y ∈ Y :

(2.2.4) x 6 γ(x);

(2.2.5) x 6 γ(y) implies γ(x) 6 γ(y).

It follows from this that γ is increasing, and that γ(γ(x)) = x for every y ∈ Y such that
γ(y) happens to belong to Y . It is also clear that if Y = X, then the new definition
agrees with Definition 2.2.1.

Any closure operator γ in the sense of Definition 2.2.2 can be extended to an
idempotent operator γ1 : Z → X by taking Z = Y ∪ imγ and defining γ1(x) = x when
x ∈ Z r Y .

A basic example of a closure operator is the topological closure operator which
associates to a set in a topological space its topological closure, i.e., the smallest closed
set containing the given set. In fact a closure operator in P(W ) defines a topology
in W if and only if it satisfies, in addition to (2.2.1), (2.2.2), (2.2.3) above, two extra
conditions, viz.

(2.2.6) Ø = Ø and A ∪B = A ∪B for all A,B ⊂ W,

where Ø denotes the empty set, the set with no elements.
Another closure operator of great importance is the operator which associates to a

set A in Rn its convex hull, the smallest convex set containing the given set, denoted
by cvxA. The composition A 7→ cvxA is a closure operator, whereas the composition
in the other order, A 7→ cvx

(
A
)

is not idempotent (exercise 2.3). We see that the
composition of two closure operators is sometimes, but not always, a closure operator.

In both these examples X is the power set P(W ) of some set W , and the closure
operator is given as an intersection:

A =
⋂
Y

(
Y ;Y is closed and Y ⊃ A

)
.

In Chapter 7 we shall return to these constructions.

6Matheron (1975:186) required instead that f(y) belong to Y whenever y ∈ Y .
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Dual to the notion of closure operator is the notion of opening.

Definition 2.2.3. A mapping X 3 x 7→ x◦ ∈ X is said to be an opening7 if it is
antiextensive, increasing, and idempotent; in other words, if it satisfies the following
three conditions for all x, y ∈ X:

(2.2.7) x◦ 6 x;

(2.2.8) x 6 y implies x◦ 6 y◦;

(2.2.9) (x◦)◦ = x◦.

Just as for closure operators, we can extend this definition to a more general setting:

Definition 2.2.4. Let η : Y → X be a mapping of a subset Y into X. We shall say
that η is an opening if it satisfies the following two conditions for all x, y ∈ Y :

(2.2.10) η(x) 6 x;

(2.2.11) η(x) 6 y implies η(x) 6 η(y).

2.3. Exercises

2.1. Verify that any preorder in a set X induces an order in the quotient X/', where x ' y
denotes the equivalence relation x 6 y 6 x.

2.2. Consider the following four properties of a mapping f : X → Y between two preordered
sets.
(A) f is increasing: x 6 y ⇒ f(x) 6 f(y);
(B) f is strictly increasing: x < y ⇒ f(x) < f(y), where x < y means that x 6 y and x 6= y;
(C) f is injective: f(x) = f(y)⇒ x = y;
(D) f is coincreasing: f(x) 6 f(y)⇒ x 6 y.
Prove that (B) implies (A); that (A)&(C) implies (B); and that, if X is ordered, (D) implies
(C).
Prove by examples that the implications (B)⇒ (C); (B)&(C)⇒ (D); (D)⇒ (A) do not hold,
not even for mappings f : X → X.
If we assume that X is ordered and that (A) holds, we thus have (D) ⇒ (C) and (C) ⇒ (B),
but the converse implications do not hold.

2.3. Let f denote the mapping P(R2) 3 A 7→ A ∈P(R2) of taking the topological closure
of a set A and g the mapping A 7→ cvxA of taking the convex hull of A. Are f ◦ g and g ◦ f

closure operators? Prove or disprove.

3. Morphological operations on sets and functions

3.1. Dilations and erosions
Our purpose is to describe morphological operations in Z2 as well as in R2 and more
generally in Zn and Rn. It will therefore be an advantage if we can choose a common

7This term seems to have been introduced by Matheron (1975:18). In his earlier book (1967:18)
he used the French term ouverture. Tucker (1936:94) used the term aperture for the dual of closure.
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framework for these two cases. Since Z2 is not a vector space, we cannot assume that
we live in vector space. What Zn and Rn have in common is that they are abelian
groups. It turns out that this concept is rich enough for a theory of morphological
operations to be set up.

In an abelian group G we have an associative and commutative operation, written
as addition, and a neutral element, denoted by 0 (i.e., such that x + 0 = x for all
x ∈ G); finally every element x has an inverse, written −x and satisfying x+(−x) = 0.
This generality causes no problem in the definitions and proofs. However, the reader
can think of the special abelian groups Z2 and R2 all the time.

For some definitions and results it is not necessary to assume the group to be
commutative; sometimes it is not even necessary to assume that we have a group: a
semigroup will suffice. A semigroup is a set together with an associative operation,
written as juxtaposition. We do not assume commutativity, nor the existence of a
neutral element. If there is one, it will be denoted by 1. The reason for assuming so
little is not generality in the first place but a kind of Occam’s razor: by not assuming
too much we make the constructions more transparent and clarify the dependence of
a result on the hypotheses.

Definition 3.1.1. Let A and B be subsets of a semigroup G. Then we define their
product as the set

(3.1.1) AB = {xy;x ∈ A, y ∈ B}.

If the semigroup is commutative, we shall write + for the operation and define the
Minkowski sum of two sets A and B as

(3.1.2) A+B = {x+ y;x ∈ A, y ∈ B}.

The operation makes the power set P(G) of all subsets of G into a semigroup. In that
semigroup the empty set Ø is a zero: AØ = ØA = Ø; and {1} is a neutral element if
G happens to have a neutral element 1: A{1} = {1}A = A.

In the commutative case the operation (A,B) 7→ A+B is called Minkowski addition.
We have A+ Ø = Ø and A+ {0} = A if G has a neutral element 0.

If B is finite, as is often the case in Zn, only finitely many checks are needed to
decide whether a point x belongs to A + B: we check whether x − b belongs to A for
some b ∈ B. Therefore dilation by a finite set satisfies Serra’s third principle (see the
introduction, section 1.2).

If A consists of only one point x we shall write AB = {x}B = xB = Sx(B),
where the last equality is a definition of an operation Sx : P(G) → P(G), called left
translation by x; all points are moved by a fixed amount. Similarly we define right
translation by y as the operation Ty, Ty(A) = A{y} = Ay. In the commutative case
the two translations are equal, and we write Sy(A) = y + A = A + y = Ty(A). If
G is a group, Sx and Ty have inverses, viz. (Sx)

−1 = Sx−1 and (Ty)
−1 = Ty−1 (in the

commutative case (Sx)
−1 = (Tx)

−1 = S−x = T−x).
Using the concept of translation we see that

(3.1.3) AB =
⋃
y∈B

(Ay) =
⋃
x∈A

(xB), A+B =
⋃
y∈B

(A+ y) =
⋃
x∈A

(x+B).
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Thus the product (sum) is a union of translates of A, and equally a union of translates
of B. We can view it in either way: we move A around in a manner determined by
B or vice versa. Often A is a complicated set and B is a simple, small set, called the
structural element. Then we say that AB (or A + B) is A dilated by B.8 Think of
G = R2 or Z2 and with B equal to a small square. We fix B and apply the operation
A 7→ A+B to a lot of sets A:

Definition 3.1.2. Let G be a semigroup and let B be a subset of G. We define two
mappings δB, εB : P(G)→P(G) as

(3.1.4) δB(A) = AB, εB(A) = {x;xB ⊂ A}.

The first is called dilation9 by B. The second is called erosion by B.

To stress the similarity between the two definitions we may rewrite them as

(3.1.5) δB(A) =
⋃
x

(
{x}B; {x} ⊂ A

)
, εB(A) =

⋃
x

(
{x}; {x}B ⊂ A

)
.

In the commutative case these formulas take the form

(3.1.6) δB(A) = A+B, εB(A) = {x;x+B ⊂ A},

and

(3.1.7) δB(A) =
⋃
x

(
{x}+B; {x} ⊂ A

)
, εB(A) =

⋃
x

(
{x}; {x}+B ⊂ A

)
.

We immediately note an important relation between the two operations.

Proposition 3.1.3. Let A, B and C be three subsets of a semigroup. Then the
following three statements are equivalent.
(a) AB ⊂ C (in the commutative case A+B ⊂ C);
(b) δB(A) ⊂ C;
(c) A ⊂ εB(C).

Proof. That (a) and (b) are equivalent is obvious from the definition of dilation. The
definition of erosion can be written

x ∈ εB(C)⇔ xB ⊂ C.

If (a) holds, the statement to the right holds for all x ∈ A, hence A ⊂ εB(C), i.e., (c) is
true. Conversely, if (c) holds, then the statement to the left holds for all x ∈ A, hence
AB ⊂ C.

We note that dilation commutes with left translation:

Sx(δB(A)) = x(AB) = (xA)B = δB(Sx(A)), A ∈P(G),

8Sometimes A + B is written A ⊕ B; see Matheron (1975:16), Serra (1982, 2001) and Gonzalez
& Woods (1993:519); note however that the sign ⊕ is used for the direct sum. There is no risk of
misunderstanding A + B.

9This seems to be the most common term today; Matheron (1975:17) calls it dilatation, a term
which is often reserved for mappings x 7→ λx.
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which may be written as Sx ◦δB = δB ◦Sx. Similarly, if G is a group, erosion commutes
with left translation:

Sz(εB(A)) = {zx;xB ⊂ A} = {y; z−1yB ⊂ A} = {y; yB ⊂ zA} = εB(Sz(A)),

thus Sz ◦ εB = εB ◦ Sz.
Dilation commutes also with the formation of unions:

(3.1.8)
⋃

(AjB) = (
⋃
Aj)B, in the commutative case

⋃
(Aj +B) = (

⋃
Aj) +B,

where (Aj)j∈J is a finite or infinite family of subsets of an arbitrary semigroup G. There
is a converse to this statement:

Proposition 3.1.4. Let G be a semigroup with neutral element 1. Any mapping
f : P(G)→P(G) which commutes with left translations and the formation of infinite
unions is a dilation, in fact by f({1}).

Proof. We write A =
⋃

x∈A{x} =
⋃
{x} so that

f(A) = f (
⋃
{x}) =

⋃
f({x}) =

⋃
f(Sx{1}) =

⋃
Sx(f({1})) = Af({1}) = δf({1})(A).

Similarly, erosion commutes with the formation of arbitrary intersections:

(3.1.9) εB (
⋂
Aj) = {x;xB ⊂

⋂
Aj} =

⋂
{x;xB ⊂ Aj} =

⋂
εB(Aj).

A converse to this statement will be established later; see Proposition 3.1.7.
If we assume that G is not only a semigroup but a group, we can use inverses

to define sets. To any given subset A of a group G we define its opposite set as
Ǎ = {x−1;x ∈ A}; in the commutative case Ǎ = {−x;x ∈ A}. Then we can also define
Minkowski subtraction by the formula

A−B = A+ B̌ = {x− y;x ∈ A, y ∈ B}.

Note that B̌ = {0} −B = 0−B; we may also write it as −B. We should not mix this
up with the set-theoretical difference:

ArB = A ∩ {B = A ∩Bc = {x ∈ A;x /∈ B},

where we have written the complement of B in two different ways: {B = Bc; both are
quite usual. We now introduce another minus sign in an abelian group, written 	:10

(3.1.10) A	B = εB(A) = {x;x+B ⊂ A}.

Note that A 	 Ø = G, that A 	 G = Ø provided A 6= G, and that A 	 {0} = A if G
has a neutral element 0.

To illustrate the difference in meaning between these three minus signs, note that
A r A = Ø for all sets A; that A − A 6= Ø if A is a nonempty subset of an abelian
group; and that, finally, A	 A is a subsemigroup if A is a subset of an abelian group

10Gonzalez & Woods (1993:521) use the sign 	 with this definition; Serra (1982:43) on the other
hand defines A	B as

⋂
y∈B(A + y) = εB̌(A).
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G, cf. Theorem 3.1.5 below. If A is a bounded subset of Rn or Zn for example, then
A	 A = {0}.

In a group, erosion is dual to dilation in a natural sense. Equivalently, an erosion
of a set A is an intersection of translates of A.

To any mapping f : P(W1)→P(W2) we may define its dual mapping fd by

fd(A) = {f
(
{A
)
, A ∈P(W1).

We shall now see that, in a group, erosion by B is dual to dilation by B̌.

Theorem 3.1.5. Let G be a group and B a subset of G. Then

(3.1.11) εB(A) =
⋂
y∈B

Ay−1 = {
⋃
y∈B

{
(
Ay−1

)
= {

⋃
y∈B

((
{A
)
y−1
)

= {δB̌
(
{A
)
.

With additive notation this becomes

(3.1.12) εB(A) =
⋂
y∈B

(A− y) = {
⋃
y∈B

{ (A− y) = {
⋃
y∈B

((
{A
)
− y
)

= {δB̌
(
{A
)
.

In the commutative case we can write

(3.1.13) A	B = εB(A) = {x;x+B ⊂ A} = {
(
{A+ B̌

)
.

Proof. To prove the first equality, note that x belongs to εB(A) if and only if xy ∈ A
for all y ∈ B, which is equivalent to x ∈ Ay−1 for all y ∈ B, i.e., to x belonging to⋂

y∈B Ay
−1. The second equality is just one of De Morgan’s laws.

The third equality depends on the fact that the formation of complement commutes
with right translation; see the next lemma. The fourth and last equality follows from
the definition of δB̌. We are done.

In the proof of the theorem we needed the following result.

Lemma 3.1.6. Let G be a group. Then the formation of complement commutes with
left and right translation:

{(zA) = z
(
{A
)

and {(Az) =
(
{A
)
z, A ∈P(G), z ∈ G,

briefly { ◦ Sz = Sz ◦ { and { ◦ Tz = Tz ◦ {.

Proof. If we analyze the relations x ∈ {(zA) and x ∈ z
(
{A
)

we find that they are
both equivalent to z−1x /∈ A. Similarly, y ∈ {(Az) and y ∈

(
{A
)
z are equivalent to

yz−1 /∈ A.

Thus Theorem 3.1.5 says that

εB = (δB̌)d = { ◦ δB̌ ◦ {,

from which it follows that δB = (εB̌)d.
From Proposition 3.1.4 and Theorem 3.1.5 we now deduce a result on erosions using

this duality.

Proposition 3.1.7. Let G be a group. Any mapping g : P(G) → P(G) which com-
mutes with left translations and the formation of infinite intersections is an erosion,
viz. by {

(
g
(
{{1}

))̌
.
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3.2. Infimal convolution
The product AB of two subsets can be put into the wider framework of infimal convo-
lution. Given two functions f, g : G→ [−∞,+∞] defined on a semigroup G and with
values in the extended real line [−∞,+∞] = R∪{−∞,+∞}, we define a new function
h = f ut g, called the infimal convolution of f and g, as

(3.2.1) (f ut g)(z) = h(z) = inf
x,y∈G

(
f(x)+· g(y);xy = z

)
, z ∈ G.

The infimum is taken over all elements x, y ∈ G such that their product is z, the
argument of h. If there are no such elements, the infimum is plus infinity; that element
is by definition the infimum over the empty set. There is a complication if f takes the
value +∞ at x and g takes the value −∞ at y. We resolve this conflict by declaring
that +∞ shall win. So s+· t is the usual sum if s and t are real numbers; if only one
is infinite or both are infinite of the same sign, the sum takes that value; if s and t are
infinite of opposite signs, we define the sum to be +∞. In this way, this operation,
called upper addition, becomes an upper semicontinuous mapping from [−∞,+∞]2 into
[−∞,+∞]. It is easy to check that it is associative. Similarly we define lower addition,
s+· t = −((−s)+· (−t)); here minus infinity wins. In my experience, using upper and
lower addition is the most convenient method to calculate with the two infinities. This
will be apparent, I hope, when we want to show that infimal convolution is associative.

For surveys of the properties of infimal convolution we refer to Moreau (1970),
Rockafellar (1970), or Strömberg (1996).

The points where f or g takes the value +∞ play no role in the formation of
the infimum: the definition of upper addition guarantees this. Removing these points
therefore yields an equivalent definition:

(3.2.2) (f ut g)(z) = inf
x,y∈G

(f(x) + g(y);xy = z, f(x) < +∞, g(y) < +∞) , z ∈ G.

The effective domain, written dom f , of a function f : X → [−∞,+∞] defined on
an arbitrary set X is the set where it is strictly less than plus infinity:

(3.2.3) dom f = {x ∈ X; f(x) < +∞}.

With this notation we can write (3.2.2) as

(3.2.4) (f ut g)(z) = inf
x∈dom f
y∈dom g

xy=z

(
f(x) + g(y)

)
, z ∈ G.

Here there is no doubt about the meaning of the sum; the disadvantage with this
approach is that we have to remember, each time we take an infimum, over which set
the variables range.

Intuitively, plus infinity corresponds to vacuum and −∞ to an infinitely dense
neutron star. This may appear to be upside down. However, we should think of the
density as e−f(x), and then of course e−(+∞) = 0. Infimal convolution is related to a
kind of supremal convolution of the functions e−f , e−g, viz.

sup
y

[
e−f(y)e−g(x−y)

]
= e−(f ut g)(x).
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The supremum is often comparable to integration in Rn, which means that we some-
times have a remarkably good approximation

e(f ut g)(x) = sup
y∈Rn

[
e−f(y)e−g(x−y)

]
≈
∫

Rn

e−f(y)e−g(x−y)dy =
(
e−f ∗ e−g

)
(x), x ∈ Rn,

where the asterisk denotes usual convolution, which is defined by the integral

(3.2.5) (F ∗G)(x) =

∫
Rn

F (y)G(x− y)dy, x ∈ Rn.

Proposition 3.2.1. Infimal convolution is associative: (f1 ut f2) ut f3 = f1 ut (f2 ut f3).

Proof. We start calculating:

(
(f1 ut f2) ut f3

)
(z) = inf

y,x3
yx3=z

([
inf

x1,x2
x1x2=y

(
f1(x1)+· f2(x2)

)]
+· f3(x3)

)
.

According to the following lemma this expression is equal to

inf
y,x3

yx3=z

inf
x1,x2

x1x2=y

([
f1(x1)+· f2(x2)

]
+· f3(x3)

)
= inf

x1,x2,x3
x1x2x3=z

(
f1(x1)+· f2(x2)+· f3(x3)

)
.

A similar calculation shows that also (f1 ut (f2 ut f3))(z) can be transformed to the last
expression. This proves associativity.

At a point in the proof above we needed the following result.

Lemma 3.2.2. For any element c ∈ [−∞,+∞] and any function f : X → [−∞,+∞]
defined on an arbitrary set X we have

inf
x∈X

(c+· f(x)) = c+· inf
x∈X

f(x).

Proof. We just need to check all possibilities where our intuition is less reliable than
usual, i.e., when c = ±∞ or X is empty.

Note that there are no exceptions to this formula. As a nasty little exercise, try to find
the exact conditions under which the equality supx(c+

· f(x)) = c+· supx f(x) holds.
If G is a group, we know that xy = z if and only if y = x−1z, which in turn is

equivalent to x = zy−1, so the definition of f ut g can be written

(f ut g)(z) = inf
x∈G

(
f(x)+· g(x−1z)

)
= inf

y∈G

(
f(zy−1)+· g(y)

)
, z ∈ G.

In the case of an abelian group this formula reads

(f ut g)(z) = inf
x∈G

(
f(x)+· g(z − x)

)
= inf

y∈G

(
f(z − y)+· g(y)

)
, z ∈ G.

Now why is infimal convolution more general that the formation of products of sets
or Minkowski addition? This is because of the formula

(3.2.6) dom(f ut g) = dom f + dom g,
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which is easily proved. A special case of this formula is obtained when we consider
indicator functions.

To any subset A of a set X we define its indicator function iA, which is simply
defined as iA(x) = 0 when x ∈ A and iA(x) = +∞ when x /∈ A. It is related to the
characteristic function χA of A by the formula χA = exp (−iA).

It is clear that dom iA = A. We then have iA ut iB = iAB for all subsets A,B of a
semigroup G, or, in the commutative case, iA ut iB = iA+B. Hence the Minkowski sum
may be defined in terms of infimal convolution as A+B = dom(iA ut iB).

If G has a neutral element 1, then i{1} is a neutral element for infimal convolution.
More generally, if f(x) = 0 when x ∈ A and f(x) > 1 otherwise and similarly with g
and B, then (f ut g)(z) = 0 when z ∈ AB and (f ut g)(z) > 1 when z /∈ AB.

Thus multiplication of sets and Minkowski addition can be expressed in terms of
infimal convolution. But we can go also in the other direction and express any infimal
convolution as a product of sets, albeit at the expense of adding one more dimension.
This is done using the notion of strict epigraph.

Let us first define the epigraph of a function f : X → [−∞,+∞] defined on an
arbitrary set X as

(3.2.7) epi f = {(x, t) ∈ X ×R; f(x) 6 t},

and the strict epigraph using instead strict inequality:

(3.2.8) epis f = {(x, t) ∈ X ×R; f(x) < t}.

IfX = G is a semigroup, then we make G×R into a semigroup by defining (x, s)(y, t) =
(xy, s+ t). It is not difficult to show that

(3.2.9) epis(f ut g) = (epis f)(epis g).

This means that the function f ut g can be defined as the function whose strict epigraph
is the product (epis f)(epis g). With the additive notation we have of course

(3.2.10) epis(f ut g) = epis f + epis g.

For the epigraph we always have

epi(f ut g) ⊃ epi f + epi g,

where the inclusion relation may be strict (find examples).

3.3. Exercises

3.1. Dilate and erode A by B when
(a) A is a disk in R2, B a pair of points. (Here the word disk shall be understood with regard
to one of the norms ‖ · ‖p, p = 1, 2,∞.)
(b) A is an open disk in R2 of radius R, B a closed disk of radius r.
(c) B is a translate of A.
(d) B is a translate of Ǎ.
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3.2. We know that δB(A) ⊂ C if and only if A ⊂ εB(C), in other words that A + B ⊂ C if
and only if A ⊂ C 	B.
(a) Give examples to show that we do not have an equivalence δB(A) = C if and only if
A = εB(C). Is one of the implications true? However, the equivalence holds for certain
families of sets . . .
(b) Show by examples that it is not true that εB(A) ⊂ C if and only if A ⊂ δB(C). Is one of
the implications true?

3.3. Prove that, in an abelian group, erosion by B satisfies εB(A) ⊂ A for all sets A if and
only if 0 ∈ B.

3.4. Calculate the Minkowski sum of two segments [a, b] = {(1− t)a+ tb; 0 6 t 6 1} and [c, d]
in R2, where a, b, c, d are four arbitrary points in R2.

3.5. Calculate in R2 the sum of three arbitrary segments.

3.6. Calculate in R3 the sum of three orthogonal segments.

3.7. Calculate in R3 the Minkowski sum of four segments, three of which are contained in a
plane while the fourth is not.

3.8. (a) Calculate in R3 the sum of the four segments [(0, 0, 0), (1, 0, 0)], [(0, 0, 0), (0, 1, 0)],
[(0, 0, 0), (0, 0, 1)], and [(0, 0, 0), (1, 1, 1)]. The result is a polyhedron. How many vertices,
edges, and faces does it have?
(b) Calculate in R3 the sum of the four unit normals to a regular tetrahedron.

3.9. (a) Calculate in R3 the Minkowski sum of the six segments [(0, 0, 0), (1, 0, 0)],
[(0, 0, 0), (0, 1, 0)], [(0, 0, 0), (0, 0, 1)], [(0, 0, 0), (0, 1, 1)], [(0, 0, 0), (1, 0, 1)], and
[(0, 0, 0), (1, 1, 0)]. How many vertices, edges, and faces are there?
(b) Describe the Minkowski sum of the six edges of a regular tetrahedron in R3.

3.10. Prove that a triangle cannot be the Minkowski sum of a finite number of segments.

3.11. A heptagon in R2 can never be the sum of a finite number of segments.

3.12. A tetrahedron cannot be the sum of a finite number of segments.

3.13. The vector sum of two triangles in R2 is a polygon. How many sides can it have? How
many sides can the sum of a triangle and a square have?

3.14. Give an example of a quadrilateral in R2 that is not the sum of two segments.

4. Closure operators on subsets of a semigroup

4.1. Combining erosions and dilations

We have defined in Chapter 3 dilations and erosions. We shall now combine them.

It is clear that (A+B)+C = A+(B+C), so the composition of two dilations is a
dilation: δC◦δB = δB+C . Similarly, (A	B)	C = A	(B+C), so the composition of two
erosions is an erosion: εC ◦ εB = εB+C . (In the non-commutative case the conclusions
are the same.) But what about the composition of a dilation and an erosion? Let us
consider γ = εC ◦ δB, defined by γ(A) = (A+B)	C, where B and C are fixed subsets
of an abelian group. This operation is always increasing, and it is extensive if and only
if C ⊂ B, which in turn is equivalent to γ({0}) ⊃ {0}. In this section we shall study
this operator when C = B (this is the only really interesting case) and see that it is
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idempotent then (cf. exercises 4.2 and 4.3). We shall also see that, in typical cases, it
is neither a dilation nor an erosion.

Given two subsets A and B of a semigroup G we define

(4.1.1) γB(A) = εB(δB(A)) = AB = {x ∈ G;xB ⊂ AB}, A ∈P(G);

in the commutative case γB(A) = {x ∈ G;x + B ⊂ A + B}. This means that we
perform on A first a dilation by B, then an erosion by the same set. We shall see
that this is a closure operator in the sense of Chapter 2. So we call γB(A) = AB the
B-closure of A, and a set A is called B-closed if AB = A.11

Analogously we define

(4.1.2); ηB(A) = δB(εB(A)) = AB =
⋃
x∈G

(xB;xB ⊂ A), A ∈P(G),

in the commutative case ηB(A) =
⋃

(x + B;x + B ⊂ A). Here we perform first an
erosion by B and then a dilation by B. We call ηB(A) = AB the B-opening of A, and
a set A is called B-open if AB = A.12

Theorem 4.1.1. For any subset B of an arbitrary semigroup G the mapping γB =
εB◦δB, P(G) 3 A 7→ AB ∈P(G), is a closure operator, and the mapping ηB = δB◦εB,
A 7→ AB, is an opening.

The theorem will follow on combining Proposition 4.1.2 and Corollary 4.1.4 below.

Proposition 4.1.2. For any subset B of a semigroup G the mappings γB = εB ◦ δB,
A 7→ AB, and ηB = δB ◦ εB, A 7→ AB, are increasing; the first is extensive and the
second is antiextensive.

Proof. It is obvious that the mappings are increasing. Formula (4.1.1) shows that AB

contains A; similarly we see from (4.1.2) that AB is contained in A.

Corollary 4.1.3. For any subset B of a semigroup G we have

δB ◦ εB ◦ δB = δB and εB ◦ δB ◦ εB = εB.

Proof. Let us write composition as juxtaposition for brevity and omit the subscript B.
Then δεδ 6 δ since δε 6 Id. But we also have δεδ > δ since εδ > Id and δ is increasing.

Similarly, εδε 6 ε since δε 6 Id and ε is increasing. But we also get εδε > ε since
εδ > Id.

Corollary 4.1.4. For any subset B of a semigroup G the mappings γB = εB ◦ δB and
ηB = δB ◦ εB are idempotent.

11Matheron (1975) and Serra (1982, 2001) use the notation AB ; Gonzalez & Woods (1993:524) write
A •B.

12Matheron (1975) and Serra (1982, 2001) use the notation AB , Gonzalez & Woods (1993:524) use
A ◦B. Note, however, that ◦ is already used to denote an operation in mathematics, viz. composition
of functions or relations.
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Proof. We have γγ = (εδ)(εδ) = (εδε)δ = εδ = γ. Similarly ηη = (δε)(δε) = (δεδ)ε =
δε = η.

Corollary 4.1.5. For any subsets A,B of a semigroup G, δB(A) = AB is B-open and
εB(A) is B-closed.

Proof. We have ηδ = δεδ = δ, so ηB(δB(A)) = δB(A), showing that δB(A) is B-open.
Similarly γε = εδε = ε and γB(εB(A)) = εB(A); εB(A) is B-closed.

For any fixed B, the family of all sets εB(A) is equal to the family of all B-closed
sets. This is the same as the family of all sets γB(A). Suppose we put on spectacles
blocking out everything except the B-closed sets. The whole world becomes B-closed:
our B-spectacles do not permit us to see anything else. Then we can only see sets of the
form A 	 B. However, AB is also B-closed and usually a much better approximation
of A than A	B.

If G is a group, εB is the mapping dual to δB̌, i.e., εB = (δB̌)d = { ◦ δB̌ ◦ {, so we
have

ηB = δB ◦ εB = δB ◦ { ◦ δB̌ ◦ { = { ◦ εB̌ ◦ δB̌ ◦ { = {γB̌{ = (γB̌)d,

so that ηB and γB̌ are dual to each other. This implies that { (AB) =
(
{A
)B̌

and shows

that a set is B-open if and only if its complement is B̌-closed.

4.2. Characterizing closure operators which commute with translations

In an abelian group the mappings that commute with translations are of special sig-
nificance. We can characterize closure operators which commute with translations in
terms of Minkowski addition as follows.

Theorem 4.2.1. Let G be an abelian group and A a subfamily of P(G) such that A
contains all singleton sets {x}, x ∈ G, and such that A + B ∈ A for all A,B ∈ A .
Let f : A → P(G) be a closure operator in the sense of Definition 2.2.2. Then the
following conditions are equivalent.
(A) f commutes with all translations: f ◦ Tx = Tx ◦ f for all x ∈ G;
(B) f(A+ x) ⊃ f(A) + x for all A ∈ A and all x ∈ G;
(C) f(A+B) ⊃ f(A) +B for all A,B ∈ A (thus f ◦ δB ⊃ δB ◦ f for all B ∈ A );
(D) f(A+B) ⊃ f(A) + f(B) for all A,B ∈ A .

Proof. That (A) and (B) are equivalent is easily proved.

Assume that (B) holds. Then f(A+B) ⊃ f(A+ y) ⊃ f(A) + y for all y ∈ B. Now
(C) follows on taking the union over all y.

If (C) holds we know that f(A + B) ⊃ A + f(B), which implies that f(A + B) ⊃
f(A+ f(B)) by (2.2.5). Applying (C) a second time we see that the latter set contains
f(A) + f(B); hence (D) holds.

Finally, if (D) holds, then f(A+ x) ⊃ f(A) + f({x}) ⊃ f(A) + x. Thus (B) holds.

In the case of a vector space and a mapping which commutes with homotheties, thus
f(λA) = λf(A) for nonnegative λ, it follows from (D) that

f(λA+ µB) ⊃ λf(A) + µf(B) for all λ, µ > 0 and all A,B ∈ A ,
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which is a property analogous to concavity.13

4.3. Matheron’s structural theorems

We are now acquainted with dilations, erosions, closings, and openings. They are
examples of morphological mappings, but we have so far no idea how general they are.
Are they just some special mappings that we have come across? There are obviously
many more mappings P(G)→P(G), even if we restrict ourselves to mappings which
commute with translations, which is reasonable to do. More precisely, we ask the
following two questions.

How special are the dilations δB and erosions εB that we have studied so far in the
family of all increasing mappings which commute with translations?

How special are the closings γB and the openings ηB we have constructed in the
family of all closings and openings which commute with translations?

Georges Matheron proved two results which gave very neat answers to these two
questions.

Matheron’s first structural theorem (1975: Proposition 8-1-3) describes the structure
of increasing mappings in Rn which commute with translations in terms of dilations
and erosions. Actually the result holds in every abelian group. It is important because
it underlines the fact that the mappings we already know are the building blocks of a
much more general class of mappings.

For any mapping f : P(G1) → P(G2) of the family of all subsets of an abelian
group G1 into those of another, G2, we define its kernel as

ker f = {A ∈P(G1); 0 ∈ f(A)}.

The notion is due to Matheron (1975:217). A mapping which commutes with all
translations is completely determined by its kernel.

We mention some examples of kernels.

1. The kernel of the identity Id : P(G)→P(G) is ker Id = {A ∈P(G); 0 ∈ A}.
2. The kernel of the mapping fd dual to f is ker fd = {A; 0 /∈ f

(
{A
)
}.

3. The kernel of a translation Tb, Tb(A) = A+ b, is kerTb = {A;−b ∈ A}.
4. A dilation δB : A 7→ A+B has kernel ker δB = {A;A ∩ B̌ 6= Ø}.
5. The kernel of an erosion εB : A 7→ A	B is ker εB = {A;A ⊃ B}.
6. The kernel of a closure operator γB = εB ◦ δB is

ker γB = {A;B ⊂ A+B} =
⋂
y∈B

ker δB−y.

7. An opening ηB = δB ◦ εB : A 7→ AB has kernel

ker ηB = {A;∃y ∈ B such that A ⊃ B − y} =
⋃
y∈B

ker εB−y.

13This property was introduced and used to study closure operators appearing in the theory of
partial differential equations by Kiselman (1969); however, I did not know at the time that it is
implied by (A).
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Theorem 4.3.1 (Matheron’s first structural theorem). Let G be an abelian group and
f : P(G)→P(G) an increasing mapping which commutes with translations. Then f
is a union of erosions as well as an intersection of dilations:

(4.3.1) f(A) =
⋃

B∈ker f

εB(A) =
⋃

B∈ker f

(A	B) =
⋂

B∈ker fd

δB̌(A) =
⋂

B∈ker fd

(A−B),

for all A ∈P(G), where fd(A) = {f
(
{A
)

is the mapping dual to f .

Proof. If B ∈ ker f , then 0 ∈ f(B) and, since f commutes with all translations,
x ∈ f(x + B) for all x ∈ G. Therefore, given any subset A of G, x ∈ εB(A) implies
that x + B ⊂ A and x ∈ f(x + B) ⊂ f(A) (f is increasing). Since x is arbitrary in
εB(A), we have proved that εB(A) ⊂ f(A) for all A and all B ∈ ker f . Letting B vary
in ker f we see that the union of all the εB(A) is contained in f(A).

To prove the inclusion in the other direction, take an arbitrary element x of f(A).
Then 0 = x − x ∈ f(A) − x = f(A − x), i.e., A − x ∈ ker f . If we now define B as
A− x, then x ∈ εB(A). This means that there exists a B ∈ ker f such that x ∈ εB(A),
and we have proved that f(A) is contained in the union of all the εB(A).

The second representation follows on applying the first to fd.

Matheron’s second structural theorem requires a preliminary study of extensions of
increasing mappings which we shall now undertake.

Let X be an arbitrary set and A a subset of P(X). For any mapping f : A →
P(X) we then define

(4.3.2) f�(B) =
⋃

A∈A
A⊂B

f(A) and f �(B) =
⋂

A∈A
A⊃B

f(A), B ∈P(X).

Lemma 4.3.2. Let A be any subset of P(X), where X is an arbitrary set. The
mappings f� and f � are dual to each other in the sense that (f�)

d = (fd)� and (f �)d =
(fd)�. If f : A → P(X) is an increasing mapping, then f� is the smallest increasing
extension of f to all of P(X), and f � is the largest increasing extension of f to all of
P(X).

Proof. To prove the duality result is straightforward. If f is increasing, it follows that
f� is actually an extension of f , i.e., that f�

∣∣
A

= f . If g is an arbitrary increasing
extension, we see that we must have g(B) ⊃ f�(B) for all B, proving that f� is the
smallest increasing extension. The result for f � follows by duality.

Proposition 4.3.3. Let X be any set, A a subset of P(X), and let g : A →P(X) be
an opening in the sense of Definition 2.2.4. Assume that g(A) ∈ A for every A ∈ A .
Then g� : P(X)→P(X) is an opening.

Proof. That g� is increasing and antiextensive is obvious. It remains to be proved
that g� is idempotent. We know that g� is an extension of g, which implies that
g�(g(A)) = g(g(A)) = g(A) for all A ∈ A , since by hypothesis g(A) ∈ A . Hence
g�(g�(B)) ⊃ g�(g(A)) = g(A) if A ∈ A and A ⊂ B. On taking the union over all
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A ∈ A contained in B we get

g�(g�(B)) ⊃
⋃

A∈A
A⊂B

g(A) = g�(B) ⊃ g�(g�(B)),

showing that g� is idempotent.

Remark. The hypothesis that g maps A into itself cannot be dispensed with. Indeed,
take X = [0,+∞[, Aj = [0, j] for j = 0, 1, 2, 3, and define g(Aj) = Aj−1 = [0, j − 1],
j = 1, 3, and A = {A1, A3}. Then g : A → P(X) is an opening in the sense of
Definition 2.2.4; in particular (2.2.11) holds: g(Aj) ⊂ Ak implies g(Aj) ⊂ g(Ak) for
j, k = 1, 3. But g� is not idempotent: A0 = g�(g�(A3)) 6= g�(A3) = A2.

For any mapping f : A →P(G) we shall say that a set A is f -invariant if f(A) =
A, and we shall denote by Invf = {A ∈ A ; f(A) = A} the set of all f -invariant sets,
the invariance set of f . If f is a closing, this is the set of all f -closed elements; if f is
an opening, it is the set of all f -open elements.

Proposition 4.3.4. If g : A → P(X) is an opening, then Invg is closed under the
formation of unions (in particular Ø ∈ Invg), and g =

(
IdInvg

)
�

∣∣
A

, i.e., g is the smallest
increasing extension to P(X) of the identity on Invg. Conversely, let a class C ⊂
P(X) be given. Then (IdC )�, the smallest increasing extension of the identity on C ,
is an opening h, and Invh is the class closed under the formation of unions generated
by C .

Proof. If Aj ∈ A , j ∈ J , are g-invariant, then g(
⋃
Aj) ⊃ g(Ak) = Ak for all k, so

g(
⋃
Aj) ⊃

⋃
Ak. Since on the other hand we always have g(

⋃
Aj) ⊂

⋃
Aj, it follows

that
⋃
Aj ∈ Invg.

That g is the smallest increasing extension of the identity on Invg follows from(
IdInvg

)
� (B) =

⋃
A∈A
A⊂B

A = B if B ∈ A .

Since the inclusion mapping C → P(X) is an opening satisfying the condition in
Proposition 4.3.3, it follows that (IdC )� is an opening. To prove the last assertion in
the statement of the proposition, we note that by the definition of (IdC )�, h(B) = B
implies that B = h(B) =

⋃
(A;A ∈ C , A ⊂ B), which means that B belongs to the set

closed under union formation generated by C .

In case X = G is an abelian group, let us say that a subset B of Invg is a basis for
Invg if Invg is the class closed under formation of unions and translations generated by
B. This means that Invg is the family of all sets of the form

⋃
(B,x)∈M(B+ x) for some

subset M of B ×G.
We are now ready to state and prove Matheron’s second structural theorem (1975:

Proposition 7-1-3), which characterizes general closings and openings in terms of the
elementary closings and openings γB and ηB by a given subset B. His result, which
shows that the latter are not so special as one could imagine, is as follows.
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Theorem 4.3.5 (Matheron’s second structural theorem). Let G be an abelian group
and g : P(G) → P(G) a mapping which commutes with translations. Then g is an
opening if and only if it admits a representation

g(A) =
⋃

B∈B

ηB(A) =
⋃

B∈B

AB

for some class B ⊂ P(G). If this is so, the class of sets invariant under g is the
family of all elements of B and all translates and unions of these. If g is an opening,
the dual mapping gd is a closing and has the representation

gd(A) =
⋂

B∈B

γB(A) =
⋂

B∈B

AB.

Proof. First assume that g is an opening. The smallest extension of the identity on
Invg is given by

(4.3.3) g(A) =
(
IdInvg

)
� (A) =

⋃
C∈Invg

C⊂A

C =
⋃

B∈B

⋃
x∈G

(B + x;B + x ⊂ A),

if B is a basis for Invg as defined before the statement of the theorem. In fact, given a
set C ∈ Invg contained in A, there is a subset M of B ×G such that

C =
⋃

(B,x)∈M

(B + x;B + x ⊂ A) ⊂
⋃

(B,x)∈B×G

(B + x;B + x ⊂ A) = C ′,

but since C ′ is also admissible, the union will not be changed if we add it, and (4.3.3)
follows. Let us now note that

AB = (A	B) +B =
⋃
x∈G

(B + x;B + x ⊂ A).

Therefore the last expression in (4.3.4) is equal to
⋃

B∈B AB.
Conversely, if gj, j ∈ J , are openings, so is g defined by g(A) =

⋃
gj(A). Indeed, g

is certainly increasing and antiextensive, and idempotency follows from

g(g(A)) =
⋃
j∈J

gj

(⋃
k∈J

gk(A)

)
⊃
⋃
j∈J

gj(gj(A)) =
⋃
j∈J

gj(A) = g(A).

4.4. Exercises

4.1. Find examples (for instance in Z2) that show that we do not always have γB(A1∪A2) =
γB(A1) ∪ γB(A2) or γB(A1 ∩ A2) = γB(A1) ∩ γB(A2); in other words, γB = εB ◦ δB is in
general neither a dilation nor an erosion.

4.2. Define in an abelian group G a mapping η = δC ◦ εB, thus η(A) = (A 	 B) + C,
A ∈P(G), where B and C are fixed subsets of G. Prove that η is antiextensive if and only
if C ⊂ B, which in turn is equivalent to η(G r {0}) ⊂ G r {0}. Prove that if B and C are
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nonempty bounded subsets of Zn or Rn with C ⊂ B, then η is idempotent only if B = C,
thus only if η(A) = AB. Hint: Calculate η(B) and η(η(B)).

4.3. Study the dual mapping γ = εČ ◦ δB̌.

5. Distance transforms

5.1. Definition and basic properties of distance transforms
Distance transforms of digital images are a useful tool in image analysis. The distance
transform of a set (or shape, or image) is a function on the image carrier. Outside the
set, the value of the distance transform at a certain pixel is defined to be the distance
from that pixel to the set. Inside the set, it is often defined as the distance to the
complement, but we shall find it convenient to define it instead as minus the distance
to the complement, for a very simple reason: the distance transform of a convex set in
Rn is a convex function with this definition.

The distances can be measured in different ways, e.g., by approximating the Eu-
clidean distance in the two-dimensional image, the Euclidean distance between two
pixels x = (x1, x2) and y = (y1, y2) being

d2(x, y) = ‖x− y‖2 =
√

(x1 − y1)2 + (x2 − y2)2.

Other distances that have been used are the city-block distance or l1-distance

d1(x, y) = ‖x− y‖1 = |x1 − y1|+ |x2 − y2|

and the chessboard distance or l∞-distance

d∞(x, y) = ‖x− y‖∞ = max(|x1 − y1|, |x2 − y2|).

We shall define many more distances on Zn in section 5.3.
Let X be any nonempty set. Let us agree to call a function d : X × X → R a

distance if d is positive definite:

(5.1.1) d(x, y) > 0 with equality precisely when x = y, x, y ∈ X,

and symmetric:

(5.1.2) d(x, y) = d(y, x) for all x, y ∈ X.

A distance will be called a metric if in addition it satisfies the triangle inequality:

(5.1.3) d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X.

Every nonempty set can be equipped with a metric, viz. the discrete metric d0

defined as

(5.1.4) d0(x, x) = 0, d0(x, y) = 1 if x 6= y.

The setX will usually be the image plane Z2 consisting of all points in the plane with
integer coordinates (the addresses of the pixels), or more generally the image space Zn.
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Whenever X is an abelian group it is of particular interest to use translation-invariant
distances, i.e., those which satisfy

(5.1.5) d(x− a, y − a) = d(x, y) for all a, x, y ∈ X.

A metric space is simply a set provided with a metric. In any metric space we
define balls as follows: the closed ball of center c and radius r (or the non-strict ball)
is the set of all points x satisfying d(x, c) 6 r and will be denoted by B6(c, r); the
open ball of center c and radius r (or the strict ball) is the set of all points satisfying
the strict inequality d(x, c) < r; it will be denoted by B<(c, r). In the Euclidean case
these notions are well known, but in general we must be a bit careful: the closure of
B<(c, r) with respect to the topology defined by d is not necessarily equal to B6(c, r),
and the interior of B6(c, r) is not necessarily equal to B<(c, r) (see section 5.5). Also
note that if two balls B<(c1, r1) and B<(c2, r2) with r1, r2 > 0 are disjoint, then we
can only conclude that max(r1, r2) 6 d(c1, c2), whereas in a normed space a stronger
inequality, max(r1, r2) 6 r1 + r2 6 ‖c1 − c2‖, holds.

Every metric defines a topology: a set is declared to be open if and only if it is
a union of open balls. However, we shall often use another topology on X than that
defined by d.

We note that in any abelian group with a translation-invariant metric we have the
relations

B<(c1, r1) +B<(c2, r2) ⊂ B6(c1, r1) +B<(c2, r2) ⊂ B<(c3, r3);

B6(c1, r1) +B6(c2, r2) ⊂ B6(c3, r3),

where c1 + c2 = c3, r1 + r2 = r3. In a vector space, with d defined by d(x, y) = ‖x− y‖
using some norm ‖ · ‖, the inclusions here are actually equalities if r1, r2 > 0.

Definition 5.1.1. In a metric space X we define the distance transform DTA of a
subset A of X by

(5.1.6) DTA(x) =


− inf

y/∈A
d(x, y), x ∈ A;

inf
y∈A

d(x, y), x ∈ X r A.

Lemma 5.1.2. The distance transform satisfies

(5.1.7) DTA(x) =

{
− sup

(
r;B<(x, r) ⊂ A

)
, x ∈ A;

sup
(
r;B<(x, r) ⊂ {A

)
, x ∈ X r A.

Proof. If x /∈ A, y ∈ A, and B<(x, r) ⊂ {A, then r 6 d(x, y). This shows that the
supremum of all such r cannot exceed the infimum of all d(x, y) with y ∈ A. On the
other hand, if r1 is larger than the supremum of all r such that B<(x, r) does not meet
A, then there exists a point z ∈ A such that d(x, z) < r1, which shows that the infimum
of d(x, z) over all such z is less than r1, hence less than or equal to sup r. This proves
the result when x /∈ A. The case when x ∈ A is similar.
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Thus when x does not belong to A, the distance transform DTA(x) is what we naturally
understand by the distance from x to A, but we complement this idea by defining also
the distance transform inside A. It is then natural to take it negative there, so that
A is approximately the set where the transform is negative. As already remarked it is
convenient that, in a normed space, the distance transform of a convex set is a convex
function; see Corollary 5.6.3.

Note the symmetry: DTXrA = −DTA. The distance transformation A 7→ DTA is
decreasing in the sense that DTA(x) > DTB(x) for all x ∈ X if A ⊂ B.

In the two extreme cases A = Ø and A = X we have DTØ = +∞ and DTX = −∞.
In all other cases DTA is real-valued, DTA : X → R.

Every real-valued function can be written as the difference between two nonnegative
functions: f = f+ − f−, where f+ = max(f, 0) and f− = max(−f, 0). In particular,
DTA = (DTA)+ − (DTA)−. The function (DTA)− is sometimes called the quench
function of A.14

Proposition 5.1.3. If A is a subset of a metric space X other than Ø and X, then
(DTA)+ and (DTA)− are Lipschitz continuous with Lipschitz constant 1 with respect
to d:

(5.1.8) |(DTA)+(x)− (DTA)+(y)| 6 d(x, y), x, y ∈ X,

and similarly for (DTA)−. (In particular the restrictions DTA

∣∣
A

and DTA

∣∣
{A

are Lip-
schitz continuous with Lipschitz constant 1.) As a consequence, DTA is Lipschitz con-
tinuous with Lipschitz constant 2. If X is a vector space with distance d(x−y) = ‖x−y‖
defined by a norm, the Lipschitz constant is 1.

Let us say for brevity that a function is Lip-1 if it is Lipschitz continuous with Lipschitz
constant 1, i.e., when it satisfies (5.1.8).

Proof. The restriction to A of DTA is the supremum of a family of Lip-1 functions
x 7→ d(x, y); it is easy to prove that this operation preserves the Lipschitz constant.
It follows that |(DTA)−(a) − (DTA)−(b)| 6 d(a, b) if a, b ∈ A. If a, b /∈ A the function
takes the value zero at both points.

Now take a ∈ A and b ∈ X rA and define r = −DTA(a) > 0 and s = DTA(b) > 0.
Then the open ball B<(a, r) is contained in A, and the open ball B<(b, s) is contained
in {A, so that r, s 6 d(a, b). The two balls are disjoint. In general this only implies
that max(r, s) 6 d(a, b), but in a normed vector space case the stronger inequality
s+ r 6 d(a, b) follows, thus that 0 6 DTA(b)−DTA(a) = s+ r 6 d(a, b); proving that
the Lipschitz constant is 1 in this case.

Returning to the general case, we note that, when a ∈ A and b /∈ A, we have
0 = −(DTA)−(b) 6 DTA(a)− − DTA(b)− = r 6 d(a, b) and the Lipschitz continuity of
(DTA)− is established. Passing to the complement, we obtain the result for (DTA)+ =
(DTXrA)−.

The difference DTA = (DTA)+ − (DTA)− thus has Lipschitz constant at most 2.

The Lipschitz constant 2 in the proposition cannot be improved as can be seen from
the simplest of examples: X = Z with the usual metric and A = {0}. However, in the
distance transform there is a jump 2 only when we go from a point in A to a point in

14Serra (1982:377), who attributes the term to L. Calabi. However, it seems not to be widely used.
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X rA. This indicates that it might be possible to adjust the distance transform in A
by an additive constant so that the modified function is Lip-1. The following results
makes this idea explicit.

Theorem 5.1.4. For a subset A in a metric space X we define two quantities

α(A) = sup
(
r + s− d(a, b)

)
and β(A) = inf

(
r + s+ d(a, b)

)
,

where the supremum and infimum are taken over all points a ∈ A, b /∈ A, and all balls
B<(a, r), B<(b, s) that are disjoint and maximal with this property. We also define a
modified distance transform as

(5.1.9) FA,ω(x) =

{
DTA(x) + ω, x ∈ A;

DTA(x), x ∈ X r A.

Then if A and X r A are nonempty and α(A) 6 β(A), there exists a real number ω
such that FA,ω is Lip-1; we can take ω as any number satisfying α(A) 6 ω 6 β(A).
Conversely, if the function FA,ω is Lip-1 for some ω, then α(A) 6 β(A).

Proof. We have to prove that

(5.1.10) |FA,ω(b)− FA,ω(a)| 6 d(a, b), a, b ∈ X.

The proof of Proposition 5.1.3 shows that the inequality holds if a, b ∈ A as well as if
a, b /∈ A. The only question left is when a ∈ A and b /∈ A. Then we have

(5.1.11) |FA,ω(b)− FA,ω(a)| = |s− (−r + ω)| = |r + s− ω|,

where r and s are defined as in the proof of Proposition 5.1.3. If α(A) 6 ω 6 β(a)
we know that for all a, b, r, s under consideration we have r + s − d(a, b) 6 α(A) and
r + s+ d(a, b) > β(A). With any ω betwen α(A) and β(A) we thus get

r + s− d(a, b) 6 ω 6 r + s+ d(a, b),

which may be written as |r + s − ω| 6 d(a, b). With this inequality, (5.1.11) implies
(5.1.10), which means that the modified distance transform is Lip-1.

Conversely, if (5.1.10) holds for all a, b, r, s that we consider, then |r+s−ω| 6 d(a, b)
must be true, which leads to the inequality α(A) 6 β(A).

In a vector space we have α(A) = β(A) = 0 for every nonempty A 6= X. Hence ω = 0
is the only choice; this is already clear from Proposition 5.1.3.

In Zn with the l∞ metric, we have α(A) = 1, β(A) = 3 for all A 6= Ø,Zn, so that
any ω ∈ [1, 3] will do.

In general the condition α(A) 6 β(A) for all A is a strong regularity condition
on the metric space X. For instance, if there exist points a0 and b0 in X such that
r + s > d(a0, b0), then α(A) > 0 for any set A such that a0 ∈ A and b0 /∈ A. The
condition α(A) 6 β(A) implies that points in A and {A must not come too close:
α(A) 6 β(A) 6 r + s + d(a, b) 6 3d(a, b), so that d(a, b) > 1

3
α(A) > 0 for all sets A

such that a0, a ∈ A and b0, b ∈ {A.
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Proposition 5.1.5. Let G be an abelian group with a translation-invariant metric
d(x, y) = f(x − y), and let A be an arbitrary subset of G. We denote by iA the
indicator function of A. Then

(DTA)+ = max(DTA, 0) = iA ut f and (DTA)− = max(−DTA, 0) = i{A ut f,

and, taking the difference between the two,

DTA = (DTA)+ − (DTA)− = (iA ut f)− (i{A ut f).

Proof. We see that in X r A we have DTA = iA ut f . Passing to the complement we
get DTA = −DT{A = −(i{A ut f) in A. From this the result follows.

Proposition 5.1.6. Let G be an abelian group with a translation-invariant metric d.
Then for any subsets A,B of G we have

(DTA+B)+ = (DTA)+ ut iB = iA ut (DTB)+ = (DTA)+ ut (DTB)+.

Proof. We know from the preceding proposition that (DTA)+ = iA ut f , where f(x) =
d(x, 0) is the distance from x to the origin. Hence, using freely the associativity and
commutativity of infimal convolution as well as the functional equation f ut f = f (cf.
Lemma 5.3.3 below),

(DTA)+ ut (DTB)+ = (iA ut f) ut (iB ut f) = (iA ut iB) ut f = iA+B ut f = (DTA+B)+.

Also

(DTA)+ ut iB = (iA ut f) ut iB = (iA ut iB) ut f = iA+B ut f = (DTA+B)+.

5.2. Distance transforms and sublevel sets
The sublevel sets of a function f : X → [−∞,+∞] are the sets of the form

{x ∈ X; f(x) < s} or {x ∈ X; f(x) 6 s}

for some element s of [−∞,+∞]. For brevity we shall denote them by {f < s} rather
than {x ∈ X; f(x) < s} when no misunderstanding seems possible.

Lemma 5.2.1. If X is a metric space with metric d, and DTA is the distance transform
of a subset A of X calculated with the use of d, then the closure, interior and boundary
of A can all be recovered from knowledge of the sublevel sets of DTA:

A = {DTA 6 0}, A◦ = {DTA < 0}, ∂A = {DTA = 0}.

Moreover DTA = DTA in {A and DTA◦ = DTA in A.
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Proof. To prove the equality A = {x; DTA(x) 6 0}, first note that if x ∈ A, then
DTA(x) 6 0 by definition. If on the other hand x /∈ A, then x ∈ A if and only if there
are points y ∈ A such that d(x, y) is arbitrarily small, which happens if and only if
DTA(x) = 0. This proves the first equality.

The second equality in the statement follows by passing to the complement, and
the third by taking the set-theoretical difference Ar A◦ = ∂A.

If A is any subset of Rn satisfying B<(c, r) ⊂ A ⊂ B6(c, r), where r > 0 and we use the
distance d(x, y) = ‖x−y‖ defined by some norm ‖·‖ on Rn, then DTA(x) = ‖x−c‖−r
provided r > 0. This simple example shows that we cannot expect to recover A exactly
from DTA; we have to be content with its interior and closure. However, if X = Zn,
then the topology induced by a norm in Rn is the discrete topology, so that, for any
set A,

A = A◦ = A = {DTA < 0} = {DTA 6 0}.

The boundary is empty and DTA never takes the value zero.

Proposition 5.2.2. Let G be an abelian group with a translation-invariant metric d,
and let A be an arbitrary subset of G. Then for all positive numbers r and ε we have

{DTA < r} = A+B<(0, r) ⊂ A+B6(0, r) ⊂ {DTA 6 r} ⊂ {DTA < r + ε};

and

{DTA 6 −r} = A	B<(0, r) ⊃ A	B6(0, r) ⊃ {DTA < −r} ⊃ {DTA 6 −r − ε}.

This is easy; we omit the proof. It is enough to prove the first chain of inclusions; the
second follows by duality.

Give examples to show that where an inclusion sign is written, the inclusion may
be strict.

The dilations by the balls B = B<(0, r), A+B<(0, r) = δB(A), thus determine the
strict sublevel sets of DTA for positive values; similarly for the erosions A	B<(0, r) =
εB(A) and the nonstrict sublevel sets of DTA for negative values.

Proposition 5.2.3. Let G be an abelian group and fj : G 7→ [−∞,+∞], j = 1, 2, two
arbitrary functions defined on G. Define f3 = f1 ut f2. Then for all real numbers r1, r2
and r3 = r1 + r2 we have

(5.2.1) {f1 < r1}+ {f2 < r2} ⊂ {f1 < r1}+ {f2 6 r2} ⊂ {f3 < r3};

(5.2.2) {f1 6 r1}+ {f2 6 r2} ⊂ {f3 6 r3}.

Moreover, for any real number r3 we have

(5.2.3)
⋃

r1∈R

(
{f1 < r1}+ {f2 < r3 − r1}

)
= {f3 < r3}.
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Proof. We always have (f1 ut f2)(x1 + x2) 6 f1(x1)+· f2(x2), so if f1(x1) < r1 and
f2(x2) 6 r2, then f3(x1 + x2) < r1 + r2 = r3. This proves (5.2.1). Similarly if
f1(x1) 6 r1.

Formula (5.2.3) follows from (3.2.10). We can also prove it directly as follows.
Assume that f3(x3) < r3. Then there exist two points x1 and x2 with x1 + x2 = x3

such that f1(x1) + f2(x2) < r3. It is now possible to find a number r1 such that
f1(x1) < r1 and f2(x2) < r3− r1. This proves one inclusion in (5.2.3); the other follows
from (5.2.1).

When the functions fj are distance transforms and r3 is positive we can improve (5.2.3):

Proposition 5.2.4. Let G be an abelian group equipped with a translation-invariant
metric, and let Aj, j = 1, 2, be two subsets. Then their distance transforms fj = DTAj

satisfy

{f1 ut f2 < r} =
(
{f1 6 0}+ {f2 < r}

)
∪
(
{f1 < r}+ {f2 6 0}

)
= A1 + A2 +B<(0, r)

for all positive r.

Proof. That {f1 ut f2 < r} contains {f1 6 0}∪{f2 < r} follows from Proposition 5.2.3.
To prove the inclusion in the other direction, let us assume that (f1 ut f2)(x3) < r.

Then there exists x1, x2 such that x1 + x2 = x3 and f1(x1) + f2(x2) < r. If both f1(x1)
and f2(x2) happen to be nonpositive, we are done. The case when f1(x1) or f2(x2) is
positive remains to be considered. Assume first that f1(x1) is positive. Then x1 /∈ A1

and we know that, to any given positive ε, there exists a point y1 ∈ A1 such that
d(x1, y1) < f1(x1)+ε. We may choose ε = r−f1(x1)−f2(x2). Define y2 = x1 +x2−y1.
Then f1(y1) 6 0 and the Lipschitz continuity of f2 implies that

f2(y2) 6 f2(x2) + d(y2, x2) < f1(x1) + f2(x2) + ε = r.

(Note that y2 − x2 = x1 − y1, so that d(y2, x2) = d(y1, x1) < f1(x1) + ε.) Hence
x3 = x1 + x2 = y1 + y2 ∈ {f1 6 0}+ {f2 < r}. The case f2(x2) > 0 is similar.

To prove the last equality we note that {f1 6 0} is equal to the closure A1 of A1

and that {f2 < r} = A2 + B<(0, r). However A + B = A + B if B is open, so both
terms in the union simplify to A1 + A2 +B<(0, r).

5.3. Chamfer distances
While the Euclidean distance is easy to visualize geometrically, it has certain drawbacks
when it comes to calculations: we need to keep in memory a vector rather than a scalar
at each pixel; we need more operations per pixel; and, perhaps most importantly, the
Euclidean distance is more difficult to use for various morphological operations, such
as skeletonizing, than for instance the city-block distance; see Borgefors (1994). For a
study of the computation of the Euclidean distance transform in any dimension, see
Ragnemalm (1993).

In the case of the city-block (l1) and chessboard (l∞) distances, one first defines
the distances between neighboring pixels; we shall call them, following Starovoitov
(1995:501), prime distances. Then the distance between any two pixels is defined by
following a path and taking as the distance the minimum over all admissible paths
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of the sum of the prime distances. As an example, for the city-block distance the
admissible paths consists of horizontal and vertical moves only, and the prime distance
between two pixels which share a side is declared to be one. Thus the distance is
calculated successively from neighboring pixels, which is convenient both for sequential
and parallel computation. This is impossible for the Euclidean distance in spaces of
dimension two or more.

It turns out that many metrics used in image analysis are conveniently defined from
the prime distances by infimal convolution over all grid points. We shall now explain
this, following Kiselman (1996).

The following result is well known and easy to prove.

Lemma 5.3.1. Any translation-invariant distance d on an abelian group G defines a
function f(x) = d(x, 0) on X which is positive definite:

(5.3.1) f(x) > 0 with equality precisely when x = 0;

and symmetric:

(5.3.2) f(−x) = f(x) for all x ∈ X.

Conversely, a function f which satisfies (5.3.1) and (5.3.2) defines a distance d(x, y) =
f(x− y).

Lemma 5.3.2. Let d be a translation-invariant distance on an abelian group G and f
a function on G related to d as in Lemma 5.3.1. Then d is a metric if and only if f is
subadditive:

(5.3.3) f(x+ y) 6 f(x) + f(y) for all x, y ∈ X.

Proof. If d is a metric, we can write, using the triangle inequality and the translation
invariance,

f(x+ y) = d(x+ y, 0) 6 d(x+ y, y) + d(y, 0) = d(x, 0) + d(y, 0) = f(x) + f(y).

Conversely, if f is subadditive,

d(x, z) = f(x− z) 6 f(x− y) + f(y − z) = d(x, y) + d(y, z),

proving the triangle inequality.

In the definition of an infimal convolution the infimum operator acts over an infinite
set of points, and therefore sometimes cannot be computed in finitely many steps.
However, there are many situations where the infimum is in fact a minimum over a
finite set. One such case is when f is bounded from below and g is coercive in the
strong sense that all sublevel sets {y; g(y) 6 a}, a ∈ R, are finite. Then in particular
the sublevel set {y; g(y) 6 (f ut g)(x) + 1− inf f} is finite for every x, and it is enough
to search for a minimizing y in that set. Even simpler is the case when g is less than



32 Chapter 5. Distance transforms

+∞ in a finite set P only. Then the infimal convolution with any function f is equal
to the minimum

(f ut g)(x) = min
y∈P

(
f(x− y)+· g(y)

)
, x ∈ G.

This is indeed the case for the distances we shall consider: here P is a small set around
the origin where the prime distances are defined.

We have seen that subadditive functions are important when it comes to defining
metrics (Lemma 5.3.2). Therefore it is of interest to know that subadditivity can be
characterized using infimal convolution:

Lemma 5.3.3. A function f on an abelian group is subadditive in the sense of (5.3.3)
if and only if it satisfies the inequality f ut f > f . If f(0) = 0, this is equivalent to the
equation f ut f = f .

Proof. If f is subadditive we have f(x− y)+· f(y) > f(x), so taking the infimum over
y gives (f ut f)(x) > f(x). Conversely, f(x)+· f(y) > (f ut f)(x + y) for all x, y, so
f ut f > f implies subadditivity. Finally, we always have (f ut f)(x) 6 f(x)+· f(0), so
if f(0) = 0 it follows that f ut f 6 f .

Infimal convolution is a commutative and associative operation on functions (see Propo-
sition 3.2.1), so we can write iterated convolutions as f ut g ut h without using paren-
theses. A k-fold convolution can be defined by

(5.3.4) (f1 ut · · · ut fk)(x) = inf
k∑

j=1

fj(x
j), x ∈ G,

where the infimum is over all choices of elements xj ∈ G such that x1 + · · · + xk = x,
and with the understanding that the sum receives the value +∞ as soon as one of the
terms has that value, even in the presence of a value −∞. In (5.3.4) it is natural to
think of a path leading from 0 to x consisting of segments [0, x1], [x1, x1 + x2], . . . ,
[x1 + · · ·+ xk−1, x]; if G = Z2 this path can be realized in R2.

If A is a subset of an abelian group G, we shall write N · A for the semigroup
generated by A:

N · A = {
∑
miai; mi ∈ N, ai ∈ A} ,

where all but finitely many of the mi are zero. Similarly, we shall write Z · A for the
group generated by A:

Z · A = {
∑
miai; mi ∈ Z, ai ∈ A} .

If A is symmetric, A = −A, then of course Z · A = N · A.
It seems plausible that if a repeated convolution F ut F ut · · · ut F has a limit f as

the number of terms tends to infinity, then this limit will satisfy the equation f ut f = f .
This is actually so under very general hypotheses:

Theorem 5.3.4. Let F : G→ [0,+∞] be a function on an abelian group G satisfying
F (0) = 0. Define a sequence of functions (Fj)

∞
j=1 by putting F1 = F , Fj = Fj−1 ut F ,

j = 2, 3, . . . , in other words, Fj is the infimal convolution of j terms all equal to
F . Then the sequence (Fj)j is decreasing and its limit limFj = f > 0 is subadditive.
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Moreover dom f = N · domF , i.e., f is finite precisely in the semigroup generated by
domF .

Remark. It is easy to prove that f is the largest subadditive minorant of F .

Proof. That the sequence is decreasing is obvious if we take y = 0 in the definition of
Fj+1:

Fj+1(x) = inf
y

(
Fj(x− y) + F (y)

)
6 Fj(x) + F (0) = Fj(x).

Next we shall prove that f(x + y) 6 f(x) + f(y). If one of f(x), f(y) is equal to
+∞ there is nothing to prove, so let x, y be given with f(x), f(y) < +∞ and fix a
positive number ε. Then there exist numbers j, k such that Fj(x) 6 f(x) + ε and
Fk(y) 6 f(y) + ε. By associativity Fj+k = Fj ut Fk, so we get

f(x+ y) 6 Fj+k(x+ y) 6 Fj(x) + Fk(y) 6 f(x) + f(y) + 2ε.

Since ε is arbitrary, the inequality f(x+y) 6 f(x)+f(y) follows. Finally, the statement
about dom g is an easy consequence of (3.2.6).

Theorem 5.3.5. With F as in Theorem 5.3.4, assume in addition that there is a
translation-invariant metric d1 on G such that F (x) > d1(x, 0) for all x ∈ G. Then
the limit f of the sequence Fj also satisfies this inequality, f(x) > d1(x, 0), so that
it is positive definite. If F is symmetric, f is also symmetric and defines a metric
d(x, y) = f(x − y) > d1(x, y) on the subgroup Z · P = N · P of G generated by
P = domF .

Proof. Define H(x) = d1(x, 0) and let Hj be the infimal convolution of j terms equal
to H. From Lemmas 5.3.2 and 5.3.3 it follows that H ut H = H and so all Hj are equal
to H. Therefore F > H implies Fj > H and also the limit f must satisfy f > H. This
proves the theorem.

When applying this theorem we could for instance let d1 be εd0, where ε is a small
positive number and d0 is the discrete metric defined by (5.1.4). In Zn we can also use
d1(x, y) = ε‖x− y‖ for any norm on Rn.

Corollary 5.3.6. Let P be a finite set in an abelian group G containing the origin,
and let F be a function on G with F (0) = 0, taking the value +∞ outside P and
finite positive values at all points in P r {0}. Then f = limFj is a positive definite
subadditive function. If P is symmetric and F (−x) = F (x), then f defines a metric
on the subgroup Z · P = N · P of G generated by P .

Proof. Since P is finite, there is a positive number ε such that F (x) > ε for all x ∈ P
except x = 0. Thus F (x) > εd0(x, 0), where d0 is the discrete metric defined by (5.1.4).
We can now apply the theorem.

Definition 5.3.7. Let us say that a metric d(x, y) = f(x − y) is a chamfer distance,
or finitely generated if it is constructed as in Corollary 5.3.6.
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It is easy to prove that the Euclidean metric d(x, y) =
√∑

(xj − yj)2 on Zn is a chamfer
distance if and only if n 6 1.

Borgefors (1984:324, 1986:345) calls F (x−y) the local distances ; Verwer (1991:672)
adopted this term. Starovoitov (1995:501) calls F the prime distance function. The
resulting metric, (x, y) 7→ f(x−y), was called a quasi-Euclidean distance by Montanari
(1968) and a chamfer distance by Borgefors (1984:326). The term has then been used,
e.g., by Verwer (1991:672) and Marchand-Maillet & Sharaiha (2000:21). However,
Borgefors herself now prefers the term weighted distances, and refers to them as con-
structed by chamfering (Gunilla Borgefors, personal communication 2002-03-22); the
latter term is derived from the method of calculating distance transforms by passing
a mask twice over the image. Nevertheless, the term chamfer distance for the metrics
constructed in Corollary 5.3.6 has won acceptance.

It is by no means necessary that f is positively homogeneous in Corollary 5.3.6. In
fact, we can let P = {0,±1,±2} ⊂ Z and define F (±1) = a, F (±2) = b, where a and b
are arbitrary positive numbers. If b > 2a, then f(x) = a|x| for all x ∈ Z, but if b < 2a,
then f(x) = 1

2
b|x| when x is even, x = 2k, k ∈ Z, whereas f(x) = bk + a > 1

2
b|x| when

x is odd, x = ±(2k + 1), k ∈ N. Nevertheless f is subadditive.

A more interesting example is perhaps this in two dimensions. Let P =
{x ∈ Z2; |xj| 6 1}, and define the prime distances as F (±1, 0) = F (0,±1) = a > 0,
F (±1,±1) = b > 0. Then if b > a we get f(x1, 0) = a|x1|. But if b < a, then
f(2, 0) = 2b < 2a, so that f(2, 0) < 2f(1, 0) = 2a. In fact, by the definition of infimal
convolution, f(2, 0) 6 F2(2, 0) 6 F (1, 1) + F (1,−1) = b + b. On the other hand, it is
not difficult to see that for any k, Fk(2, 0) > 2b, so that actually f(2, 0) = 2b. This
is because if we take k > 2 nonzero steps to go from the origin to (2, 0), the distance
assigned to the path is at least F (x1) + · · ·+ F (xk) > kb.

Several metrics on Z2 have been studied. When presenting the generating function
F defining the prime distances it shall be understood in the sequel that F is invariant
under permutation and reflection of the coordinates. Therefore it is enough to define
F (x) for 0 6 x2 6 x1. Also it is understood that F (0) = 0 in all cases, and that
F (x) = +∞ when not mentioned.

Consider first P = {x ∈ Z2;
∑
|xj| 6 1} and F (1, 0) = 1. Then the corresponding

metric is the city-block (l1) metric, introduced and studied by Rosenfeld & Pfaltz
(1966). If instead we let P = {x ∈ Z2; |xj| 6 1} and F (1, 0) = F (1, 1) = 1, then
the metric is the chessboard (l∞) metric, introduced by Rosenfeld & Pfaltz (1968).
Some other metrics that have been studied are modifications of this; to define them,
put F (1, 0) = a and F (1, 1) = b. Then the choices (a, b) = (1,

√
2) (Montanari 1968);

(a, b) = (2, 3) (Hilditch & Rutovitz 1969); and (a, b) = (3, 4) (Borgefors 1984) have all
been studied. Next we can increase the size of the neighborhood where prime distances
are defined to include the knight’s move (2, 1) as an element of P . The distance defined
by this move only has been studied by Das & Chatterji (1988). It seems more natural,
however, to allow also (1, 0) and (1, 1) in P . Then a very good choice under certain
criteria is F (1, 0) = 5, F (1, 1) = 7, and F (2, 1) = 11 (the 5-7-11 weighted distance).
This distance was proposed and studied by Borgefors (1986).

We always have f 6 F , and it may happen that f(x) < F (x) for some pixel x ∈ P .
Let for instance F (1, 0) = a, F (2, 1) = c, and extend F by reflection and permutation
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of the coordinates. Then

f(1, 0) 6 F3(1, 0) 6 F (2, 1) + F (1,−2) + F (−2, 1) = 3c,

so if 3c < a we get f(1, 0) 6 3c < a = F (1, 0). This is undesirable, because we expect
the prime distance originally defined between the origin and (1, 0) ∈ P to survive and
to be equal to the distance defined by the minimum over all paths. It is therefore
natural to require that f = F everywhere in P .

Since f(x) is the limit of an infinite sequence Fj(x), it is reassuring to know that
this sequence is in fact stationary in the cases of interest here. It is easy to explicitly
give an index j such that Fj(x) is equal to the limit f(x):

Proposition 5.3.8. Let F be as in Corollary 5.3.6. Then the sequence (Fj) is pointwise
stationary, i.e., for every x ∈ G there is an index s(x) such that Fj(x) = f(x) for all
j > s(x).

Proof. We first note that by hypothesis there are two constants c > 0 and C such that

c 6 F (p) 6 C, p ∈ P r {0}.

If x /∈ N · P , then f(x) = Fj(x) = +∞ for all j. If x ∈ N · P , then there is an
index m(x) such that x ∈ P + · · · + P with m(x) terms, and Fm(x)(x) 6 m(x)C. For
every j > m(x) there are elements y1, y2, . . . , yj in P such that x = y1 + · · ·+ yj and
Fj(x) = F (y1) + · · ·+ F (yj) (cf. (5.3.4)). Since F > c in P r {0} we get

Cm(x) > Fm(x)(x) > Fj(x) > qc,

where q is the number of indices i such that yi 6= 0. Hence the number q of nonzero
terms in any representation of Fj(x) with j > m(x) can never be larger than Cm(x)/c.
Now define s(x) = bCm(x)/cc. If j > s(x), then j > q and we have Fj(x) = Fq(x),
since, in the formation of Fj(x), at most q of the terms in a sum x = y1 + · · ·+ yj can
be nonzero if the value of the sum F (y1) + · · ·+F (yj) shall come down to Fq(x). This
means that the sequence Fj(x) is stationary starting with s(x).

Remark. It is not true that Fj(x) = Fj−1(x) implies that Fk(x) = Fj(x) for all k > j,
so Fj(x) = Fj−1(x) at a particular point x is not a sufficient criterion. For example,
we may define F (±1) = 1 and F (±100) = 101. Then Fj(100) = 101 for j = 1, . . . , 99
but F (100) = 100.

Remark. The numbers C and c are structural constants of the prime distances F (p),
p ∈ P , and can be taken as

C = max
p∈P

F (p) and c = min
p∈Pr{0}

F (p).

The number m(x) can be easily estimated in the most common applications. For
instance, for the l∞ metric we can take C = c = 1 and m(x) = ‖x‖∞. Similarly for the
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l1 metric we can take C = c = 1 and m(x) = ‖x‖1. It is therefore easy to estimate the
index s(x).

Corollary 5.3.9. The positive part of a distance transform is a limit (DTA)+ =
lim(iA ut F ut F ut · · · ut F ), where the number of terms tends to infinity. This for-
mula can be used in actual calculations: starting from g0 = iA one calculates gj(x) =
(gj−1 ut F )(x) and stops when the criterion of Proposition 5.3.8 is satisfied.

5.4. Comparing distances
The l1 (city-block)and l∞ (chessboard) metrics in R2 are translation invariant but not
rotation invariant. (In the plane a rotation can distort distances by a factor of up to√

2; in higher dimensions more.) The Euclidean metric is rotation invariant, and it
is desirable to construct a chamfer distance in Zn which is reasonably close to being
rotation invariant. There are many studies on the problem of defining an optimal
distance in a given family of finitely generated distances. Of course the property of
being optimal depends on the criteria employed; beauty is in the eye of the beholder.
A basic problem is how to measure deviation: we may ask how far the quotient of two
quantities is from 1, alternatively how far their difference is from 0. In this section
we shall look briefly into this problem and describe four methods of comparing two
nonnegative functions; two of these have been studied earlier.

It is natural to measure the deviation of a function f : X → [0,+∞[ from a given
nonnegative function g defined on the same set by the smallest constant C ∈ [0,+∞]
such the inequalities f(x) 6 Cg(x) and g(x) 6 Cf(x) hold for all x ∈ X. We introduce
a notation for this constant,

(5.4.1) Λ(f, g) = max

(
sup
x∈X

f(x)

g(x)
, sup
x∈X

g(x)

f(x)

)
,

where the supremum is taken over all points in the common domain of definition,
and where we count 0/0 as 0 and t/0 as +∞ if t > 0 (this is to allow for zeros;
Λ(f, g) is finite only if the two functions have the same zero set). It is noteworthy
that log Λ(f, g) = ‖ log f − log g‖∞ is a distance on a suitable space of functions; in
particular it is symmetric.

If f satisfies an inequality C1 6 f(x)/g(x) 6 C2, then a slightly modified function,
viz. f1 = f/

√
C1C2, satisfies Λ(f1, g) 6

√
C2/C1.

Another, closely related measure of the deviation was studied by Verwer (1991).
He used the functional

(5.4.2) Λ′(f, g) = sup
x∈X

∣∣∣∣f(x)

g(x)
− 1

∣∣∣∣ .
However, one might just as well consider Λ′(g, f). It is readily seen that Λ′(f, g) =
Λ(f, g) − 1 when f > g, and that Λ′(f, g) = 1 − 1/Λ(f, g) when f 6 g. In general,
Λ′(f, g), Λ′(g, f) as well as log Λ(f, g) lie between two limits,

1− 1

Λ(f, g)
6 Λ′(f, g),Λ′(g, f), log Λ(f, g) 6 Λ(f, g)− 1,
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where we have put in also the well-known inequality 1 − 1/t 6 log t 6 t − 1. In
particular, |Λ′(f, g) − log Λ(f, g)| 6 (Λ(f, g) − 1)2/Λ(f, g); the same estimate holds
of course for Λ′(g, f). We may also note that, although Λ′ is not symmetric, it is
approximately symmetric when f and g are close, and there is an estimate

Λ′(f, g)

Λ(f, g)
6 Λ′(g, f) 6 Λ(f, g)Λ′(f, g),

which, by the way, may be written as

Λ(Λ′(f, g),Λ′(g, f)) 6 Λ(f, g).

When f and g are reasonably close, Λ′(f, g) ≈ Λ′(g, f) ≈ log Λ(f, g). For many
purposes either one may be used. Note, however, that Λ(f, g) has better functional
properties than Λ′(f, g). In particular, as already noted, log Λ(f, g) is a metric, whereas
Λ′(f, g) does not satisfy the triangle inequality and is not even symmetric.

We note that for every pair (f, g) of functions there are constants c0, c1, and c2
such that, respectively, Λ(c0f, g), Λ′(c1f, g) and Λ′(g, c2f) are minimal. It is easy to
see that c0 is the geometric mean of c1 and c2.

In particular we shall compare the chamfer distances with the Euclidean norm
g = ‖ · ‖2. In the exercises in this chapter we let the reader determine or estimate
the deviation from the Euclidean norm of some well-known finitely generated metrics.
If the prime vectors are (±1, 0), (0,±1) and (±1,±1) with prime distances a and b
respectively, we note that the optimal prime distances for both Λ and Λ′ are related by
b = a

√
2, but that the actual values are slightly different. For Λ(f, ‖ · ‖2), the optimal

choice is
(5.4.3)

a = a0 =
4

√
2 +
√

2

4
≈ 0.961186523, b = b0 = a0

√
2 =

4

√
2 +
√

2 ≈ 1.359323017,

whereas Verwer (1991:676) found the optimal choice for Λ′(f, ‖ · ‖2) to be

a = a1 ≈ 0.9604 and b = b1 = a1

√
2 ≈ 1.3583.

The exact values are

(5.4.4) a1 =
1

1
2

+
√

1− 1/
√

2
and b1 = a1

√
2.

One can calculate also the optimal choice for Λ′(‖ · ‖2, f), which is

(5.4.5) a = a2 = 1
2

+
1

4

√
2 +
√

2 ≈ 0.961939766 and b = b2 = a2

√
2 ≈ 1.3603882.

In this case the optimality has a clear geometrical meaning: the vertices of the octagon
protrude as much outside the disk as the midpoints of the edges go into the disk. As
we can expect from an earlier remark, a0 =

√
a1a2.
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In her pioneering work on chamfer distances (1984, 1986), Gunilla Borgefors used
instead the functional

(5.4.6) Λ′
2,∞(f) = sup

x∈Z2

∣∣∣∣ f(x)

‖x‖2
− 1

∣∣∣∣ ‖x‖2‖x‖∞
= sup

x∈Z2

∣∣f(x)− ‖x‖2
∣∣

‖x‖∞
,

and she determined the optimal distances for this measure as follows:

Λ′
2,∞(f) = 1

2

√
2
√

2− 2− 1
2
≈ 0.04491,

attained for
(5.4.7)

a = a3 = 1
2

√
2
√

2− 2 + 1
2
≈ 0.95509 and b = b3 =

√
2− 1

2
+ 1

2

√
2
√

2− 2 ≈ 1.36930;

note that b3 > a3

√
2 here (1986:351). She also determined the optimal values for

the functional Λ′
2,∞ when a is restricted to be 1 and b is free to vary; in this case

Λ′
2,∞(f) = 1/

√
2−

√√
2− 1 ≈ 0.06 and is attained for

(5.4.8) a = a4 = 1 and b = b4 = 1/
√

2−
√√

2− 1 ≈ 1.351;

here b4 < a4

√
2 (1984:327).

5.5. The calculus of balls
In any metric space the inequality d(a, b) + r 6 s implies that the open ball B<(a, r)
is contained in B<(b, s) and also that B6(a, r) ⊂ B6(b, s). In a normed vector space
of dimension at least one and equipped with the distance d(x, y) = ‖x − y‖ defined
by the norm, the converse implications hold, provided r > 0 (r > 0 for closed balls).
In particular, two open balls B<(a, r) and B<(b, s) with r > 0 are equal if and only
if a = b and r = s (r > 0 suffices for closed balls). But in a general metric space
very little can be said: from B6(a, r) ⊂ B6(b, s) we can only deduce that d(a, b) 6 s,
assuming that r > 0.

We note, however, that if, in an abelian group with a translation-invariant metric,
B6(a, r) is contained in B6(b, s), s 6 r, and r > 0, then a − b belongs to a bounded
subgroup. In the most common applications, like normed spaces and groups with a
chamfer distance, the only bounded subgroup is {0}, thus a = b.

The mappings

X ×R 3 (a, r) 7→ B6(a, r), B<(a, r) ∈P(X)

are in general far from injective and induce complicated equivalence relations in X ×
R. Similarly, the inclusion relations B6(a, r) ⊂ B6(b, s), B<(a, r) ⊂ B<(b, s) induce
preorders in X ×R (see (2.1.1) and (2.1.2)). We shall now study these relations.

In any metric space X with metric d we fix a point c in X and define two functions
which are of interest when defining balls:

ρ(r) = sup
x∈X

(
d(x, c); d(x, c) 6 r

)
and σ(r) = inf

x∈X

(
d(x, c); d(x, c) > r

)
, r ∈ [−∞,+∞] .
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The functions depend of course in general on the choice of c, but in most applications
we shall let X be an abelian group and assume that d is translation invariant. Then
the choice of c is immaterial.

The functions

ρ−(r) = sup
s<r

ρ(s) = sup
x∈X

(
d(x, c); d(x, c) < r

)
, r ∈ [−∞,+∞] ,

and
σ+(r) = inf

s>r
σ(s) = inf

x∈X

(
d(x, c); d(x, c) > r

)
, r ∈ [−∞,+∞] ,

are also of interest. It is clear that

ρ− 6 ρ 6 Id[−∞,+∞] 6 σ 6 σ+.

On the negative half-axis we have ρ(r) = −∞ for −∞ 6 r < 0 and σ(r) = 0 for
−∞ 6 r 6 0.

We have B6(c, r) = B6(c, ρ(r)) and B<(c, r) = B<(c, σ(r)). The open interval
]ρ(r), σ(r)[ contains no distances d(c, x)—a sphere with center at c and radius in that
interval is empty. The functions ρ and σ solve the uniqueness problem for balls with a
common center: B6(c, r) = B6(c, s) if and only if ρ(r) = ρ(s), and B<(c, r) = B<(c, s)
if and only if σ(r) = σ(s).

The mappings ρ, σ : [−∞,+∞]→ [−∞,+∞] are idempotent; in fact ρ is an open-
ing and σ is a closing (Definitions 2.2.1 and 2.2.3). By way of contrast, ρ− and σ+ are
in general not idempotent. However, ρ ◦ ρ− = ρ−.

In an abelian group with a translation-invariant distance, the value of the distance
transform of a set A at a point x ∈ A, DTA(x) = −r, satisfies r = σ(r). Similarly
for x /∈ A, we have DTA(x) = r with r = σ(r). Thus the values of |DTA| are always
contained in the invariant set Invσ of σ.

In a normed vector space of dimension at least one, we always have ρ(r) = σ(r) = r
for positive r, so there is no need to introduce them in the study of such spaces. In Zn

equipped with the l∞ or l1 metrics we have ρ(r) = brc and σ(r) = dre for positive r.
While the functions ρ and σ solve the problem of comparing two balls with a

common center, more hypotheses will be needed if we are to compare successfully balls
with different centers. This is why we are led to an analysis of the triangle inequality.

We shall say that a translation-invariant metric d(x, y) = f(x − y) defined on an
abelian group is upper regular for the triangle inequality if, given any x and y, there is
a point ỹ such that

(5.5.1) f(ỹ) = f(y) and f(x+ ỹ) = f(x) + f(ỹ).

We shall say that the distance is lower regular for the triangle inequality if given any x
and y such that f(x) > f(y), there is a point x̃ such that

(5.5.2) f(x̃) = f(x) and f(x̃) = f(x̃− y) + f(y).

Upper regularity means that in the triangle inequality f(x+ y) 6 f(x) + f(y) we can
always find ỹ at the same distance from the origin as y and turning the inequality into
an equality (by raising the left-hand side); lower regularity means that we can lower
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the right-hand side in the triangle inequality f(x) 6 f(x− y) + f(y) without changing
the left-hand side by replacing x by x̃—but of course only if the left-hand side is at
least as large as f(y).

It is clear that normed spaces are both upper and lower regular for the triangle
inequality; we may choose ỹ as a suitable multiple of x if x 6= 0 and x̃ as a suitable
multiple of y if y 6= 0. It is also easy to see that in Zn the l∞ and l1 distances are upper
and lower regular for the triangle inequality.

The chamfer distance in Z2 with P = {0, (±1, 0), (0,±1), (±1,±1)} is upper regular
provided a = F (1, 0) 6 b = F (1, 1). If b > 2a, then f(x) = a‖x‖1; if b = a, then
f(x) = a‖x‖∞. In the remaining cases, when a < b < 2a, the balls are octagonal, and
we may argue as follows. By symmetry and reflection of the coordinates it is enough to
consider a point x ∈ Z2 with 0 6 x2 6 x1. Then x can be written as m(1, 0) + n(1, 1)
for some uniquely determined integers m,n > 0, and f(x) = ma + nb. If y is in the
same sector, thus satisfying 0 6 y2 6 y1, then f(x+ y) = f(x) + f(y), so we may take
ỹ = y. If y is in one of the other seven sectors we take ỹ = (|y1|, |y2|) or (|y2|, |y1|) so
that ỹ is in the same sector as x and we know that we have equality in the triangle
inequality (5.5.1). However, this chamfer distances is not lower regular if a < b < 2a
as can be shown by simple examples. It seems therefore that lower regularity is too
stringent a criterion.

Theorem 5.5.1. Let G be an abelian group and d(x, y) = f(x − y) a translation-
invariant metric in G. Assume that d is upper regular for the triangle inequality. Then
for all r, s ∈ R, B6(a, r) is contained in B6(b, s) if and only if d(a, b) + ρ(r) 6 ρ(s).

Proof. By the definition of ρ, B6(a, r) = B6(a, ρ(r)). The inequality d(a, b) + ρ(r) 6
ρ(s) implies that B6(a, ρ(r)) ⊂ B6(a, ρ(s)) and hence that B6(a, r) ⊂ B6(b, s).

For the other implication we argue as follows, assuming that B6(0, r) is contained
in B6(b, s) (we may take a = 0 to simplify notation). Take a point x in the first
ball. Then f(x) 6 ρ(r). It follows that f(x − b) 6 ρ(s). In the triangle inequality
f(x−b) 6 f(x)+f(b) we can find an element x̃ with the same distance to the origin as
x and turning the inequality into an equality: f(x̃−b) = f(x̃)+f(b). Now f(x̃) = f(x)
can take values as close to ρ(r) as we like, say larger than ρ(r)− ε for a given positive
ε. We get ρ(s) > f(x̃ − b) = f(x̃) + f(b) > ρ(r) − ε + d(a, b), proving the inequality.
Note that f(x̃ − b) 6 ρ(s) follows from the inequality f(x̃) = f(x) 6 ρ(r) and the
inclusion B6(0, r) ⊂ B6(b, s).

Theorem 5.5.2. Let G be an abelian group and d(x, y) = f(x − y) a translation-
invariant metric in G. Assume that d is lower regular for the triangle inequality.
Then for all r, s ∈ R with r > 0, B<(a, r) is contained in B<(b, s) if and only if
d(a, b) + σ(r) 6 σ(s).

Proof. By the definition of σ, B<(a, r) = B<(a, σ(r)). The inequality d(a, b) + σ(r) 6
σ(s) implies that B<(a, σ(r)) ⊂ B<(b, σ(s)), and hence that B<(a, r) ⊂ B<(b, s).

To prove the other implication we assume that B<(a, r) ⊂ B<(0, s) (we may take
b = 0). This means that f(x) > σ(s) implies f(x− a) > σ(r). For any given ε > 0 we
can find x such that σ(s) 6 f(x) 6 σ(s) + ε. Then f(x− a) > σ(r) and we obtain the
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rather useless string of inequalities

σ(r) 6 f(x− a) > f(x)− f(a) 6 σ(s) + ε− f(a).

However, since f(a) < s 6 σ(s) 6 f(x) (at this point we need to know that a ∈
B<(a, r), thus that r is positive), we can by hypothesis find x̃ such that f(x̃) = f(x)
(thus f(x̃ − a) > σ(r)) and turning the triangle inequality > in the last formula into
an equality:

σ(r) 6 f(x̃− a) = f(x̃)− f(a) 6 σ(s) + ε− f(a).

If we now let ε tend to zero we obtain σ(r) 6 σ(s)− f(a), which concludes the proof.

Since chamfer distances are in general not lower regular for the triangle inequality it
is desirable to impose only upper regularity. Now upper regularity was used for the
inclusion of closed balls, lower regularity for the inclusion of open balls. But, luckily,
for chamfer distances all open balls are closed! We shall now study such spaces.

We consider metric spaces X such that the set of all distances {d(x, c);x ∈ X}
from a fixed point c ∈ X is a discrete subset of R. This is equivalent to the statement
that the set {d(x, c);x ∈ X, d(x, c) 6 t} is finite for every real number t. The main
examples are of course the chamfer distances in any abelian group.

If the set {d(x, c);x ∈ X} of all distances from a fixed point c is discrete, the set
is denumerable and either finite or equal to a set {rj; j ∈ N}. In the latter case we
shall choose the indices so that r0 = 0 and rj < rj+1 for all j ∈ N. A sphere S(c, r) is
nonempty if and only if r = rj for some j. The functions ρ and σ defined above satisfy

ρ(r) = rj, when r ∈ [rj, rj+1[ , ρ−(r) = rj, when r ∈ ]rj, rj+1] ,

and

σ(r) = rj, when r ∈ ]rj−1, rj] , σ+(r) = rj, when r ∈ [rj−1, rj[ .

Proposition 5.5.3. Let X be a metric space where the set of all distances from a fixed
point c is discrete. Then all closed balls with center at c are open and all open balls
with center at c are closed. More exactly,

B6(c, r) = B<(c, σ+(r)) and B<(c, r) = B6(c, ρ−(r)).

Proof. We consider the case when the set of distances is infinite—easy modifications will
take care of the case of finitely many distances. It is convenient in the proof to define
r−1 = −∞. Given any r ∈ R we choose j ∈ N so that r ∈ [rj−1, rj[. Then B6(c, r) =
B<(c, s) for all s ∈ ]rj−1, rj]. In particular B6(c, r) = B<(c, rj) = B<(c, σ+(r)).

Similarly, given any r ∈ R we choose j ∈ N such that r ∈ ]rj−1, rj]; then B<(c, r) =
B6(c, s) for all s ∈ [rj−1, rj[. In particular, B<(c, r) = B6(c, rj−1) = B6(c, ρ−(r)) for
all r ∈ R.

Theorem 5.5.4. Let G be an abelian group and d(x, y) = f(x − y) a translation-
invariant metric in G. Assume that d is upper regular for the triangle inequality and
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that the set of all distances is discrete. Then for all r, s ∈ R, B<(a, r) is contained in
B<(b, s) if and only if d(a, b) + ρ−(r) 6 ρ−(s).

Proof. We know that the open ball B<(a, r) is equal to the closed ball B6(a, ρ−(r)).
Theorem 5.5.1 shows that the inclusion B6(a, ρ−(r)) ⊂ B6(b, ρ−(s)) is equivalent to the
inequality d(a, b) + ρ(ρ−(r)) 6 ρ(ρ−(s)). However, we always have ρ(ρ−(r)) = ρ−(r).
This completes the proof.

5.6. Distance transforms in normed vector spaces

In this section we shall calculate the distance transforms of some subsets of normed
spaces. In such spaces we shall always use the metric defined by the given norm of the
space, d(x, y) = ‖x− y‖.

The space Rn of all n-tuples can be normed by the lp-norm ‖ · ‖p, 1 6 p 6 +∞,
which is defined by

(5.6.1) ‖x‖p =
(∑

|xj|p
)1/p

, x = (x1, . . . , xn) ∈ Rn.

When p = +∞ this has to be interpreted as a limit. More explicitly one defines

(5.6.2) ‖x‖∞ = max
j
|xj|, x ∈ Rn.

For any normed vector space E we consider its dual E ′, consisting of all continuous
linear forms on E. On the dual we define the norm dual to ‖·‖ by ‖ξ‖′ = sup‖x‖61 |ξ(x)|
for ξ ∈ E ′. It follows that |ξ(x)| 6 ‖ξ‖′‖x‖ for all x ∈ E and all ξ ∈ E ′.

When E = Rn, we may identify also E ′ with Rn, and the evaluation of ξ at the
point x, i.e., the number ξ(x), is then the inner product ξ · x. The Euclidean norm
‖ · ‖2 is dual to itself:

‖ξ‖′2 = sup
‖x‖261

ξ(x) = ‖ξ‖2 =
√∑

ξ2
j .

It is not difficult to prove that the norm dual to ‖ · ‖1 is ‖ · ‖∞ and vice versa. More
generally, one can prove that the norm dual to ‖ · ‖p is ‖ · ‖q, where q = p/(p − 1),
1 < p < +∞, with a natural interpretation also when p = 1,+∞. This statement
follows from Hölder’s inequality and its converse.

In all what follows we may take E as Rn with one of these norms. However, the
more general statements are really not more difficult to prove.

In particular we shall look at the case of a convex subset A of a normed vector
space. It is easy to see that the distance transform of a ball B = B6(a, r) is DTB(x) =
‖x− c‖− r. Another simple convex set is a half-space, and we shall now determine its
distance transform:

Proposition 5.6.1. Let Y be a closed half-space in a normed space E, defined by
an inequality ξ(x − a) 6 0 for some continuous linear form ξ ∈ E ′, ξ 6= 0. Then its
distance transform is DTY (x) = η(x− a), where η = ξ/‖ξ‖′.

Proof. We may as well define Y by the inequality η(x−a) 6 0. We note that ‖η‖′ = 1.
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By definition DTY (x) = infη(y)6η(a) ‖x− y‖ when x /∈ Y . Without loss of generality
we may assume that x = 0 and η(a) = −1; this can be achieved by a change of variable.
We shall thus have to prove that

(5.6.3) inf
y∈E

η(y)6−1

‖y‖ = 1.

This is a well-known fact. To prove it, we note that sup‖z‖61 η(z) = 1 by the definition
of the dual norm, and that, given any ε with 0 < ε < 1, we can take zε of norm at most
1 so that η(zε) > 1−ε. Then yε = −zε/η(zε) satisfies η(yε) = −1 and ‖yε‖ 6 1/(1−ε).
Hence the infimum in (5.6.3) is at most 1/(1− ε); thus at most 1. On the other hand,
the infimum is at least 1, for ‖y‖ > |η(y)| > 1. This proves the formula for DTY in
the complement of Y . We note that for open half-spaces the formula is the same. For
x ∈ Y we can therefore use the symmetry DT{Y = −DTY .

We note that if Y is a half-space which is not closed (equivalently, defined by a discon-
tinuous linear functional), then DTY = 0 identically.

Theorem 5.6.2. Let A be any convex set in a normed vector space E. Then its
distance transform is

DTA = sup
Y

(DTY ;Y is a closed half-space containing A) .

Proof. We first note that the theorem is trivially true if A = Ø or A = E. Assume
now that A 6= Ø, E.

For every set Y containing A we have DTY 6 DTA, so the supremum in the state-
ment of the theorem can never exceed DTA.

If x /∈ A we consider the open ball B<(x, r), where r = DTA(x) > 0. This ball
and A are disjoint. By the Hahn–Banach theorem there is a hyperplane separating
the two. This means that there is a continuous linear form ξ such that ξ(y) 6 ξ(z)
for all y ∈ A and all z ∈ B<(x, r). Thus the closed half-space Y defined by ξ(y) 6
infz∈B< (x,r) ξ(z) containsA, and DTY (x) > r = DTA(x). This shows that the supremum
in the statement of the theorem attains DTA at the point x.

Now take x ∈ A. Then there is an open ball B<(x, r) with maximal radius r =
−DTA(x) > 0 contained in A. (Note that r = 0 is allowed this time.) Take s =
r + ε > r, where ε is arbitrarily small. There exists a point b in B6(x, s) r A. By the
Hahn–Banach theorem again there is a closed hyperplane passing through b with A on
one side. The corresponding half-space Y solves our problem, for −DTY (x) cannot be
larger than d(x, b) 6 s, so that DTY (x) > −s = DTA(x)− ε. Since ε is arbitrary, this
proves the equality in A, and by continuity also in its closure A. We already proved
the equality in the complement of A, so we are done.

Corollary 5.6.3. The distance transform of an arbitrary convex subset of a normed
vector space is a convex function.

Proof. The distance transform of a half-space is an affine function as we have seen.
Every affine function is convex, and the supremum of any family of convex functions
is convex.



44 Chapter 5. Distance transforms

Definition 5.6.4. Given any subset A of a vector space E we define its supporting
function HA by

HA(ξ) = sup
x∈A

ξ(x), ξ ∈ E?.

Here E? is the space of all linear forms on E. It is called the algebraic dual of E, and
contains the dual E ′, maybe strictly.

Example 5.6.5. If A is a ball, A = B6(c, r) with r > 0, or B<(c, r) with r > 0, then
HA(ξ) = ξ(c) + r‖ξ‖′, ξ ∈ E?, where ‖ · ‖ is an arbitrary norm and ‖ · ‖′ its dual norm.
Here we interpret the product r‖ξ‖′ as 0 if r = 0.

Corollary 5.6.6. The distance transform of a closed convex subset A of a normed
space E is equal to

DTA(x) = sup
‖η‖′=1

(
η(x)−HA(η)

)
, x ∈ E.

Proof. We know that the distance transform at a point x is equal to the supremum of
all values DTY (x) when Y varies in the family of all closed half-spaces containing A.
However, every such half-space is contained in a minimal half-space, and the minimal
half-spaces Y = {y; η(y) 6 α} are precisely those for which α = HA(η), thus with
distance transform η(x)−HA(η).

Definition 5.6.7. To any function ϕ : E → [−∞,+∞] we define its Fenchel15 trans-
form by ϕ̃ : E? → [−∞,+∞] on the algebraic dual E? of E by

ϕ̃(ξ) = sup
x∈E

(
ξ(x)− ϕ(x)

)
, ξ ∈ E?.

The Fenchel transform generalizes the supporting function: ĩA = HA.

Example 5.6.8. If the epigraph of a function ϕ is a paraboloid, ϕ(x) = a+β ·x+ 1
2
c‖x‖22,

x ∈ Rn, where a ∈ R, β ∈ Rn and c > 0, then the same is true of the epigraph of its
transform: ϕ̃(ξ) = −a+ 1

2
c−1‖ξ − β‖22.

Corollary 5.6.6 shows that the distance transform is the Fenchel transform of the sup-
porting function restricted to the unit sphere—more precisely, if we define a function
g to be equal to HA on the unit sphere S ′ and +∞ elsewhere, then DTA = g̃. We may
therefore ask what happens if we apply the transformation again. To this end we need
a general result on the iterated Fenchel transform. We let F be any linear subspace of
E? and define the Fenchel transform of any function f defined on F by

f̃(x) = sup
ξ∈F

(
ξ(x)− f(ξ)

)
, x ∈ E.

15Named for Werner Fenchel, 1905---1988.
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In particular we may form the second transform ˜̃ϕ of a function defined on E. The
main result in the theory of the Fenchel transformation is this:

Theorem 5.6.9. Let ϕ be a function defined on a vector space E and let F be any

subspace of its algebraic dual E?. Then we always have ˜̃ϕ 6 ϕ. Equality holds if and
only if
(A) ϕ is convex;
(B) ϕ is lower semicontinuous for the weakest topology for which all linear forms in F
are continuous; and
(C) ϕ does not take the value −∞ unless it is identically equal to −∞.

Property (B) here means that if ϕ(x) > a, then there are linear forms ξ1, . . . , ξm ∈ F
such that ϕ(y) > a when |ξj(y − x)| 6 1, j = 1, . . . ,m. In Rn we usually choose
F = Rn; the semicontinuity is then semicontinuity with respect to the usual topology
of Rn. The necessity of the three properties is easy to prove; the sufficiency will be
accepted here without proof.

Corollary 5.6.10. If A is a nonempty closed convex subset of E, the Fenchel transform
ϕ̃ of its distance transform ϕ = DTA is

ϕ̃(ξ) =


HA(ξ), ‖ξ‖′ = 1;

+∞, ‖ξ‖′ > 1;

the largest convex minorant of HA

∣∣
S′
, ‖ξ‖′ < 1.

Here S ′ is the unit sphere for the dual norm ‖ · ‖′. If A is empty, then ϕ̃ is −∞
identically.

Proof. Let g be equal to HA on the unit sphere S ′ and +∞ elsewhere, and h equal
to HA on the closed unit ball of E ′ and equal to +∞ elsewhere. As already noted,
DTA is the Fenchel transform of g, DTA = g̃. The transform of ϕ = DTA is therefore

the second Fenchel transform of g: ϕ̃ = ˜̃g. Theorem 5.6.9 tells us that ˜̃g is the largest

lower semicontinuous convex minorant of g. Since h 6 g we have
˜̃
h 6 ˜̃g, and we know

that
˜̃
h = h since h is convex, lower semicontinuous, and never takes the value −∞;

h =
˜̃
h 6 ˜̃g 6 g. Therefore, since h and g agree on S ′, ˜̃g = g = HA on S ′. Outside B′

(in particular in E? r E ′) we have g = h = +∞, so ϕ̃ = ˜̃g >
˜̃
h = +∞ there. Finally

we note that, since g is plus infinity in the open unit ball, ˜̃g is as described in the
statement of the corollary in that ball.

All this holds if A is nonempty; otherwise we easily see that ϕ̃ = HA = −∞
identically.

5.7. Exercises

5.1. (a) Prove that, with the notation of Theorem 5.1.4, we have α(A) = 1 and β(A) = 3
when X = Zn with the l∞ metric and A 6= Ø,Zn.
(b) Determine the quantities α(A) and β(A) when X = Zn with the l1 metric.

5.2. Prove Proposition 5.2.2.
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5.3. Let A be the (filled) square {x ∈ R2; |x1|, |x2| 6 1} and B a Euclidean closed disk of
radius r, viz. B = {x ∈ R2; x2

1 + x2
2 6 r2}. Describe for all positive r the seven sets A + B,

A	B, B	A, AB, BA, AB, BA. Calculate the distance transforms DTA and DTB when the
distance is given by d(x, y) = ‖x− y‖p, p = 1, 2,∞.

5.4. (a) Given a subset A of an abelian group with a translation-invariant metric, show that
DTA+B< (0,r) = DTA − r holds in {(A + B<(0, r)) (cf. Proposition 5.1.6). (b) Show that it
does hold everywhere if the space is a vector space and A is convex. (c) What about Z2?

5.5. Let X be a metric space with metric d. Define a metric dα in X ×R by

dα

(
(x, s), (y, t)

)
= αd(x, y) + |s− t|, (x, s), (y, t) ∈ X ×R,

where α is any positive number. Prove that, for any subset A of X,

DTepiDTA
(x, s) = DTA(x)− s, (x, s) ∈ X ×R,

if α > 2 (α > 1 in a vector space). Show by examples that this is not necessarily so if
0 < α < 2 (0 < α < 1 in a vector space).

5.6. Square pixels. Assume that the centers of square pixels are placed at the points Z2

with integer coordinates in R2. Since Z2 is group, we can use infimal convolution. Actually
we can work indifferently in R2 or Z2. Define a function F : R2 → [0, +∞] by F (0) = 0,
F (±1, 0) = F (0,±1) = a > 0, F (±1,±1) = b > 0 (four points with value b), and F (x) = +∞
at all other points. Then let f = lim F ut F ut · · · ut F as the number of terms tends to
infinity.
(a) Show that if a = 1, b =

√
2, then

1 6
f(x)
‖x‖2

6

√
2
√

2√
2 + 1

≈ 1.08239, x ∈ Z2.

(b) Show that the best choice for a and b if we want to have

1 6
f(x)
‖x‖2

6 C, x ∈ Z2,

with C as small as possible is a = 1, b =
√

2.
(c) For all a, b > 0 there is a constant C depending on a, b such that

C−1 6
f(x)
‖x‖2

6 C, x ∈ Z2.

Take b = a
√

2 and find the a which renders C as small as possible. Show that the smallest
possible value of C is

C = Λ(f, ‖ · ‖2) = 4

√
4

2 +
√

2
≈ 1.04038,

and that it is attained when a and b = a
√

2 take the values (5.4.3).
(d) Now vary both a and b. Show that the smallest C such that C−1 6 f(x)/‖x‖2 6 C for
all x ∈ Z2 is the same as in (c), i.e., that we do not gain anything by taking b different from
b = a

√
2.
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(e) Prove that if we use Λ′(f, ‖ · ‖2) to measure deviation from the Euclidean distance, then
the optimal values are as indicated in (5.4.4).
(f) Prove that if we use Λ′(‖ · ‖2, f) to measure deviation from the Euclidean distance, then
the optimal values are as indicated in (5.4.5).

5.7. Hexagonal pixels. The centers of hexagonal pixels form a triangular pattern: if we
identify R2 with C for convenience they can be placed at the points p + qω, p, q ∈ Z, where
ω = 1

2 + i
√

3
2 .

(a) Define a function F : C → [0, +∞] by F (0) = 0, F (±1) = F (±ω) = F (±(1 − ω)) = 1,
and F (x) = +∞ at all other points. Then let f = lim F ut F ut · · · ut F as the number of
terms tends to infinity. Show that

1 6
f(x)
‖x‖2

6
2√
3
≈ 1.15470, x ∈ Z + Zω.

Thus a suitable multiple f1 of f has Λ(f1, ‖ · ‖2) 6
√

2/ 4
√

3 ≈ 1.07457.
(b) Now define F : Z2 → [0, +∞] by F (0) = 0, F (±1, 0) = F (0,±1) = F (1,−1) = F (−1, 1) =
1 and F (x) = +∞ at all other points. Let f = lim F ut F ut · · · ut F as the number of terms
tends to infinity. Find a Euclidean norm ‖ · ‖, i.e., a norm defined by an inner product, such
that

‖x‖ 6 f(x) 6 C‖x‖, x ∈ Z2,

with C as small as possible.

5.8. Triangular pixels. The centers of triangular pixels form a hexagonal pattern. These
hexagonally placed points do not form a subgroup of R2, and therefore infimal convolution
cannot be applied directly as in the case of square or hexagonal pixels. However, if we take
two steps in the hexagons, we get a group of triangularly placed points, which is isometric
to the group Z + Zω formed by the hexagonal pixels considered in exercise 5.7. For an even
number of steps, the inequalities for hexagonal pixels can be applied; for an odd number of
steps, we first take an even number of steps and then one extra step. Investigate what the
inequalities of exercise 5.7 yield.

5.9. Prove that in an abelian group with a translation-invariant metric which is upper regular
for the triangle inequality, B6(a, r) = B6(b, s) implies that a = b.

5.10. Prove that the chamfer distance in Z2 defined by F (±1, 0) = F (0,±1) = 3, F (±1,±1) =
4 is not lower regular for the triangle inequality.

5.11. Calculate the values of the functions ρ, σ, ρ−, and σ+ when the space is Z2 and the
distance is given by the l2-norm, say for real r 6 4.

6. Skeletonizing

6.1. Definition of the skeleton
If A is any subset of a metric space X, then its interior A◦ is the union of all open

balls contained in A. This is typically the union of a very large family of sets. We
would like to describe A◦ as the union of a smaller family. It is obvious that if we have
two balls contained in A, B<(a, r) and B<(b, s), and one is contained in the other, then
we may throw away the smaller ball without changing the union. In fact, for every
ball B<(a, r) in the union, we may throw away all balls contained in that ball without
changing the union. This leads to the concept of a maximal ball. A maximal ball must
be retained, but all balls contained in a maximal ball may be dispensed with.
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The importance of skeletons in applications is due to the fact that they are thin in
some sense but nevertheless retain important information about an object, for instance
its general shape, and that, given the skeleton and the distance transform at the points
in the skeleton, we can reconstruct the whole object. Typically we save memory when
listing only the skeleton and the quench function.

If a is the center of a maximal open ball B<(a, r) contained in a set A, then nec-
essarily r = −DTA(a). In fact, when we defined the distance transform DTA(a) at a
point a, we looked at all balls with center a contained in A and we took the largest
such ball. Note that then we kept the center fixed. There is a largest ball with center
a, which in particular is maximal among these balls. By way of contrast, when we
define the skeleton we shall vary both the center and the radius and look at all balls
contained in A, regardless of their centers. We shall now give a name to the centers of
maximal balls.

Definition 6.1.1. Let A be a subset of a metric space X. We define the skeleton16 of
A, denoted by Sk(A), as the set of all centers of maximal nonempty open balls contained
in A.

The definition means that a ∈ Sk(A) if and only if there exists a number r > 0 such
that B<(a, r) ⊂ A and such that if a ball B<(b, s) is contained in A and contains
B<(a, r), then B<(b, s) = B<(a, r).17 The skeleton may be empty: think of a set with
empty interior or of a half-space in Rn. A half-space contains lots of balls, but there
are no maximal balls. So obviously we need to investigate whether there exist maximal
balls—and whether there are enough of them in the formation of the interior of A. For
this we shall need Zorn’s Lemma.

6.2. Existence of skeletons

An ordered set X is said to be totally ordered if for any two elements x, y ∈ X we
have x 6 y or y 6 x. An ordered set X is said to be inductive or inductively ordered
(Bourbaki 1963:34) if every totally ordered subset of X possesses a majorant in X.18

This means that for every Y ⊂ X which is totally ordered, there exists an element
b ∈ X such that y 6 b for all y ∈ Y . This concept is of interest because it is used as
an hypothesis in Zorn’s Lemma, which guarantees the existence of maximal elements.

Theorem 6.2.1 (Zorn’s Lemma). Every inductively ordered set possesses a maximal
element.

We shall accept Zorn’s Lemma here. One can prove it using the Axiom of Choice;
conversely, the latter can be proved from Zorn’s Lemma. To establish the existence of
a maximal element we shall have to prove that a certain order is inductive.

Theorem 6.2.2. Let Zn be equipped with a metric which either is inherited from a
norm on Rn or a chamfer distance in the sense of Definition 5.3.7, and let A be a
finite subset. Then the set of all open balls contained in A is inductively ordered.

Proof. Let us consider a union AM =
⋃

(c,r)∈M B<(c, r) of a family of open balls
contained in A, where M is a subset of Zn × R. Assume that the family is totally

16It seems that the term skeleton was first used in this context by Rosenfeld & Pfaltz (1966).
17I did not say that b = a and s = r.
18The empty set is totally ordered, so an inductively ordered set must be nonempty.
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ordered, i.e., for any two pairs (a, r), (b, s) ∈M , either B<(a, r) is a subset of B<(b, s)
or conversely. Clearly AM , being a subset of A, is finite, which implies that it is equal
to one of the balls B<(c, r) with (c, r) ∈M . We are done.

In Rn things are less simple.

Theorem 6.2.3. Let A be a set in a finite-dimensional normed vector space E. Assume
that A is bounded. Then the set of open balls contained in A is inductively ordered.

Proof. Let as before AM =
⋃

(c,r)∈M B<(c, r) be a union of open balls contained in A,
where M is a subset of E × R. We assume that the family of these balls is totally
ordered. Define R as the supremum of all numbers r such that there exists a c ∈ E
such that (c, r) ∈ M . Since A is bounded, this supremum is necessarily finite. For
every j = 1, 2, 3, . . . there exists a number rj > R − 1/j and a point cj in A such
that (cj, rj) ∈ M . Unless one of the radii is equal to R we may also choose the rj

so that rj+1 > rj. Since the sequence of centers (cj) is bounded, it has a converging
subsequence; let us change notation so that (cj) itself is converging. Let its limit be
C. We claim that AM is equal to the ball B<(C,R).

We shall prove first that AM is contained in B<(C,R). Let x ∈ AM ; there exists
(c, r) ∈ M such that d(x, c) < r. Define ε = r − d(x, c) > 0. Then the ball B<(x, ε) is
contained in B<(c, r). If r = R, then we must have B<(c, r) = B<(C,R), in particular
x belongs to B<(C,R). If, on the other hand r < R, then we take k so large that rk > r,
and we must have B<(c, r) ⊂ B<(ck, rk) since the opposite inclusion is impossible and
one of them must hold by hypothesis. Thus B<(x, ε) ⊂ B<(cj, rj) for all j > k, which
implies, on letting j tend to infinity, that B<(x, ε) ⊂ B6(C,R). But then x belongs
also to the open ball B<(C,R) and we are done. (Note that this part of the proof is
not valid in a general metric space.)

In the other direction, let us prove that B<(C,R) is contained in AM . Take any
point x ∈ B<(C,R). Then d(x,C) < R, and we may define ε = R − d(x,C) > 0. We
then have d(x, cj) 6 d(x,C) + d(C, cj) = R − ε + d(C, cj), where the right-hand side
is less than rj for large j. Hence x belongs to B<(cj, rj), and therefore to AM . (This
part of the proof is valid in any compact metric space.)

If the norm is Euclidean, it is enough to assume that A does not contain a half-space.
Also, for any given norm in Rn, it is enough to assume that A does not contain a cone
of a certain aperture.

Example 6.2.4. One might think that the result should hold in any compact metric
space. However, simple examples show that this is not so. Define a compact metric
space X as consisting of the segment A = [−1, 1]×{0} in R2 and adjoin to it the point
(0, 1). The metric shall be that induced by the usual Euclidean metric in R2. Consider
now the open balls B<(cj, rj), where cj = (1/j, 0) and rj = 1, j = 1, 2, . . . . Note
that B<(cj, rj) = ]−1 + 1/j, 1] ⊂ A. The sequence of balls is increasing with j, and its
union is the segment AM = ]−1, 1]×{0}. However, this segment is not an open ball in
X. What is worse: it is not contained in an open ball in A. Hence the family of open
balls in A is not inductively ordered.

There is a well-known trick to get rid of the hypothesis that A must not contain any
half-space. Indeed a half-space is a limiting case of a ball, and if we compactify Rn by
adding a point at infinity, then Rn ∪ {∞} can be regarded as the n-sphere. The balls
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in Rn then become spherical caps on the sphere, and so do the half-spaces. But these
spherical caps are actually balls for a suitable metric on the sphere. So Rn ∪ {∞} is a
metric space and the open balls contained in any given subset are inductively ordered—
the proof is very much like the one we have done in Rn. The compactification allows
us to define a generalized skeleton, which may contain ∞, but we need of course to
modify the quench function.

Corollary 6.2.5. Let A be a bounded subset of a finite-dimensional normed vector
space, or a bounded subset of Zn, where Zn is provided with a metric as in Theorem
6.2.2. The union of all open balls with center c belonging to the skeleton and radius
equal to −DTA(c) is equal to the interior of A. In particular, if A has interior points,
then the skeleton of A is nonempty.

Proof. Take any point x ∈ A◦. The ball B<(x, ε) is contained in A◦ for some small
positive ε. By Zorn’s lemma (Theorem 6.2.1) and Theorem 6.2.2 or 6.2.3, respectively,
there is a maximal ball B<(c, r) containing B<(x, ε) and contained in A. Thus c ∈
Sk(A) and x ∈ B<(c, r), with r = −DTA(c).

In any metric space where the conclusion of Theorem 6.2.3 holds we have A◦ =⋃
c∈Sk(A)B<(c,−DTA(c)). Here −DTA(c) = (DTA(c))− is the quench function eval-

uated at c. Knowledge of Sk(A) and the restricion of DTA to Sk(A) is equivalent to
knowing A◦. This shows how we can reconstruct A◦ from Sk(A) and the quench func-
tion. However, it is sometimes not necessary to use even all the points in the skeleton,
e.g., when A is the union of two disks; see example 6.3.1 below.

6.3. Properties of skeletons

In some sense the skeleton is a thin set. For instance, it is easy to prove that a skeleton
in Rn has no interior points (cf. exercises 6.1 and 6.2). On the other hand, the closure
of the skeleton need not be of Lebesgue measure zero (cf. exercise 6.3). These results
are mentioned by Serra (1982:378) and Matheron (1988:218). It is also stated there
that it is unknown whether the skeleton has Lebesgue measure zero, and whether the
interior of its closure is empty.19

The skeleton has, generally speaking, bad continuity properties.

Example 6.3.1. Let D be the open unit disk in R2, D = {(x, y) ∈ R2;x2 + y2 < 1}.
Its skeleton is just the origin. Then add a small open disk Dε with center at (1, 0) and
radius ε > 0. The skeleton of the new set A = D∪Dε is the entire segment [0, 1]×{0}
for all small positive ε. Thus a very small change in the set causes the skeleton to grow.
Note that here it is not necessary to use all the points in the skeleton to reconstruct A:
it suffices to take the disks with centers at 0 and (1, 0). Even more dramatic is perhaps
the growth in the skeleton when we remove a small closed disk: consider D rDε.

In Z2 the continuity properties are of course different, but a small change can still
cause points to appear far from the original skeleton.

Example 6.3.2. Let A = [−m,m]Z × [−m,m]Z be a large square in Z2. Its skeleton
for the chess-board metric is just the origin. If we add a single point (m + 1, 0) to A,
the skeleton of the new set is {0, (m + 1, 0)}. What happens if we remove a point?
Consider Ar {(m, 0)}.

19It seems that the answers to these questions are still unknown.
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The skeleton of a set A in R2 need not be a closed set, even if A has a smooth boundary.

Example 6.3.3. Let first U = A + B, the dilation of the segment A = [(−1, 1), (1, 1)]
by the unit disk B = {(x, y) ∈ R2;x2 + y2 < 1}. This is an open set and its skeleton is
Sk(U) = A. Then modify U as follows. The lower boundary of U is just the segment
[(−1, 0), (1, 0)], so that U is locally defined by the inequality y > 0 near this segment.
We replace it by an inequality y > ϕ(x), where ϕ(x) =

∑∞
1 cjψ(2jx − 1), ψ being an

even, nonpositive function in C∞
0 with ψ(0) = −1 and support contained in [−1

3
, 1

3
].

For a suitable choice of positive constants cj, the function ϕ is in C∞, and the skeleton
of the new open set V so defined contains segments {2−j} × [a, b] for j = 1, 2, 3, . . .
for a suitable choice of a and b > a. But no point on the limiting segment {0} × [a, b],
belongs to it. (This example is essentially taken from (Matheron 1988:219).)

We shall now give a characterization of points in the skeleton. The following result was
proved in Rn by Matheron (1988:225).

Theorem 6.3.4. Let E be a normed space with metric given by the norm: d(x, y) =
‖x − y‖. Let A be a nonempty proper subset of E, fix a point c in the interior of A,
and define h(x) = d(x, c) + DTA(x), x ∈ E. Then c belongs to the skeleton of A if and
only if h has a minimum only at c.

Proof. If B<(c, r) ⊂ B<(x, s) ⊂ A, where r = −DTA(c) > 0, then s > d(c, x) + r. This
implies that h(x) = d(x, c) + DTA(x) 6 d(x, c)− s 6 d(c, c)− r = h(c). If c is the only
point where h attains its minumum, we must have x = c and it follows that B<(c, r)
is maximal, hence that c ∈ Sk(A).

Conversely, assume that c is in the skeleton and that x is a point where h(x) 6 h(c).
Then d(c, x) − s 6 −r, where we define r = −DTA(c), s = −DTA(x). This implies
that B<(x, s) contains B<(c, r). Since c is in the skeleton of A, the two balls must be
equal, which implies that x = c. Therefore the infimum of h is attained at c and only
there.

Thanks to the calculus of balls developed in section 5.5 we can generalize this result
to other groups. In a normed space of positive dimension, the open ball of radius
r = −DTA(a) is the interior of the closed ball of the same radius and the same center.
In a group where the set of distances is discrete, the open ball B<(a, r) can be described
as the closed ball of radius ρ−(r). Since the conditions for working with closed balls
are more easily satisfied than those for open balls, we will get a more applicable result
if we replace the function x 7→ d(x, c) + DTA(x) by x 7→ d(x, c)− ρ−(−DTA(x)).

Theorem 6.3.5. Let G be an abelian group with a translation-invariant metric d
which is upper regular for the triangle inequality and such that the set of all distances
is discrete. Let A be a nonempty proper subset of G, fix a point c ∈ A, and define
h(x) = d(x, c)− ρ−(−DTA(x)), x ∈ G. Then c belongs to the skeleton of A if and only
if h has a minimum only at c.

Proof. If B<(c, r) ⊂ B<(x, s) ⊂ A, where r = −DTA(c), then by Theorem 5.2.4
ρ−(s) > d(c, x) + ρ−(r). This implies that h(x) = d(x, c) − ρ−(−DTA(x)) 6 d(x, c) −
ρ−(s) 6 d(c, c)− ρ−(r) = h(c). If c is the only point where h attains its minumum, we
must have x = c and it follows that B<(c, r) is maximal, hence that c ∈ Sk(A).

Conversely, assume that c is in the skeleton and that x is a point where h(x) 6 h(c).
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Then d(c, x) − ρ−(s) 6 −ρ−(r), where we define r = −DTA(c), s = −DTA(x). This
implies that B6(x, ρ−(s)) contains B6(c, ρ−(r)). But B6(x, ρ−(s)) = B<(c, s) and
B6(c, ρ−(r)) = B<(c, r) by Proposition 5.5.3. Since c is in the skeleton of A, the two
balls must be equal, which implies that the difference between their centers belongs to
a bounded subgroup, thus that x = c. Therefore the infimum of h is attained at c and
only there.

6.4. Exercises

6.1. Show that in Rn with a Euclidean metric every skeleton has an empty interior.

6.2. Let G be an abelian group and P any nonempty subset of G. A set A ⊂ G will be called
P -open if it is if the form

⋃
x∈M (x + P ) for some M ⊂ G. The set of all P -open sets form

what we might call a semitopology τP on G: an arbitrary union of P -open sets is P -open.
Assume now that P is a finite symmetric subset of G, and let F and f be as in Corollary
5.3.6 with F symmetric. Let finally Sk(A) be the skeleton of a set A defined by the chamfer
distance d(x, y) = f(x− y). Prove that interior of Sk(A) defined by τP is empty: there is no
nonempty P -open set contained in Sk(A).

6.3. Construct an example of an open set in R2 such that the closure of its skeleton with
respect to a Euclidean metric is of positive Lebesgue measure. Hint: Take U as the unit disk,
and add to it denumerably many equilateral triangles with two points on the circumference
and the third point with rational argument. This will yield a set whose skeleton contains a
lot of rays; the limits of these rays have arguments in a set of measure 2π − ε.

6.4. Show that if we use the l∞ distance there exists a bounded open connected set in R2

such that its skeleton is not connected.

6.5. We define the r-skeleton, associated to the radius r > 0, as the set Skr(A) of points in
the skeleton where the quench function is equal to r. Therefore Sk(A) =

⋃
r>0 Skr(A).

Assume now that we are in a normed vector space with distance d(x, y) = ‖x− y‖.
(a) Show that the reconstruction of the interior of a bounded set A takes the form

A◦ =
⋃
r>0

(
Skr(A) + B<(0, r)

)
.

(b) Show that we can also reconstruct the dilations and erosions by balls from the r-skeletons
for bounded open sets A:

A + B<(0, r) =
⋃
s>0

(
Sks(A) + B<(0, r + s)

)
, r > 0;

A	B6(0, r) =
⋃
s>r

(
Sks(A) + B<(0, s− r)

)
, r > 0.

(c) Find some conditions on a set A which guarantee that the skeleton of its dilation by a
ball is the same as that of A:

Sk
(
A + B<(0, r)

)
= Sk(A), r > 0.

(d) Find conditions on a set A which ensure that the skeleton of an erosion is simply obtained
by deleting a certain part of the skeleton:

Sk(A	B6(0, r)) =
⋃
s>r

Sks(A), r > 0.
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(e) Show that

Skr(A) =
⋂
s>0

[(
A	B<(0, r)

)
r
(
A	B<(0, r)

)
B6 (0,s)

]
, r > 0.

6.6. What remains of exercise 6.5 if we only know that we are in an abelian group with a
translation-invariant metric?

7. Lattices

7.1. Definition and first properties of lattices
Lattice theory was developed by Birkhoff20 and others in the beginning of the twentieth
century (Birkhoff 1940, 1948). There is an analogy between lattice theory and the
theory of vector spaces. The theory of topological vector spaces was developed to
a large extent because of the theory of distributions, which in turn was motivated
by applications in partial differential equations. Developments in image processing
motivated a renewed interest in lattice theory, in particular in complete lattices. Lattice
theory was applied to switching circuits, and it was then enough, because of general
finiteness conditions, to form models using lattices, but in image processing it is more
convenient to assume completeness.

While vector spaces are useful in modelling linear problems, lattices seem to be
more adapted to nonlinear problems. Auditory phenomena are often additive: all the
instruments of an orchestra can be heard; while with visual phenomena this is not so:
one object can block another from our view. This indicates that linear models may
suffice for the first kind of phenomena, while the visual ones are more in agreement
with nonlinear operators like supremum and infimum.

As we shall see, there are also analogies between preordered sets, in particular
lattices, and topological spaces. The increasing mappings in the first case correspond
to continuous linear mappings in the second.

Let L be an ordered set and A a subset of L. An element b ∈ L is said to be the
infimum of all elements a ∈ A if b is the largest minorant of all a ∈ A. This means
that b 6 a for all elements a ∈ A, and that if b′ 6 a for all a ∈ A, then b′ 6 b. The
infimum, if it exists, is necessarily unique. The infimum of the empty set exists if and
only if L possesses a largest element, and if so, the infimum is this largest element.

We shall write
b = inf

a∈A
a = inf(a; a ∈ A) =

∧
a∈A

a

for the infimum of all elements in A; if A has only n elements we write b = a1∧· · ·∧an,
in particular b = a1 ∧ a2 if n = 2.

Similarly we define the supremum

c = sup
a∈A

a = sup(a; a ∈ A) =
∨
a∈A

a

as the smallest majorant of all elements inA. The supremum of the empty set, supx∈Ø x,
exists if and only if L has a smallest element.

20Garrett Birkhoff, 1911---1996.



54 Chapter 7. Lattices

If any set consisting of two elements in L has an infimum, we shall call L an
inf-semilattice; similarly, if any two-set of L has a supremum, we shall call L a sup-
semilattice. If L is both an inf-semilattice and a sup-semilattice we shall call L a
lattice.

If any nonempty subset, finite or infinite, has an infimum, L will be said to be a
complete inf-semilattice; analogously we define complete sup-semilattice and complete
lattice. A complete inf-semilattice has a smallest element, which is the infimum of
all elements, denoted by 0, and a complete sup-semilattice has a largest element, the
supremum of all elements, denoted by 1.

A complete inf-semilattice with a largest element 1 is also a complete lattice. In-
deed, the supremum of any set of elements is equal to the infimum of all majorants of
the set—this set is not empty since 1 is a majorant.

In a complete lattice, the infimum of the empty set exists and is 1, and the supre-
mum of the empty set is supx∈Ø x = 0.

It is possible to define a lattice as a set with two binary operations ∧ and ∨ satisfying
certain axioms.

A sublattice is defined just like a subgroup with respect to the operations ∧ and
∨: that M is a sublattice of L means that for all x, y ∈ M , x ∧ y and x ∨ y, when
calculated in L, are elements of M . A sublattice is therefore something more than a
subset with the induced order; see the following examples.

Example 7.1.1. The space of real-valued continuous functions on a topological space
is a lattice with the usual order: f 6 g if and only if f(x) 6 g(x) for all x. The space
C1(Rn) of continuously differentiable functions on Rn is not a sublattice of C(Rn). It
is not even a lattice on its own.

Example 7.1.2. The family P(W ) of all subsets of a set W is a complete lattice, with∧
Aj =

⋂
Aj and

∨
Aj =

⋃
Aj. The compact sets in Rn form a sublattice C (Rn) of

P(Rn). This lattice is a complete inf-semilattice but not a complete sup-semilattice.
The family K (Rn) of all convex compact sets is a lattice but not a sublattice of C (Rn):
the supremum of two compact sets is not the same in the two lattices.

Example 7.1.3. The family of all closed sets in Rn, denoted by F (Rn), is a sublattice of
P(Rn): the union and intersection of two closed sets are closed. But, although F (Rn)
is a complete lattice, it is not a sub-complete-lattice of the complete lattice P(Rn).
The union of a family of closed sets is not always closed, but there is a supremum,
viz. the closure of the union. Thus, finite suprema agree with those in P(Rn) while
infinite suprema do not. This example shows that we would need a different word for
complete lattice, to allow for a better term than sub-complete-lattice.

Example 7.1.4. The set [−∞,+∞]R
n

of all functions defined on Rn and with values
in the extended real line is a lattice under the usual order for real numbers, extended
in an obvious way to the two infinities. The subset of all convex functions is ordered
in the same way, and is also a lattice under this order. However, the convex functions
CVX(Rn) do not form a sublattice of [−∞,+∞]R

n
. The supremum of two convex
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functions is equal to the pointwise supremum of them:

f ∨ g = max(f, g),

but the infima are different in the two lattices: the infimum in the lattice of convex
functions is

f ∧cvx g = sup
[
h ∈ CVX(Rn);h 6 f, g

]
6 min(f, g),

where the supremum is calculated in [−∞,+∞]R
n

and has a sense because that lattice
is complete. That the two infima may be different is shown by easy examples like
f(x) = ex, g(x) = e−x, x ∈ R. Here min(f, g)(x) = e−|x|, f ∧cvx g = 0.

7.2. Morphology on lattices
We already defined the epigraph of a mapping X → [−∞,+∞]; see (3.2.7). The
definition makes of course sense for any mapping X → Y , where X is an arbitrary set
and Y a preordered set, thus

(7.2.1) epi f = {(x, y) ∈ X × Y ; f(x) 6 y}.

It will be convenient to define also the hypograph of a mapping f : X → Y ; it is

(7.2.2) hypo f = {(x, y) ∈ X × Y ; y 6 f(x)}.

The intersection of the two, epi f ∩ hypo f , contains the graph of f , which is the set of
all pairs (x, f(x)):

(7.2.3) graph f = {(x, y) ∈ X × Y ; y = f(x)}.

If Y is not only preordered but ordered, the intersection is equal to the graph. If Y
has the discrete order, then epi f = hypo f = graph f ; if Y has the chaotic preorder,
then epi f = hypo f = X × Y .

In Incr(L,L), the set of all increasing mappings of an ordered set into itself, the
idempotent mappings are of particular interest. We shall call an increasing and idem-
potent mapping from L into L a morphological filter, and denote the set of all such
mappings by Filt(L). Openings and closings are examples: an opening is an antiexten-
sive mapping in Filt(L), and a closing is an extensive mapping in Filt(L).

We have studied dilations in an abelian group, i.e., mappings of the form A 7→
A + B. We also remarked (Proposition 3.1.4) that a mapping which commutes with
translations and the formation of infinite unions is necessarily of this form. In lattice
theory it is therefore natural to say that a mapping δ : L → M , where L and M
are complete lattices, is a dilation if it commutes with the formation of suprema, i.e.,
δ
(∨

j xj

)
=
∨

j δ(xj) for all indexed families (xj)j∈J . In particular we get δ(0L) = 0M

(take J empty), while δ(1L) =
∨

x∈L δ(x) 6 1M (give an example where δ(1L) 6= 1M).
Similarly we shall say that ε is an erosion if it commutes with the formation of infinite
intersections, ε

(∧
j xj

)
=
∧

j ε(xj). We note that ε(1L) = 1M (take J empty), while
ε(0L) =

∧
x∈L ε(x) > 0M .

Dilations and erosions are always increasing. Indeed, we have δ(x∨y) = δ(x)∨δ(y).
If x 6L y, this equation simplifies to δ(y) = δ(x) ∨ δ(y) >M δ(x), which shows that δ
is increasing, δ ∈ Incr(L,M). A similar argument shows that erosions are increasing.



56 Chapter 7. Lattices

We now recall Proposition 3.1.3, where it was stated that, in an abelian group,
δB(A) ⊂ C if and only if A ⊂ εB(C). In a lattice this may be written as δ(x) 6 y
iff x 6 ε(y), equivalently as epi δ = (hypo ε)−1, where the exponent −1 means that
we swap the components: for a subset A of a Cartesian product X × Y we define
A−1 = {(y, x); (x, y) ∈ A} ⊂ Y × X. May we use this as a model to define erosions
from dilations and conversely in the more general lattice situation? Indeed this is the
case, and we shall now show this.

7.3. Inverses of mappings between lattices
Let L be a complete lattice, M a preordered set, and f : L → M any mapping. We
then define the upper inverse f [−1] : M → L and the lower inverse f[−1] : M → L as the
mappings

(7.3.1) f [−1](y) =
∧
x∈L

(x; f(x) >M y) =
∧
x∈L

(x; (x, y) ∈ hypo f), y ∈M ;

(7.3.2) f[−1](y) =
∨
x∈L

(x; f(x) 6M y) =
∨
x∈L

(x; (x, y) ∈ epi f), y ∈M.

As a first observation, let us note that these inverses are always increasing. If there
exists a smallest element 0M , then f [−1](0M) = 0L. Similarly, if M possesses a largest
element 1M , then f[−1](1M) = 1L. If M has the chaotic preorder, then both inverses
are constant, f [−1] = 0L and f[−1] = 1L identically.

We note that we always have

(7.3.3) hypo f ⊂
(
epi f [−1]

)−1
and epi f ⊂

(
hypo f[−1]

)−1
.

If, given a mapping f : L → M , we can find a mapping g : M → L such that
epi g = (hypo f)−1 we would be content to have a kind of inverse to f . However, usually
the best we can do is to study mappings with epi g ⊃ (hypo f)−1 or epih ⊂ (hypo f)−1.
This we shall do in the following proposition, which shows that the upper and lower
inverses are solutions to certain extremal problems.

Proposition 7.3.1. Let L be a complete lattice, M a preordered set, and let f : L→M ,
g, h : M → L be mappings. If epi g ⊃ (hypo f)−1 ⊃ epih, then g 6 f [−1] 6 h and

epi g ⊃ epi f [−1] ⊃ (hypo f)−1 ⊃ epih.

Hence f [−1] is the largest mapping g such that epi g ⊃ (hypo f)−1. If on the other hand
hypo g ⊂ (epi f)−1 ⊂ hypoh, then g 6 f[−1] 6 h and

hypo g ⊂ (epi f)−1 ⊂ hypo f[−1] ⊂ hypoh.

Hence f[−1] is the smallest mapping h which satisfies hypoh ⊃ (epi f)−1.

The proof is straightforward.

Corollary 7.3.2. With f , g and h given as in the proposition, assume that epi g =
(hypo f)−1. Then g = f [−1]. Similarly, if hypoh = (epi f)−1, then h = f[−1]. If also
M is a complete lattice, then epi g = (hypo f)−1 implies that g[−1] = f in addition to
g = f [−1]. Similarly, hypoh = (epi f)−1 implies h[−1] = f in addition to h = f[−1].



Section 7.3. Inverses of mappings between lattices 57

An ideal inverse g would satisfy g ◦ f = IdL, f ◦ g = IdM , and the inverse of g would
be f . It is therefore natural to compare f [−1] ◦ f and f[−1] ◦ f with IdL; f ◦ f [−1] and
f ◦ f[−1] with IdM ; and (f[−1])

[−1] and (f [−1])[−1] with f . This is what we shall do now.

Proposition 7.3.3. If L is a complete lattice and M a preordered set, then for all
mappings f : L→M one has f [−1]◦f 6 IdL 6 f[−1]◦f with equality if f is coincreasing
in the sense of Definition 2.1.5. Conversely, if f [−1] ◦ f = IdL or f[−1] ◦ f = IdL, then
f is coincreasing.

Proof. It is clear that f [−1](f(a)) =
∧

(x; f(x) > f(a)) 6 a. If f is coincreasing, then
{x; f(x) > f(a)} is contained in {x;x > a}, so that f [−1](f(a)) >

∧
(x;x > a) = a.

Conversely, if f [−1](f(a)) > a, then for all x, f(x) > f(a) implies x > a. If this is
true for all a, then f is coincreasing.

Corollary 7.3.4. Let L be a complete lattice and M a preordered set. Then f [−1](y) 6
f[−1](y) for all y ∈ imf , and also for all y majorizing or minorizing imf . In particular,
f [−1] 6 f[−1] if f is surjective.

Proof. The statement for y ∈ imf follows directly from the proposition. If y majorizes
all elements in imf , then f[−1](y) = 1, and if y minorizes all elements in imf , then
f [−1](y) = 0.

Proposition 7.3.5. If g, h are increasing mappings such that g ◦ f 6 IdL 6 h ◦ f ,
then g 6 f [−1] and h > f[−1]. Hence, in view of Proposition 7.3.3, f [−1] is the largest
increasing mapping g such that g◦f 6 IdL, and f[−1] is the smallest increasing mapping
h such that h ◦ f > IdL.

Proof. If g and h are increasing and g ◦ f 6 IdL 6 h ◦ f , then epi g ⊃ (hypo f)−1 and
hypoh ⊃ (epi f)−1. We can now apply Proposition 7.3.1.

Proposition 7.3.6. Let L be a complete lattice and M a preordered set. Then the
following four conditions are equivalent.
(a) f is coincreasing;
(b) f [−1] ◦ f > IdL;
(c) f[−1] ◦ f 6 IdL;
(d) f[−1] 6 f [−1].

Proof. (a) implies (b) and (c). If f is coincreasing we know already from Proposition
7.3.3 that (b) and (c) hold with equality.

(b) or (c) implies (a). If (b) or (c) holds, then, in view of Proposition 7.3.3, they
hold with equality, and f is coincreasing.

(a) implies (d). Assume that f is coincreasing and fix an element y ∈ M . Let
x, x′ ∈ L be such that f(x) 6 y 6 f(x′). Then x 6 x′. Letting x vary we see that
f[−1](y) 6 x′. Letting now also x′ vary, we see that f[−1](y) 6 f [−1](y). Thus (d) holds.

(d) implies (a). If x and x′ are given with f(x) 6 f(x′) we define y = f(x). Then
x 6 f[−1](y) and f [−1](y) 6 x′. If we know that f[−1](y) 6 f [−1](y) it follows that
x 6 x′, proving that f is coincreasing.
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Next we compose f[−1] with f in the other order. This will lead to a characterization
of dilations—and, by duality, of erosions.

Theorem 7.3.7. If L and M are complete lattices and f : L→M any mapping, then
the following five properties are equivalent.
(A) f is a dilation;
(B) epi f ⊃ (hypo f[−1])

−1;
(C) epi f = (hypo f[−1])

−1;
(D) f is increasing and epi f ⊃ (graph f[−1])

−1;
(E) f is increasing and f ◦ f[−1] 6 IdM .

Proof. (A) implies (B). Suppose that (A) holds. Then if (y, x) ∈ hypo f[−1], in other
words if x 6 f[−1](y), we obtain, since f is increasing by hypothesis,

f(x) 6 f(f[−1](y)) = f
(∨

(x; f(x) 6 y)
)

=
∨(

f(x); f(x) 6 y
)

6 y,

which means that (x, y) ∈ epi f . Thus (B) holds.
(B) implies (A). We note first that f is increasing if (B) holds. Indeed, if x 6 x′

and we define y = f(x′), then f[−1](y) = f[−1](f(x′)) > x′ > x (see Proposition 7.3.3),
which by (B) implies that f(x) 6 y = f(x′).

Let now any family (xj)j of elements of L be given and define z =
∨
f(xj), w =

f(
∨
xj). Since f is increasing we always have z 6 w. Is it true that w 6 z? We note

that, by Proposition 7.3.3, xj 6 f[−1](f(xj)) 6 f[−1](z). Taking the supremum over all
j we obtain

∨
xj 6 f[−1](z), which by (B) implies that w = f(

∨
xj) 6 z. We have

proved (A).
(B) is equivalent to (C). This is clear since we always have epi f ⊂ (hypo f[−1])

−1.
(B) implies (D). We have seen that (B) implies that f is increasing. That (B)

implies (graph f[−1])
−1 ⊂ epi f follows from the inclusion graph f[−1] ⊂ hypo f[−1].

(D) implies (B). If x 6 f[−1](y) we define x′ = f[−1](y) and note that x 6 x′ and
that (y, x′) ∈ graph f[−1]. If (D) holds, we conclude that f(x′) 6 y. Hence, if f is
increasing, f(x) 6 f(x′) 6 y, proving (B).

(D) and (E) are equivalent: (E) is just a rephrasing of (D).

Remark. We may use (B) or (C) to define dilations L→M whenM is only a preordered
set.

Corollary 7.3.8. If L and M are complete lattices and f : L→M and g : L→M are
two mappings such that epi f = (hypo g)−1, then f is a dilation and g is an erosion,
and f[−1] = g, g[−1] = f .

Proof. It follows from epi f = (hypo g)−1 that f is increasing and that f[−1] = g, hence
that (D) in the theorem holds. Since (D) is equivalent to (A), we see that f is a
dilation. The rest follows by duality.

Proposition 7.3.9. If L and M are complete lattices and f : L → M any mapping,

then quite generally
(
f[−1]

)[−1]
6 f 6

(
f [−1]

)
[−1]

. Equality holds at the first place if and

only if f is a dilation; at the second place if and only if f is an erosion.
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Proof. We always have epi f ⊂ (hypo f[−1])
−1, i.e., y > f(a) implies f[−1](y) > a. This

yields

(f[−1])
[−1](a) =

∧
(y; f[−1](y) > a) 6

∧
(y; y > f(a)) = f(a).

If f is a dilation, then, as the last theorem shows, epi f =
(
hypo f[−1]

)−1
and equality

follows.
Conversely, let us note that, in view of (7.3.3) we always have

epi f ⊂
(
hypo f[−1]

)−1 ⊂ epi
(
f[−1]

)[−1]
.

Now if
(
f[−1]

)[−1]
= f , then these inclusions are equalities, and we conclude that

epi f = (hypo f[−1])
−1, which according to Theorem 7.3.7 means that f is a dilation.

Theorem 7.3.10. If L and M are complete lattices and δ : L → M a dilation, then
δ[−1] : M → L is an erosion. Similarly, if ε : L → M is an erosion, then ε[−1] is a
dilation.

Proof. We know that g = δ[−1] is increasing, so we have g(
∧
yj) 6 g(yk) for all k; hence

g(
∧
yj) 6

∧
g(yk). We need to prove the opposite inequality,

∧
g(yk) 6 g(y), where

y =
∧
yj. From (E) in Theorem 7.3.7 we learn that δ(g(yk)) 6 yk for all k, which

implies that δ(
∧
g(yj)) 6 yk, hence that δ(

∧
g(yj)) 6 y. Since g is increasing we get∧

g(yj) 6 g (δ (
∧
g(yj))) 6 g(y),

where the first inequality follows from Proposition 7.3.3. This completes the proof.

Corollary 7.3.11. For any dilation δ : L → M we have δ ◦ δ[−1] ◦ δ = δ and δ[−1] ◦
δ ◦ δ[−1] = δ[−1]. Dually ε ◦ ε[−1] ◦ ε = ε and ε[−1] ◦ ε ◦ ε[−1] = ε[−1] for any erosion
ε : L → M . In particular, δ[−1] ◦ δ and δ ◦ δ[−1] are idempotent: δ[−1] ◦ δ ∈ Filt(L) and
δ ◦ δ[−1] ∈ Filt(M). The first is a closing in L, the second an opening in M . Also
ε[−1] ◦ ε and ε ◦ ε[−1] are idempotent; the first an opening, the second a closing.

Proof. We always have f[−1]◦f > IdL (Proposition 7.3.3); it follows that f[−1]◦f ◦f[−1] >
f[−1]. If f is increasing, we also get f ◦ f[−1] ◦ f > f .

For dilations we have δ ◦ δ[−1] 6 IdM (Theorem 7.3.7), from which we deduce that
δ ◦ δ[−1] ◦ δ 6 δ and δ[−1] ◦ δ ◦ δ[−1] 6 δ[−1]. This shows what we want for dilations; the
rest follows by duality.

7.4. Division of mappings between lattices
We shall now generalize the definitions of upper and lower inverses. Let three sets
L,M,N be given, and let us assume that M is a complete lattice and N a preordered
set. (We shall often assume that all three are complete lattices, but this is not necessary
for the definitions to make sense.) Let also two mappings f : L → M and g : L → N
be given. Then we may define two mappings f/?g, f/? g : N →M by

(7.4.1) (f/?g)(y) =
∧
x∈L

(f(x); g(x) >N y), y ∈ N,
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(7.4.2) (f/? g)(y) =
∨
x∈L

(f(x); g(x) 6N y), y ∈ N.

We shall call them the upper and lower quotient of f and g.

N
f/?g,f/? g−−−−−→ M

g

x f

x
L L

The quotients f/?g and f/? g increase when f increases and they decrease when g
increases—just as with division of positive numbers,

(7.4.3) f1 6M f2 and g1 >N g2 implies that f1/
?g1 6M f2/

?g2 and f1/? g1 6M f2/? g2.

The mappings f/?g and f/? g are always increasing. If g(x) >N y, then f(x) >M

(f/?g)(y); if g(x) 6N y, then f(x) 6M (f/? g)(y). In particular, if g(x) = y, then
(f/?g)(y) 6M f(x) 6M (f/? g)(y).

If we specialize the definitions to the situation when L = M and f = IdL, then
f/?g = IdL/

?g = g[−1] and f/? g = IdL/? g = g[−1]; cf. (7.3.1) and (7.3.2).
On the other hand, if we specialize to the situation where L is an arbitrary subset of

a complete lattice M , N = M , and g is the inclusion mapping L→M , then f/?g = f �

and f/? g = f�, where we define f � and f� as in (4.3.2), generalized to any complete
lattice. If we specialize further, letting also f be the inclusion mapping, we obtain

(f/? g)(y) = (f/? f)(y) = f�(y) =
∨
x∈L

(x;x 6 y) = y◦ ∈M.

It is easy to verify that y 7→ y◦ is an opening. The elements y such that y◦ = y are
called L-convex. The reason should be clear from the following example.

Example 7.4.1. Le M be the complete lattice [−∞,+∞]E of functions on a vector space
E, let F be a vector subspace of its dual E?, and let L be the set of affine functions
with linear part in F , i.e., functions of the form α(x) = ξ(x) + c for some linear form
ξ ∈ F and some real constant c. Then a function on E is L-convex if and only if
it is equal to the supremum of all its affine minorants belonging to L. By Fenchel’s
theorem, Theorem 5.6.9, this happens if and only if it is convex in the usual sense,
lower semicontinuous for the topology σ(E,F ) on E generated by the linear forms in
F , and not taking the value −∞ except when it is equal to the constant −∞.

Proposition 7.4.2. If f : L → M is increasing and g : L → N is coincreasing, then
f/? g 6 f/?g. If f is arbitrary and y ∈ img, then (f/?g)(y) 6 (f/? g)(y). In particular,
if g is surjective and f is arbitrary, then f/?g 6 f/? g.

The upper quotient f/?g is the optimal solution to an inequality:

Proposition 7.4.3. For all mappings f : L→M and g : L→ N we have

(7.4.4) (f/?g) ◦ g 6 f 6 (f/? g) ◦ g,
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with equality if f is increasing and g is coincreasing. Conversely, if h, k ∈ Incr(N,M)
are two increasing functions such that h ◦ g 6 f 6 k ◦ g, then h 6 f/?g and k > f/? g.
Thus f/?g is the largest increasing function h such that h ◦ g 6 f , and f/? g is the
smallest increasing function k such that f 6 k ◦ g. In the special case L = N and
g = IdL we obtain

f/?IdL 6 f 6 f/? IdL,

where f/?IdL is the largest increasing minorant of f and f? /IdL is the smallest increasing
majorant of f ; when f itself is increasing we therefore get equality.

We next compare the quotient f/?g and the composition f ◦ g[−1]:

Proposition 7.4.4. For all increasing mappings f : L→M and all mappings g : L→
N we have f/?g > f ◦ g[−1] with equality if f is an erosion, and f/? g 6 f ◦ g[−1] with
equality if f is a dilation. If g is coincreasing, then f/? g 6 f ◦ g[−1] 6 f ◦ g[−1] 6 f/?g.

Proposition 7.4.5. If h ∈ Incr(M,P ), where P is an ordered set, we have h◦(f/?g) 6
(h◦f)/?g with equality if h is an erosion. Similarly h◦ (f/? g) > (h◦f)/? g with equality
if h is a dilation. A special case is h◦(f/?IdL) 6 (h◦f)/?IdL (take L = N and g = IdL).
Another special case is Proposition 7.4.4 (take L = M and f = IdL).

Proposition 7.4.6. For all mappings f : L→M we have

(7.4.5) f/? f 6 IdM 6 f/?f.

Corollary 7.4.7. For all mappings f : L→M we have

(7.4.6) (f/? f) ◦ f = f = (f/?f) ◦ f.

Proof. The result follows on combining (7.4.4), taking g = f , and (7.4.5), multiplied
from the right by f—or directly from the definitions.

Theorem 7.4.8. Let f : L→ M be any mapping from a set L into a complete lattice
M . Then η = f/? f : M → M is an opening. Conversely, any opening in M is of this
form for some mapping f : L→M with L = M .

Proof. It is clear that η(y) =
∨

(f(x); f(x) 6 y) defines a mapping M → M which is
increasing and antiextensive. The latter property implies that η ◦ η 6 η. It remains
to be proved that η 6 η ◦ η. To do so we note that, by definition, f(x) 6 y implies
f(x) 6 η(y). Therefore

η(y) =
∨

(f(x); f(x) 6 y) 6
∨

(f(x); f(x) 6 η(y)) = η(η(y)),

proving that η 6 η ◦ η. Note that, by (7.4.6), η ◦ f = f , proving that the image of f is
a subset of Invη; in other words, all elements f(x) are η-open.
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The last statement follows from the formula η/? η = η, which holds for any opening
η : M →M and is straightforward to prove. Writing out the formula in full if η = f/? f ,
we obtain (f/? f)/? (f/? f) = f/? f .

7.5. Structure theorems in lattice morphology

Lemma 7.5.1. Let L and M be two complete lattices and let a ∈ L and b, c ∈ M be
three fixed elements. Define a mapping ε = εb,c

a : L→M by

εb,c
a (x) =


1M , x = 1L,
c, x 6= 1L, x > a,
b, x 6> a.

If b 6 c, then εb,c
a is an erosion.

Proof. We have to prove that ε
(∧

j∈J xj

)
and

∧
j∈J ε(xj) are equal. If xj = 1L for all

j ∈ J (thus in particular if J is empty), then both expressions take the value 1M ; if
for all j we have xj > a and there is a j such that xj 6= 1L, then both expressions take
the value c; finally, if there is j such that xj 6> a, then ε(

∧
xj) = b and ε(xj) may be

either b or c or 1M , but ε(xj) = b for at least one j, so if b 6 c we have
∧
ε(xj) = b

and equality holds.

We can now prove a structure theorem for increasing mappings which is analogous to
Matheron’s first structure theorem, Theorem 4.3.1; cf. Serra (1988:20, 2001:29), where
the result is given for L = M .

Theorem 7.5.2. Let f : L → M be an increasing mapping from a complete lattice
L into another, M . Then f is the supremum of a family of elementary erosions as
defined in Lemma 7.5.1; more precisely,

f =
∨
a∈L

ε0,f(a)
a .

Proof. On the one hand we have ε
0,f(a)
a (x) 6 f(x) for all a, x ∈ L. On the other hand

ε
0,f(a)
a (a) = f(a) for every a ∈ L. Hence the equality.

Definition 7.5.3. Given two complete lattices L and M and two elements a ∈ L,
b ∈M we define mappings εb

a : L→M , δa
b : M → L, ηa : L→ L, and γb : M →M by

εb
a(x) =

{
1M , x > a,
b, x 6> a;

δa
b (y) =

{
0L, y 6 b,
a, y 66 b;

ηa(x) =

{
a, x > a,
0L, x 6> a;

γb(y) =

{
b, y 6 b,
1M , y 66 b.

Note that εb
a = εb,1

a in the notation of Lemma 7.5.1.

Lemma 7.5.4. (εb
a)

[−1] = δa
b .
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Proof. Let us recall that the upper inverse is defined by (εb
a)

[−1](y) =
∧

x

(
x; εb

a(x) > y
)
.

If b > y, then εb
a(x) > y for all x ∈ L, so the upper inverse of εb

a takes the value 0L at
y, just as does δa

b (y). If on the other hand b 6> y, then εb
a(x) > y if and only if x > a,

so the upper inverse of εb
a takes the value a at y; so does δa

b .

Lemma 7.5.5. For a 6= 0 and all b we have εb
a ◦ δa

b = γb. For a = 0 and all b we have
εb

a ◦ δa
b = εb

0 ◦ δ0b = γ1. For all a and all b 6= 1 we have δa
b ◦ εb

a = ηa. For all a and b = 1
we have δa

b ◦ εb
a = δa

1 ◦ ε1a = η0.

Proof. If a 6= 0, then ε(δ(y)) = ε(0) = b if y 6 b, and ε(δ(y)) = ε(a) = 1 otherwise.
These are the same values as γb(y). If on the other hand a = 0 we have ε(δ(y)) =
ε(0) = 1 = γ1(y) for all b. The proof for the other composition follows by duality.

We can now prove a structure theorem for openings which is analogous to Matheron’s
second structure theorem, Theorem 4.3.5; cf. Serra (1988:22, 2001:49).

Theorem 7.5.6. If θ : L → L is an opening in a complete lattice L, then it is the
supremum of a family of elementary openings ηa as defined in Definition 7.5.3:

θ =
∨
a∈A

ηa,

where A = Invθ is the invariance set of θ, the set of all θ-open elements. Conversely,
if A is an arbitrary subset of L, then this formula defines an opening. Its invariance
set is the set generated by A under the formation of suprema.

Proof. We know from Proposition 4.3.4 that

θ(x) = (IdInvθ
)� (x) =

∨
a∈A

(
a; a 6 x

)
.

We claim that the last element is equal to
∨

a∈A ηa(x). Indeed, since a = ηa(a) = ηa(x)
for all a 6 x, we get∨

a∈A

(
a; a 6 x

)
=
∨
a∈A

(
ηa(a); a 6 x

)
=
∨
a∈A

(
ηa(x); a 6 x

)
=
∨
a∈A

ηa(x),

where the last equality follows from the fact that ηa(x) = 0 when a 66 x so that these
a do not contribute to the supremum.

7.6. Strong filters in lattices

If L is a lattice we shall denote by L′ = Incr(L,L) the set of all increasing mappings
of L into itself. We may then form L′′ = Incr(L′, L′); the mapping f 7→ f ◦ f is an
example of an element of L′′.

The order in L′ being the obvious one, we note that L′ itself is a complete lattice if
L is a complete lattice, and that we have

(7.6.1) (
∨
gj) ◦ f =

∨
(gj ◦ f) as well as (

∧
gj) ◦ f =

∧
(gj ◦ f).
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In particular, taking g1 = Id and g2 = f , we note that

(7.6.2) (Id ∨ f) ◦ f = f ∨ (f ◦ f) and (Id ∧ f) ◦ f = f ∧ (f ◦ f).

We shall write

f (1) = Id ∨ f and f(1) = Id ∧ f,

so that (7.6.2) can be written

f (1) ◦ f = f ∨ (f ◦ f) and f(1) ◦ f = f ∧ (f ◦ f),

or more briefly

f (1)f = f ∨ ff and f(1)f = f ∧ ff,

if we write composition as juxtaposition.
However, in contrast to (7.6.1), we only have

(7.6.3) g ◦ (
∨
fj) >

∨
(g ◦ fj) and g ◦ (

∧
fj) 6

∧
(g ◦ fj),

where the inequalities can be strict. In particular we have

(7.6.4) ff (1) > f ∨ ff = f (1)f and ff(1) 6 f ∧ ff = f(1)f.

Among the increasing mappings, the idempotent ones play an important role. We
already introduced the notation Filt(L) for the set of increasing and idempotent map-
pings of L into itself. Its elements are called morphological filters, or just filters when
any mixup with the set-theoretical filters seems improbable.

For any filter f we thus have

(7.6.5) ff(1) 6 f(1)f = f = f (1)f 6 f ◦ f (1), f ∈ Filt(L).

Definition 7.6.1. Let f ∈ Filt(L). Then f is called a sup-filter if f ◦ f (1) = f , and it
is called an inf-filter if f ◦ f(1) = f . If f is both a sup-filter and an inf-filter, we shall
say that f is a strong filter.

For a strong filter f we thus have equality in (7.6.5), and we see that a strong filter f
commutes with f (1) and f(1). Actually also f (1) and f(1) commute if f is a strong filter
(prove this).

An idempotent mapping f is constant on {x, f(x)} for every x. A filter is therefore
constant on the segment [x, f(x)] if x 6 f(x) and on the segment [f(x), x] if f(x) 6 x.
A sup-filter is constant on the segment [x, f (1)(x)], an inf-filter is constant on [f(1)(x), x],
and a strong filter on [f(1)(x), f

(1)(x)] for every x.
A filter f is a closing if and only if f (1) = f (and if and only if f(1) = Id); it is an

opening if and only if f(1) = f (and if and only if f (1) = Id). Every closing and every
opening are strong filters. However, there are filters that are not strong:

Example 7.6.2. Let us define f : L→ L by

f(x) =

{
x if x > b or x 6 b,
b otherwise.
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Then we can prove that f is increasing and idempotent, thus a filter. But it is not a
sup-filter, neither an inf-filter if there exists an x which is not comparable with b. This
example is from Matheron (1988:116).

Theorem 7.6.3. If η : L → L is an opening and γ is a closing, then f = η ◦ γ is a
sup-filter, and g = γ ◦ η is an inf-filter. Conversely, every sup-filter is of the form η ◦ γ
for some opening η and some closing γ.

Proof. Clearly f is increasing. To prove that it is idempotent we note that

f ◦ f = (η ◦ γ) ◦ (η ◦ γ) > (η ◦ Id) ◦ (η ◦ γ) = η ◦ η ◦ γ = f,

and that
f ◦ f = (η ◦ γ) ◦ (η ◦ γ) 6 (η ◦ γ) ◦ (Id ◦ γ) = η ◦ γ ◦ γ = f.

Finally we see that f is a sup-filter from the general inequality f ◦ f (1) > f and

f ◦ f (1) = (η ◦ γ) ◦ (Id ∨ (η ◦ γ)) 6 (η ◦ γ) ◦ γ = η ◦ γ = f.

The second part is more difficult to prove, and we leave it for now.

7.7. Exercises

7.1. Let f be a constant mappig L → M , f(x) = b, where L and M are complete lattices
and b a fixed element of M . Determine the upper and lower inverses of f .

7.2. Let L be a complete lattice and f , g the mappings L → L given by f(x) = a ∨ x,
g(x) = a ∧ x, where a is a fixed element of L.
(a) Determine f[−1] and g[−1].

(b) Determine f [−1] and g[−1] when L = P(W ), the power set of a certain set W .

(c) Determine f [−1] and g[−1] when L = [−∞, +∞]W , the lattice of all functions on a set W
with values in [−∞, +∞].
(d) Try to say something on f [−1] and g[−1] when L is the complete lattice of all convex
functions on R with values in [−∞, +∞].

7.3. We know that f[−1] 6 f [−1] if f is coincreasing. On the other hand f [−1] 6 f[−1] when
f is surjective. Find a lattice L and a function f : L → L such that f [−1] and f[−1] are not
comparable (even with f strictly increasing and injective).

7.4. Prove that η/? η = η for all openings η, and hence, in view of Theorem 7.4.8, that
(f/? f)/? (f/? f) = f/? f for any mapping f : L → M , where L is a set and M a complete
lattice.

7.5. (a) Formulate and prove the statement dual to Theorem 7.4.8.
(b) Formulate and prove (at least in some special cases) the statement dual to To be, or not
to be, that is the question.

7.6. Prove that if L is totally ordered, then every morphological filter is a strong filter.

7.7. Determine f ◦ f , f(1), f (1), f ◦ f(1), f ◦ f (1) etc. in example 7.6.2.
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8. Notions of topology

8.1. Mappings
Let X and Y be two sets and f : X → Y a mapping from X into Y . We denote as
before by P(X) the power set of X, i.e., the set of all subsets of X. We associate with
f a mapping f ∗ : P(Y ) → P(X) and a mapping f∗ : P(X) → P(Y ) defined by the
formulas

(8.1.1)
f ∗(B) = {x ∈ X; f(x) ∈ B}, B ⊂ Y ;

f∗(A) = {f(x) ∈ Y ; x ∈ A}, A ⊂ X.

Thus f ∗(B), often denoted by f−1(B), is the preimage (inverse image) of B ⊂ Y and
f∗(A), often denoted by f(A), is the direct image, or just image, of A ⊂ X. It is
however convenient to have a special notation for f∗ : P(X)→P(Y ), so that it is not
confused with f : X → Y ; similarly f ∗ is not the pointwise inverse of f .

Given three sets X, Y and Z and a mapping f : X → Y , it is customary to define
a mapping f ∗ : ZY → ZX by the formula f ∗(g) = g ◦ f , g ∈ ZY . The mapping
f ∗(g) : X → Z is called the pull-back of g. We thus have two mappings denoted by
f ∗, one mapping ZY into ZX as just defined, and one mapping P(Y ) into P(X)
defined by (8.1.1). Hopefully this will not cause confusion, since the two definitions
are compatible in a natural way if Z = R: if g ∈ {0, 1}Y ⊂ RY is the characteristic
function of a set B ⊂ Y , g = χB, then f ∗(χB) = χf∗(B), where we use the notation from
(8.1.1) in the right-hand side. Thus the pull-back of χB is the characteristic function
of the set f ∗(B).

We note that f ∗ is a homomorphism of Boolean algebras: it satisfies

(8.1.2) f ∗(B1 ∪B2) = f ∗(B1) ∪ f ∗(B2), f ∗(B1 ∩B2) = f ∗(B1) ∩ f ∗(B2),

(8.1.3) f ∗(B1 rB2) = f ∗(B1) r f ∗(B2), in particular f ∗
(
{B
)

= {f ∗(B).

The formulas (8.1.2) can be generalized to infinite unions and intersections, implying
that f ∗ is both a dilation and an erosion:

f ∗
(⋃

Bj

)
=
⋃
f ∗(Bj), f ∗

(⋂
Bj

)
=
⋂
f ∗(Bj).

The homomorphism f ∗ is an endomorphism if and only if f is surjective, and an
epimorphism if and only if f is injective.

The mapping f∗ is not so well-behaved: it always satisfies

(8.1.4) f∗(A1 ∪ A2) = f∗(A1) ∪ f∗(A2) and f∗
(⋃

Aj

)
=
⋃
f∗(Aj);

it is thus a dilation. But for intersections we have only f∗(A1 ∩A2) ⊂ f∗(A1)∩ f∗(A2);
f∗ is in general not an erosion. Also there is in general no inclusion relation between
f∗
(
{A
)

and {f∗(A).
We note that A ⊂ f ∗(B) if and only if f∗(A) ⊂ B, i.e., that (hypo f ∗)−1 = epi f∗.

By Corollary 7.3.8 this implies that (f ∗)[−1] = f∗ and that (f∗)[−1] = f ∗; f∗ is the
dilation corresponding to the erosion f ∗. Moreover

f ∗ ◦ f∗ ◦ f ∗ = f ∗ and f∗ ◦ f ∗ ◦ f∗ = f∗.
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It follows that
(
(f ∗)[−1]

)
[−1]

= f ∗ =
(
(f ∗)[−1]

)[−1]
and

(
(f∗)[−1]

)[−1]
= f∗; cf. Proposition

7.3.9.
Proposition 7.3.3 shows that

(8.1.5) f ∗ ◦ f∗ > IdP(X) and f∗ ◦ f ∗ 6 IdP(Y ).

(These formulas can of course also be proved directly.) The first formula means that
f ∗(f∗(A)) ⊃ A; equality holds for all A if and only if f is injective. The second means
that f∗(f

∗(B)) = B ∩ imf ⊂ B; equality holds for all B if and only if f is surjective.
Since f ∗ is also a dilation, Theorem 7.3.7 implies that f ∗◦(f ∗)[−1] 6 IdP(X). Proposition
7.3.3 implies that

(f∗)
[−1] ◦ f∗ 6 IdP(X) and (f ∗)[−1] ◦ f ∗ > IdP(Y ).

Finally we note that (f ∗)[−1] = { ◦ f∗ ◦ { = (f∗)
d =

(
(f ∗)[−1]

)d
. (There seems to be

no analogous formula for (f∗)
[−1].)

We can now pass to mappings on a higher level by taking the upper and lower star
again. There are four mappings on the next level:
(8.1.6)

(f ∗)∗, (f∗)∗ : P(P(X))→P(P(Y )) and (f∗)
∗, (f ∗)∗ : P(P(Y ))→P(P(X));

two go in the same direction as f and two in the opposite direction. Of these four, two
will be used to transport topologies, viz. (f ∗)∗ and (f ∗)∗.

8.2. Definition of topologies
A topology on a set X is a collection τ = U (X) of subsets of X—thus an element of
P(P(X))—which is closed under the formation of arbitrary unions and finite inter-
sections. The elements of U (X) are called open sets ; thus any union of open sets is
open and any finite intersection of open sets is open. In particular, the union and the
intersection of the empty family is open, so Ø and X are always open subsets of X.

In a metric space there is a topology defined by the metric: it consists of all unions
of balls B<(c, r).

A topology can be given in several different ways. We define a set as closed if
its complement is open. Then the family F (X) of all closed sets is closed under
the formation of arbitrary intersections and finite unions. We may also impose these
conditions as axioms, and then define a set to be open if its complement is closed. A
topology can be equivalently defined using open or closed sets.

Another notion is that of neighborhood. If a topology U (X) is given, we say that a
set V is a neighborhood of a point x if there exists an open set U such that x ∈ U ⊂ V .
The families V (x), x ∈ X, of all neighborhoods of points in X satisfy the following
conditions:

(8.2.1) If V ∈ V (x), then x ∈ V ;

(8.2.2) If V ∈ V (x) and W ⊃ V , then W ∈ V (x);

(8.2.3) If V,W ∈ V (x), then V ∩W ∈ V (x);

(8.2.4) If V ∈ V (x), then there exists W ∈ V (x) such that V ∈ V (y) for all y ∈ W .
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These properties are easy to verify if the topology is given and the neighborhoods are
defined as above. On the other hand, if we have a collection V (x) for every x ∈ X
satisfying the axioms (8.2.1)---(8.2.4) and define a set U to be open if it belongs to
V (x) for every x ∈ U , then we get a topology for which the neighborhoods are the
given ones.

We can also define a topology using closure operators. If a topology is given, then
we can define a closure operator in P(X) by taking A as the intersection of all closed
sets containing A. Then this closure operator satisfies Ø = Ø and A ∪B = A ∪ B.
Conversely, if a closure operator is defined satisfying these two conditions we can define
a set to be closed if A = A; we then get a topology, a topology for which the topological
closure operator is the given one.

Finally, the interior A◦ of a set A is the largest open set contained in the set. It is
related to the closure by the formula

A◦ = {
(
{A
)
.

The operation A 7→ A◦ is antiextensive, increasing, and idempotent. It is thus an
opening in the algebraic sense, which of course means that it is a closure operator if
we reverse the order: A 6 B shall mean A ⊃ B. In addition to being an opening, it
satisfies X◦ = X and (A ∩ B)◦ = A◦ ∩ B◦. Conversely, we may take these properties
as axioms and define a set to be open if it is in the image of the operator. Then we
get a topology. The operation of taking the interior of a set for this topology is equal
to the original operator.

Summing up, we have five equivalent ways to define a topology: using open sets,
closed sets, neighborhoods, taking the topological closure, and taking the interior.

If we have two topologies U1(X) and U2(X) on the same set X we say that the
first is weaker or coarser than the second, and that the second is finer or stronger than
the first, if U1(X) ⊂ U2(X). Expressed in terms of closure operators, this means that
c2 6 c1 if cj denotes the closure operator associated with Uj(X), j = 1, 2. The weakest
topology is the chaotic topology {Ø, X} and the strongest is the discrete topology P(X).
The closure of a nonempty set in the chaotic topology is always the whole space, wheras
the closure of a set in the discrete topology is the set itself.

A two-point space can have four topologies: in addition to the two just mentioned,
they are {Ø, {x}, {x, y}} and {Ø, {y}, {x, y}}. The two latter are called Sierpiński
topologies.21 Of the four, only three are different in the sense that they cannot be
obtained from another one by renaming the points.

8.3. Transport of topologies
If f : X → Y is a mapping from a set X into a topological space Y we can transport
the topology on Y to X by defining a subset of X to be open if and only if it is of the
form f ∗(U) for some open subset U of Y . Because f ∗ is both a dilation and an erosion,
it is clear that the family of all sets

(f ∗)∗(U (Y )) = {f ∗(U); U ∈ U (Y )}

is a topology. Here we have used the notation introduced in (8.1.1) at the next higher
level: f ∗ : P(Y ) → P(X), (f ∗)∗ : P(P(Y )) → P(P(X)); see (8.1.6). For brevity

21Wac law Sierpiński, 1882---1969.
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we shall denote (f ∗)∗(τ) = (f ∗)∗(U (Y )) by f
←

(τ) = f
←

(U (Y )), the pull-back of
τ = U (Y ).

If d : P(Y ) →P(Y ) is a closure operator in Y , then d
←

= f ∗ ◦ d ◦ f∗ is a closure
operator in X, and if d satisfies the topological axioms d(Ø) = Ø and d(B1 ∪ B2) =
d(B1) ∪ d(B2), then d

←
does the same. Thus we can transport topological closure

operators from Y to X. One can verify that the transported open sets correspond to
the transported closure operator.

A particularly common case is when X is a subset of Y and f is the inclusion
mapping. Then we say that the topology f

←
(U (Y )) defined on X is the induced

topology. We see that U is open in X if and only if U = V ∩ Y for some open set V in
Y ; we also see that the closure operator d

←
in X is defined as d

←
(A) = d(A) ∩X.

If X is a topological space and f : X → Y a mapping of X into a set Y , we can
of course consider the family {f∗(A); A ∈ U (X)} ⊂ P(Y ). However, this family is
usually not a topology on Y , since f∗ is not an erosion. Instead we use again f ∗ and
declare a subset B of Y to be open if f ∗(B) is open in X. And we can verify that this
is indeed a topology on Y ; we shall denote it by

f→(σ) = f→(U (X)) = (f ∗)∗(U (X)) = {B ∈P(Y ); f ∗(B) ∈ U (X)},

the push-forward of the topology σ = U (X) on X.
A common instance of this definition is when Y is a quotient set of X, i.e., when

we have an equivalence relation ∼ in X and let Y = X/∼ be the set of all equivalence
classes in X with respect to the relation. The mapping f associates to each element in
X its equivalence class in Y . Then a subset B of Y is open in Y with respect to the
topology we have pushed forward from X if and only if the union of all equivalence
classes in B is open in X. The topology obtained in this way on X/∼ is called the
quotient topology.

If f : X → Y is injective, and if we have a topology on X, push it forward to Y and
then pull it back toX, the new topology agrees with the original one: f

←
(f→(U (X))) =

U (X). Similarly, if f is surjective and we start with a topology on Y , pull it back to
X and then push it forward to Y , we obtain the original topology; f→(f

←
(U (Y ))) =

U (Y ). (This works so well because we did not use f∗ but f ∗ in the definition of f→ .)
However, if we have a closure operator c in X, we cannot define a closure operator

in Y by anything like c→ = f∗ ◦ c ◦ f ∗.
8.4. Continuous mappings
Let f : X → Y be a mapping of a topological space X into a topological space Y and
let x be a point in X. We say that f is continuous at x if f ∗(V ) is a neighborhood
of x for every neighborhood V of f(x). It is called continuous if it is continuous at
every point in X. We can translate this well-known notion into the language of open
sets, closed sets, and closure operators. One can prove that f is continuous if and only
if f ∗(U) ∈ U (X) for every U ∈ U (Y ); in other words if and only if the topology
f
←

(U (Y )) is weaker than the topology U (X).

8.5. Connectedness
The family of all open and closed sets of a topological space X (sometimes called the
clopen sets) is a Boolean algebra. This algebra must contain the two sets Ø, X, for
they are always both open and closed. (If X is empty, there is of course only one such
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set.) A topological space is said to be connected if the only sets which are both open
and closed are the empty set and the whole space. A subset of a topological space is
called connected if it is connected as a topological space with the induced topology.22 A
connectivity component (sometimes called a “connected component”) of a topological
space is a connected subset which is maximal with respect to inclusion.

A connected subset which is both open and closed is a component. It is easy to
prove that the closure of a connected subset is connected. Therefore all components
are closed. They need not be open.

Proposition 8.5.1. Let f : X → Y be a continuous mapping of a topological space X
into a topological space Y . If X is connected, then so is f∗(X) = imf .

Proof. Let B be a clopen subset of imf . Then f ∗(B) is clopen in X. Hence f ∗(B) is
either empty or equal to X. Therefore f∗(f

∗(B)) = B ∩ imf = B is either empty or
equal to imf . This means that imf is connected.

Corollary 8.5.2. Let f : X → Y be a mapping of a topological space X into a set
Y . Equip Y with the strongest topology such that f is continuous. Suppose that X is
connected. Then imf is connected, and the points in Y rimf are isolated. In particular,
any quotient space of a connected topological space is connected.

Proof. For any point y ∈ Y not in the image of f , the inverse image f ∗({y}) is empty,
thus both open and closed. This means that Y r imf has the discrete topology and
the connectivity components are just the singleton sets.

Of the four topologies that can live on a space consisting of two points, only three are
connected, and out of these, only two are different in the sense that they cannot be
obtained from another one by renaming.

8.6. Quotient spaces

In particular we shall use Corollary 8.5.2 with X = R and Y = Z to define connected
topologies on the digital line Z. Let f : R → Z be a surjective mapping. Then Z
equipped with the strongest topology such that f is continuous is a connected topolog-
ical space. Thus we consider Z as a quotient space of R, not as a subspace. Now there
exist very many surjective mappings R → Z. It is not unnatural to restrict attention
to increasing surjections f : R → Z. Then f ∗({n}) is an interval for every integer n;
denote its endpoints by an and bn > an, so that

]an, bn[ ⊂ f ∗({n}) ⊂ [an, bn].

We can normalize the situation to an = n − 1
2
, bn = n + 1

2
; this does not change the

topology on Z. Then f(x) = bx + 1
2
c for all x ∈ R r (Z + 1

2
), and f(n + 1

2
) = n or

f(n + 1
2
) = n + 1 for n ∈ Z. The topology is therefore determined if we know for

which n we have f(n + 1
2
) = n. For every subset A of Z we get a topology on Z by

declaring that f(n+ 1
2
) shall be equal to n for n ∈ A and that, for all other real numbers

22Hence the empty set is connected, which agrees with Bourbaki’s definition (1961:I:§11:1). Adrien
Douady (personal communication, 2000-06-26) claims that it would be more bourbakistic to declare
the empty set not to be connected. However, I have decided to follow Bourbaki here.
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x, we have f(x) = bx + 1
2
c. Thus A describes faithfully all topologies obtained from

increasing surjections—the others are just too many . . .
This can be explained as follows. It is natural to think of Z as an approximation

of the real line R and to consider mappings f : R → Z expressing this idea. We may
define f(x) to be the integer closest to x; this is well-defined unless x is a half-integer:
f(x) =

⌊
x+ 1

2

⌋
when x ∈ R r

(
Z + 1

2

)
. So when x = n + 1

2
we have a choice for

each n: shall we define f
(
n+ 1

2

)
= n or f

(
n+ 1

2

)
= n + 1? If we choose the first

alternative for every n, thus putting f ∗({n}) =
]
n− 1

2
, n+ 1

2

]
, the topology defined in

Corollary 8.5.2 is called the right topology on Z; if we choose the second, we obtain the
left topology on Z; cf. (Bourbaki 1961:I:§1: Exerc. 2).

Another choice is to always choose an even integer as the best approximant of a
half-integer. Then the closed interval [−1

2
, 1

2
] is mapped to 0, so {0} is closed, whereas

the inverse image of 1 is the open interval
]

1
2
, 3

2

[
, so that {1} is open. This topology was

introduced by E. D. Halimskĭı (Efim Khalimsky), and we shall call it the Khalimsky
topology ; Z with this topology is called the Khalimsky line. The Khalimsky line is
connected, but the complement of any point is disconnected. Among all the topologies
defined by increasing surjections f : R → Z only two have this property: the one
just defined and the one obtained by translating everything by one step. For the left
topology, for instance, all subsets are connected.

8.7. Separation axioms

The closure of a subset A of a topological space X will be denoted by A. The in-
tersection of all neighborhoods of a point y will be denoted by N(y). We note that
x ∈ N(y) if and only if x ∈ {y}. The relation x ∈ N(y) defines a preorder in X (see
Definition 2.1.1). We shall denote it by x 4 y; thus x 4 y if and only if x ∈ N(y) if
and only if y ∈ {x}. It was introduced by Aleksandrov (1937:503). We shall call it the
specialization preorder following Kong et al. (1991:905). (However, they defined it as
the opposite preorder.)

A Kolmogorov space (Bourbaki 1961:I:§1: Exerc. 2), also called a T0-space, is a topo-
logical space such that x ∈ N(y) and y ∈ N(x) only if x = y, thus precisely when the
specialization preorder is an order (satisfies (2.1.3)). It is quite reasonable to impose
this axiom; if x belongs to N(y) and vice versa, then x and y are indistinguishable
from the point of view of topology: we cannot distinguish points from knowledge of
the open sets to which they belong. We should therefore identify them and consider a
quotient space.

So every topology τ on a set X defines a preorder P (τ) = 4 in X, and this preorder
is an order if and only if τ satisfies Kolmogorov’s axiom.

Conversely, every preorder 4 in a set X defines a topology T (4) on X whose
smallest neighborhoods are

N(y) = {x ∈ X;x 4 y}.

This means that a subset A of X is open if and only if, for all a ∈ A and all y ∈ X,
a 4 y implies y ∈ A.

If we start with a preorder 4, define the topology T (4), and then define the preorder
P (T (4)), then we get back to the original preorder: 4 = P (T (4)); in other words
P ◦ T is the identity on the set of all preorders. However, if we start with a topology
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τ , construct the preorder P (τ), then the topology T (P (τ)) defined by that preorder is
not equal to τ in general; T ◦ P is not the identity. However, T (P (τ)) = τ if and only
if τ defines a smallest-neighborhood space as defined in the next section.

The separation axiom T1 states that N(x) = {x}. It is too strong to be of interest
for the spaces considered here. The specialization preorder in this case is the discrete
order: we have x 4 y if and only if x = y.

Two points x and y in a topological space Y are said to be adjacent if x 6= y and
{x, y} is connected. We note that {x, y} is connected if and only if either x ∈ N(y)
or y ∈ N(x). Hence two points are adjacent if and only if they are different and
comparable for the specialization preorder.

8.8. Smallest neighborhood spaces

In a topological space the union of any family of open sets is open. It may happen that
also the intersection of any family of open sets is open. Equivalently, every point in the
space possesses a smallest neighborhood. A topological space with this property we
shall call a smallest-neighborhood space. Another suitable name would be a P. S. Aleks-
androv space, in honor of P. S. Aleksandrov,23 who introduced them in his seminal paper
(1935). It is equivalent to require that the union of an arbitrary family of closed sets
be closed.

The intersection N(x) of all neighborhoods of a point x is open for all x if and only
if the space is a smallest-neighborhood space.

Aleksandrov (1935, 1937) introduced the term espace discret, diskreter Raum ‘dis-
crete space’ for a topological space such that the intersection of any family of open
sets is open. The intersection of all closed sets containing a set M he called its Hülle
‘hull’, and denoted it by M or AM . The intersection of all open sets containing a
set M he called its Stern ‘star’ and denoted it by OM (1937:504). He noted that the
star of a set is a closure operation satisfying the two extra conditions Ø = Ø and
A ∪B = A ∪ B (see the discussion in section 2.2, in particular formula (2.2.6)), and
therefore defines a topology, which he called réciproque (1935) or dual (1937). The
closed set of a smallest-neighborhood space satisfies the axioms of the open sets of a
topology, so there is a complete symmetry between the two topologies in such a space.

It is easy to see that a mapping f : X → Y between two smallest-neighborhood
spaces is continuous if and only if it is increasing for the specialization preorder. Thus
continuity in these spaces is actually order theoretic, and the smallest-neighborhood
spaces are actually special cases of preordered sets. This means that the rich theory of
(pre)ordered sets can be put to work here.

Alexandrov’s choice of terms seems fortunate, but nowadays it is not possible to
use the term discrete space in Aleksandrov’s sense, since the discrete topology in mod-
ern usage refers only to the topology where every set is open, the strongest of all
topologies. This is why I propose to call a discrete space in Aleksandrov’s sense a
smallest-neighborhood space or a P. S. Aleksandrov space.

The closed points, i.e., the points x such that {x} = {x}, Aleksandrov (1937:504)
called Eckpunkte ‘vertices’, and the open points, i.e., the points x such that the singleton
{x} is open, he called Grundpunkte ‘base points’.

23Pavel Sergeevič Aleksandrov (1896---1982); not to be confused with Aleksandr Danilovič Aleks-
androv (1912---1999), for whom other spaces are named.
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We can define a topology on the digital line Z by declaring all odd points to be
open, thus N(2k+ 1) = {2k+ 1}, and all even points to have a smallest neighborhood
N(2k) = {2k − 1, 2k, 2k + 1}. It follows that the even points are closed, for the
complement of an even point 2k is the union of all N(x) with x 6= 2k, thus an open set.
This is the Khalimsky topology already defined in section 8.6. Thus in the Khalimsky
topology the even points are Eckpunkte (vertices) and the odd points are Grundpunkte
(base points) in Aleksandrov’s terminology. In the specialization order, the vertices lie
higher than the base points (1 4 0, i.e., 1 ∈ N(0), and 1 4 2, i.e., 1 ∈ N(2)).

A Khalimsky interval is an interval [a, b]Z = [a, b]R ∩Z equipped with the topology
induced by the Khalimsky topology on Z. A Khalimsky circle is a quotient space
Zm = Z/mZ of the Khalimsky line for some even integer m > 4. (If m is odd, the
quotient space receives the chaotic topology, which is not interesting.)

The Khalimsky plane is the Cartesian product of two Khalimsky lines, and, more
generally, Khalimsky space is the Cartesian product of n copies of Z. Equivalently, we
can define Khalimsky n-space by declaring {x ∈ Zn; ‖x− c‖∞ 6 1} to be open for any
point c ∈ (2Z)n and then taking all intersections of such sets as open sets, then all
unions of such intersections.

There are, however, other topologies in Z2 which are of interest: we may declare
{x ∈ Z2; ‖x − c‖1 6 1} to be open for any c such that

∑
cj ∈ 2Z as well as all

intersections of such sets (Wyse 1970). The Khalimsky topology and the topology just
defined are not comparable: none is stronger than the other. However, they are related,
for if we rotate the Khalimsky plane by 45◦ and delete all points which are not open
or closed, we obtain the other topology.

To exhibit some of the analogies between topological spaces and preordered sets,
let us list some properties of continuous and increasing mappings.

Mappings X → Y between Mappings X → Y between
topological spaces preordered sets

X has the discrete topology ⇒ X has the discrete order ⇒
all mappings are continuous all mappings are increasing

Y has the chaotic topology ⇒ Y has the chaotic preorder ⇒
all mappings are continuous all mappings are increasing

X has the chaotic topology and X has the chaotic preorder and
Y has a Kolmogorov topology ⇒ Y is ordered ⇒
only the constants are continuous only the constants are increasing

Y has the discrete topology and Y has the discrete order
X is connected ⇒ and X is connected ⇒
only the constants are continuous only the constants are increasing

8.9. Exercises

8.1. Prove that if f : X → Y is a mapping of a set X into a set Y , then the closing f∗/?f∗

is equal to f∗ ◦ f∗ > IdP(X). Similarly f∗/? f∗ = f∗ ◦ f∗ (an opening; cf. Theorem 7.4.8).

8.2. Show that if we have a closure operator c in X and a mapping f : X → Y , then we
cannot define a closure operator in Y by something like c→ = f∗ ◦c◦f∗. In general c→ will be
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neither extensive nor idempotent. Construct examples which show this. How shall we define
the closure operator connected with the topology f→(U (X)) on Y ?

8.3. Express the continuity of a mapping f : X → Y from one topological space X into
another, Y , in terms of the families of all closed sets F (X) and F (Y ) as well as in terms of
the closure operators in X and Y .

8.4. We have seen that a two-point space can have four topologies. How many topologies are
there on a three-point space? How many of these are different in the sense that they cannot
be obtained from another one by renaming the points? How many are connected? How many
of these are different?

9. A closer look at the Khalimsky plane

9.1. Continuous functions

In this chapter we shall take a closer look at the Khalimsky plane, and in particu-
lar consider the Jordan curve theorem and Brouwer’s fixed-point theorem in the new
setting. We first explain the meaning of continuity.

We recall that a subset A of Z is open for the Khalimsky topology if and only if, for
every even number 2n ∈ A, also the two odd numbers 2n±1 belong to A. To construct
the Khalimsky plane, we take the Cartesian product of two copies of the Khalimsky
line. The topology is then determined by the rule that a subset A of the Khalimsky
plane is open if and only if, for every pair of even numbers x = (2m, 2n), all pairs y ∈ Z2

with ‖y−x‖∞ 6 1 belong to A, for every pair (2m, 2n+1) ∈ A also (2m±1, 2n+1) ∈ A,
and, finally, for every pair (2m+ 1, 2n) ∈ A, also (2m+ 1, 2n± 1) ∈ A.

A function f : X → Y from one smallest-neighborhood space into another is con-
tinuous at a point x if and only if the direct image of NX(x) is contained in NY (f(x)),
or, equivalently, the inverse image of NY (f(x)) contains NX(x):

(9.1.1) f∗(NX(x)) ⊂ NY (f(x)), equivalently NX(x) ⊂ f ∗(NY (f(x))).

Here NX(x) and NY (y) denote the smallest neighborhood of x ∈ X and y ∈ Y ,
respectively. If we apply this to the case when X = Y = Z, it means the following. If
x ∈ Z is odd, the property always holds; if x is even and f(x) is odd, it means that
f(x±1) = f(x), and if x is even and also f(x) is even, it means that |f(x±1)−f(x)| 6 1.
In particular, a continuous function is Lip-1, but it must sometimes have intervals of
constancy, viz. every time it takes an odd value at an even point (and hence also when
it takes an even value at an odd point).

We observe that the following functions are continuous: (1) Z 3 x 7→ a ∈ Z, where
a is a constant; (2) Z 3 x 7→ ±x + c ∈ Z, where c is an even constant; (3) max(f, g)
and min(f, g) if f, g are continuous. Actually every continuous function on a bounded
Khalimsky interval can be obtained by a finite succession of the rules (1), (2), (3).
Note that the function x 7→ x+ 1 is discontinuous.

For functions of two variables, f : Z2 → Z, (9.1.1) means the following. We list the
eight possible parities of the triple (x1, x2, f(x)) ∈ Z3:
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Parity of x1 Parity of x2 Parity of f(x) Condition
Odd Odd Odd None
Odd Odd Even None
Odd Even Odd y1 = x1, |y2 − x2| 6 1⇒ f(y) = f(x)
Odd Even Even y1 = x1, |y2 − x2| 6 1⇒ |f(y)− f(x)| 6 1
Even Odd Odd |y1 − x1| 6 1, y2 = x2 ⇒ f(y) = f(x)
Even Odd Even |y1 − x1| 6 1, y2 = x2 ⇒ |f(y)− f(x)| 6 1
Even Even Odd ‖y − x‖∞ 6 1⇒ f(y) = f(x)
Even Even Even ‖y − x‖∞ 6 1⇒ |f(y)− f(x)| 6 1

This table lists what it means for f to be continuous at a particular point x. However,
the description becomes much simpler if we use the specialization order 4, for then a
continuous function is just an increasing function. We know that, in Z,

· · · 4 −2 < −1 4 0 < 1 4 2 < 3 4 4 < · · ·

In Z2, (0, 0) < (1, 0), (0, 1) < (1, 1) and, in general,

(2m, 2n) < (2m+ 1, 2n), (2m, 2n+ 1) < (2m+ 1, 2n+ 1) for all m,n ∈ Z.

So continuity at x boils down to x 4 y ⇒ f(x) 4 f(y) for all y ∈ Z2; continuity
everywhere to the same implication but now for all x, y ∈ Z2. For example, if both
components of x are odd, the only y which satisfies x 4 y is y = x, so f(x) 4
f(y) holds automatically. If, on the other hand both components of x are even, then
{y;x 4 y} = B6(x, 1) for the l∞ norm, and if f(x) in addition is odd, then f(x) 4 f(y)
holds only for f(y) = f(x), so f must be constant on B6(x, 1).

We note that if x, y ∈ Z and x 4 y, then |x−y| 6 1. Conversely, if |x−y| 6 1, then
either x 4 y or y 4 x. Hence |x− y| 6 1 implies |f(x)− f(y)| 6 1 for any continuous
function f : Z → Z, and we see that f is Lip-1. In two variables we have the same
conclusion. In the proof of this fact we shall need the following notation. For any two
points x, y ∈ Z2 we define q(x, y) = (x1, y2). The four points x, y, q(x, y), q(y, x) thus
form a rectangle (perhaps degenerate); if yj = xj±1, j = 1, 2, they form a square with
side length 1.

Theorem 9.1.1. A continuous function f : Z2 → Z is Lip-1 for the l∞ norm. More
generally, the conclusion holds for any continuous function f : X → Z, where X is
a connected subset of Z2 such that q(x, y), q(y, x) ∈ X for all x, y ∈ X such that
yj = xj ± 1, j = 1, 2, and we do not have x 4 y, nor y 4 x.

Proof. It is enough to prove that if ‖x− y‖∞ 6 1, then |f(x)− f(y)| 6 1. If x, y ∈ X
with x 4 y, then f(x) 4 f(y), which in turn implies that |f(x)−f(y)| 6 1. Assume now
that ‖x−y‖∞ 6 1 but that we do not have x 4 y, nor y 4 x. Then we have essentially
the case x = (1, 0), y = (0, 1). We have q(y, x) = (0, 0) < x, y < (1, 1) = q(x, y), which
implies that f(0, 0) < f(x), f(y) < f(1, 1). (By hypothesis both (0, 0) and (1, 1) belong
to X.) Hence |f(0, 0)−f(1, 1)| 6 1. Also, |f(0, 0)−f(x)| 6 1 and |f(x)−f(1, 1)| 6 1,
which implies that f(x) = f(0, 0) or f(1, 1). Similarly, f(y) = f(0, 0) or f(y) = f(1, 1).
Therefore |f(x)− f(y)| 6 1.



76 Chapter 9. A closer look at the Khalimsky plane

This result holds for many subsets X of Z2, but not for all:

Example 9.1.2. LetX = {x ∈ Z2; ‖x‖1 6 1} , the l1 ball in Z2 and define f(x) = x1−x2.
Then X is connected for the Khalimsky topology and f is continuous, but f is not
Lip-1. We note that q(y, x) = (0, 0) ∈ X but that q(x, y) = (1, 1) /∈ X if we take
x = (1, 0) ∈ X, y = (0, 1) ∈ X. So both q(x, y) and q(y, x) need to be elements of X.

Theorem 9.1.3. A function f : Z2 → Z is continuous if and only if it is separately
continuous. More generally, the equivalence holds for any function f : X → Z where
X is a subset of Z2 such that one of q(x, y), q(y, x) belongs to X if yj = xj ± 1 and
x 4 y.

Proof. Assume that f is separately continuous and that x 4 y. Then we shall prove
that f(x) 4 f(y). If x1 = y1, then x2 4 y2, and the inequality f(x) 4 f(y) follows
from the separate continuity of the function x2 7→ f(x) for a fixed x1. The conclusion
is similar if x2 = y2; then the continuity of x1 7→ f(x) for a fixed x2 does the job. The
case when x1 6= y1 and x2 6= y2 remains to be considered. Then yj = xj ± 1. One
of the points q(x, y) and q(y, x) belongs to X; let z be one of them that does. Then
clearly x 4 z 4 y, which in view of the separate continuity implies f(x) 4 f(z) and
f(z) 4 f(y), and we are done.

Example 9.1.4. Let X = {0} ∪ {x ∈ Z2; |x1| = |x2| = 1}. This set is connected for the
Khalimsky topology. Every function f : X → Z is separately continuous, but not all of
them are continuous. With x = (0, 0) and y = (1, 1) we see that none of q(x, y) = (0, 1)
and q(y, x) = (1, 0) belongs to X.

Like in real analysis there is an intermediate-value theorem for the Khalimsky line:

Theorem 9.1.5. Let two continuous functions f, g : I → Z be given on a Khalimsky
interval I = [a, b]Z. Assume that there are points s, t ∈ I with f(s) > g(s) and
f(t) 6 g(t). Then there exists a point p, intermediate between s and t, such that
f(p) = g(p).

Proof. Without loss of generality we may assume that s 6 t. Define

M = {x ∈ Z; s 6 x 6 t and f(x) > g(x)}.

Clearly s ∈ M , so M is not empty. Let p = maxx∈M x. If p = t, then f(t) = g(t) and
we are done; if not, p + 1 6 t. Then we must have f(p) > g(p), f(p + 1) < g(p + 1).
We claim that f(p) = g(p). If this were not true, we would have f(p) > g(p) + 1,
f(p+ 1) 6 g(p+ 1)− 1. Because of the Lipschitz continuity, the only possibility then
would be f(p) = g(p) + 1 and f(p + 1) = g(p + 1) − 1. But even this situation is
impossible. If p and f(p) are of different parity, then f(p + 1) = f(p), which would
require a jump of two units in g. If on the other hand p and f(p) are of the same
parity, then p and g(p) are of different parity, so that g(p+1) = g(p), requiring a jump
of two units in f . This contradiction leaves us with the only possibility f(p) = g(p).
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9.2. A fixed-point theorem

Let us say that a topological space X has the fixed-point property if every continuous
mapping f : X → X possesses a fixed point, i.e., a point p such that f(p) = p. The
famous Brouwer24 fixed-point theorem states that a closed ball in Rn has the fixed-
point property. This theorem is a deep result when n > 2 but easy to prove if n = 1:
we may take

(9.2.1) p = sup
x

(x; f(x) > x).

If f : [0, 1] → [0, 1] is a mapping from a compact interval into itself which is in-
creasing for the usual order inherited from the real axis, then it also has a fixed point,
and formula (9.2.1) again yields a fixed point. This generalizes to complete lattices; if
f : L → L is an increasing mapping of a complete lattice L into itself, then the point
p defined by (9.2.1) is a fixed point of f . This is Tarski’s fixed point theorem (1955),
exhibiting one of the many analogies between continuous mappings and increasing
mappings. However, a Khalimsky interval of more than two points is not a lattice.

In this section we shall prove that certain subsets of the Khalimsky plane possess the
fixed-point property. Since the Khalimsky line and the Khalimsky plane are ordered
sets and the continuous mappings are precisely the increasing mappings, there are
theorems from the theory of ordered sets that can be applied here; cf. Baclawski &
Björner (1979). However, the proofs presented here are more direct in the context of
digital geometry.

A topological space cannot have the fixed-point property unless it is connected.
Indeed, if U and V are two disjoint nonempty open sets whose union is the whole
space X, then we may define f(x) = b for all x ∈ U and f(x) = a for all x ∈ V , where
a is an arbitrary point in U and b ∈ V . Then all inverse images are open, for they are
either empty, equal to U , equal to V , or equal to X. Thus f is certainly continuous,
but it has no fixed point.

On the other hand, connectedness is by no means sufficient. The mapping f(x) =
−x is continuous in Rn, and in fact in any abelian group with a reasonable topology;
it has no fixed point in X if 0 /∈ X. Any nonempty subset X of such a group with
0 /∈ X and such that x ∈ X implies −x ∈ X will be a space such that some continuous
selfmapping is without fixed point.

In a finite set X with N points there are NN selfmappings X → X. Out of these,
(N − 1)N do not have fixed points; there are thus NN − (N − 1)N mappings which
have a fixed point. The proportion of mappings with a fixed point is 1− (1− 1/N)N ,
which tends to 1 − 1/e (about 63 percent) when N tends to infinity. If we introduce
a topology on X we may ask how many of the NN mappings are continuous. Let us
denote by C the number of continuous mappings. If the space possesses the fixed-point
property the number of mappings of different kinds can then be listed as follows. The
table contains only one unknown, C, the number of continuous mappings.

24Luitzen Egbertus Jan Brouwer, 1881---1966.
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Continuous Discontinuous Sum

Fixed point C NN − (N − 1)N − C NN − (N − 1)N

No fixed point 0 (N − 1)N (N − 1)N

Sum C NN − C NN

We shall now prove that a continuous mapping of an interval into itself has a fixed
point. Later we shall consider subsets of the Khalimsky plane, which we shall attack
using an implicit-function theorem.

Theorem 9.2.1. Let us define a subset C#(Z,Z) of the set of all continuous mappings
of Z into itself,

(9.2.2) C#(Z,Z) = {f ∈ C(Z,Z);∃s ∈ Z, f(s) > s and ∃t ∈ Z, f(t) 6 t}.

Then f ∈ C(Z,Z) has a fixed point if and only if f ∈ C#(Z,Z).

Proof. If f has a fixed point, it is obvious that f belongs to C#(Z,Z). The converse
is a special case of the intermediate-value theorem (Theorem 9.1.5), taking g as the
identity.

Corollary 9.2.2. Every bounded Khalimsky interval has the fixed-point property.

Proof. Let f : I → I be a continuous mapping, where I = [a, b]Z is a bounded interval.
Extend f to a mapping g : Z → Z by defining g(x) = f(a) for x < a and g(x) = f(b)
for x > b. Then it is easy to check that g is continuous, and it is obvious that g belongs
to C#(Z,Z). Thus it has a fixed point p ∈ Z, but as p ∈ img ⊂ I, p is a fixed point
also of f .

Example 9.2.3. For a Khalimsky interval {a, a+1} consisting of two points only, there
are four mappings: the two constant mappings, the identity, and the one interchanging
a and a + 1. The first three obviously have a fixed point; the fourth does not. But it
is discontinuous. Thus the statistics looks like this (N = 2, C = 3):

Continuous Discontinuous Sum
Fixed point 3 0 3

No fixed point 0 1 1
Sum 3 1 4

Theorem 9.2.4. Every bounded Khalimsky rectangle I × J ⊂ Z2 has the fixed-point
property.

We shall prove this result using an implicit-function theorem. In real analysis there is
an implicit-function theorem which says the following. If f is a real-valued function of
class C1 defined in an open subset Ω of R2 with a zero a ∈ Ω, and its derivative with
respect to the first variable, ∂f/∂x1, is non-zero at a, then there is a function g of one
variable defined near a2 such that f(g(x2), x2) = 0 for all x2 near a2. This function
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g is also of class C1. One says that the equation f(x1, x2) = 0 defines x1 implicitly
as a function of x2; the equation f(x1, x2) = 0 is equivalent to the explicit formula
x1 = g(x2) near a. The result is local in the sense that we only assert something in a
neighborhood of a.

In the digital plane we have an implicit-function theorem of a similar kind. We
shall solve the implicit equation f(x, y) = x. (In real analysis, this is equivalent to
f(x, y) − x = 0, but the left-hand side f(x, y) − x is not continuous in general in the
digital case even if f is.)

Theorem 9.2.5. Let us define an order, and hence a topology, in the space C(Z,Z)
of continuous mappings Z→ Z by declaring that f 4 g if and only if f(x) 4 g(x) for
all x ∈ Z. Let us also define a mapping F : C(Z,Z)→ Z ∪ {−∞,+∞} by

(9.2.3) F (g) = sup
x∈Z

(x; g(x) > x), g ∈ C(Z,Z).

The mapping F is continuous in C#(Z,Z) where it is finite.

If the set of fixed points of a mapping g ∈ C#(Z,Z) is bounded to the right, then F (g)
is its largest fixed point; otherwise F (g) = +∞.

Lemma 9.2.6. The mapping F defined by (9.2.3) satisfies

(9.2.4) g(x) > x if and only if F (g) > x, x ∈ Z, g ∈ C#(Z,Z).

Proof. The implication to the right follows easily from the definition of F . For the
other implication we use the Lip-1 property of g: if g(x) < x, then g(x′) < x′ for all
x′ > x, which implies that F (g) < x.

Proof of Theorem 9.2.5. We shall prove that f 4 g implies F (f) 4 F (g). Fix two
functions f and g satisfying f 4 g. We consider the two cases F (f) odd, F (f) even.

Case 1. Assume that F (f) is odd. Without loss of generality we may assume that
F (f) = 1, thus that f(1) = 1 and that f(2) = 1 or f(2) = 0. We shall prove that F (g)
is 0, 1, or 2. We write the inequality 0 6 F (g) 6 2 as 0 6 F (g) < 3 and then translate
it using Lemma 9.2.6 as 0 6 g(0) and g(3) < 3. We know that g(1) < f(1) = 1, which
implies that g(1) > 0 and that g(0) > 0. Hence it only remains to be proved that
g(3) < 3.

Case 1.1. Assume that f(2) = 1. Then f(1) = f(2) = f(3) = 1, so that g(3) <
f(3) = 1 and g(3) 6 2 < 3.

Case 1.2. Assume that f(2) = 0. Then g(2) < f(2) = 0, which implies that
g(2) = 0; by Lipschitz continuity g(3) 6 1 < 3.

Case 2. If F (f) is even, we may assume that F (f) = 0 without loss of generality.
We shall then prove that F (g) = 0. We write this as 0 6 F (g) < 1 and translate it
using Lemma 9.2.6 as 0 6 g(0) and g(1) < 1. From F (f) = 0 it follows that f(0) = 0
and that f(1) = 0 or f(1) = −1. Since 0 = f(0) 4 g(0), it follows that g(0) = 0. It
remains to be proved that g(1) < 1.

Case 2.1. Assume that f(1) = −1. Then g(1) < f(1) = −1, which implies that
g(1) 6 0 < 1.

Case 2.2. Assume finally that f(1) = 0. Then g(1) < f(1) = 0, so g(1) = 0 < 1.
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Corollary 9.2.7. Let f : I × J → I be a continuous function defined in a rectangle
I × J , where I and J are Khalimsky intervals, I being bounded. Then

(9.2.5) h(y) = max
x∈I

(x; f(x, y) > x), y ∈ J,

is continuous in J . The function h satisfies f(h(y), y) = h(y).

Proof. The function h is given by h(y) = F (x 7→ f(x, y)). It depends continuously on
the function x 7→ f(x, y), which in turn is a continuous function of y.

Example 9.2.8. It is natural to ask if the function

h(y) = max
x∈I

(
x; f(x, y) > g(x, y)

)
, y ∈ J,

is continuous for more general choices of functions f and g. That this is not always so
is shown by the example f(x, y) = y, g(x, y) = min(x, 0). Then h(y) = y if y < 0 and
h(y) = b if y > 0, assuming the interval I to be [a, b]Z. This yields a discontinuous
function if a 6 −1, b > 1.

Proof of Theorem 9.2.4. The mapping f has two components f1 and f2. As in (9.2.5)
we let h(y) denote the largest fixed point of the partial mapping x 7→ f1(x, y) for a
fixed y, h(y) = F (x 7→ f1(x, y)). So f1(h(y), y) = h(y) for all y ∈ J . We then form
the composition k(y) = f2(h(y), y). As a composition of continuous mappings it is
continuous, and by the one-dimensional theorem it possesses a fixed point q, k(q) = q.
Collecting what we have, we see that f1(h(q), q) = h(q) and that k(q) = f2(h(q), q) = q,
which means that we have proved that f(h(q), q) = (f1(h(q), q), f2(h(q), q)) = (h(q), q),
thus that (h(q), q) is a fixed point.

Example 9.2.9. The Khalimsky square {0, 1}2 ⊂ Z2. There are NN = 44 = 256
selfmappings of {0, 1}2, of which (N − 1)N = 34 = 81 do not have fixed points. The
proportion of mappings without a fixed point is 81/256 ≈ 0.3164, as expected slightly
lower than the limit 1/e ≈ 0.3679. The remaining 256 − 81 = 175 have a fixed point.
Of the 16 mappings {0, 1}2 → {0, 1}, 6 are continuous. There are therefore 62 = 36
continuous mappings {0, 1}2 → {0, 1}2, and we know already that they all have fixed
points.

The table of different kinds of mappings therefore looks as follows (N = 4, C = 62).

Continuous Discontinuous Sum
Fixed point 36 139 175

No fixed point 0 81 81
Sum 36 220 256

In this simple case we can of course see directly that all continuous mappings have
a fixed point. Indeed, of the 6 continuous mappings {0, 1}2 → {0, 1}, five map (0, 0)
to 0; the remaining one is the constant 1. Therefore, of the 36 continuous mappings
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{0, 1}2 → {0, 1}2, (0, 0) is a fixed point except when one of the components is the
constant 1. Thus they all have a fixed point.

It is easy to generalize the implicit-function theorem and the fixed-point theorem to
somewhat more general sets. We formulate an example of the latter:

Theorem 9.2.10. Let X be a subset of Z2 defined as

X = {(x, y) ∈ Z× J ;ϕ(y) 6 x 6 ψ(y)},

where J is a bounded Khalimsky interval, and ϕ and ψ two continuous functions defined
on J . Assume that ϕ(y) < ψ(y) for all y ∈ J . Then X has the fixed-point property.

Proof. Take an interval I = [a, b]Z which is so large that ϕ(y), ψ(y) ∈ I for all y ∈ J .
Then extend f : X → X to a mapping g : I × J → I × J by defining g(x, y) = ϕ(y)
when a 6 x < ϕ(y) and g(x, y) = ψ(y) when ψ(y) < x 6 b. Then g is continuous. It
must have a fixed point in I × J according to Theorem 9.2.5. However, the fixed point
must actually lie in X and be a fixed point of f .

The result on separate continuity (Theorem 9.1.3) makes it easy to go up in dimension.

9.3. Jordan curve theorems
There is a Jordan curve theorem in the Khalimsky plane. During the lectures I dis-
cussed this; here [at least in this version of the notes] I just refer to (Kiselman 2000)
and the references therein.

9.4. Exercises

9.1. How many continuous selfmappings are there in a Khalimsky interval with three ele-
ments?

9.2. How many continuous selfmappings are there in a Khalimsky interval with four elements
like {0, 1, 2, 3}?
9.3. Prove in detail that there are six continuous mappings {0, 1}2 → {0, 1} and hence that
there are 36 continuous mappings {0, 1}2 → {0, 1}2. Compare with the previous exercise;
both spaces have four elements.

9.4. Try to estimate the number C of continuous mappings I → J between Khalimsky
intervals, and more generally mappings I1 × · · · × Im → J1 × · · · × Jm between boxes in
Khalimsky spaces. Compare with the number of Lip-1 mappings.

10. Digitization

10.1. What is a digitization?
Digital geometry is about geometry in digital spaces—however, we shall not at this
point give a formal definition. Suffice it to say that digital25 is used here as opposed

25The word itself comes the Latin digitus, meaning ‘finger, toe’ and being related to the Greek
daktylos with the same meaning. The European plant foxglove has received its scientific name Digitalis
purpurea because of its finger-like corollas. The Greek word is also the origin of the name of a fruit,
date. If you look at dates, not in a box, but growing high up in a palm Phoenix dactylifera, you will
appreciate the similarity—dactylifera means ‘carrying fingers.’ So digital geometry is about counting
on fingers and toes (perhaps implying using a system of base twenty) but if that seems to you not to
be sweet enough, think of counting dates.
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to continuous. The space Rn is a space where we do continuous geometry; the space
Zn is an example of a space where we do digital geometry. However, we shall take a
more general approach.

In this chapter we shall first discuss what a good digitization should mean, and
then study the notion of a digital line.

Let X be a set and Z an arbitary subset of X. (Think of X as R2 and Z as Z2 if
you like.) If we want to digitize X we may start with a mapping f : X → Z and then
define the digitization of a set A as f∗(A) = {f(x);x ∈ A}; cf. (8.1.1).

However, this approach is too narrow; it is often not possible to start with a point-
wise mapping. Instead, we shall define here a digitization of X into Z as a mapping
F : P(X)→P(Z) with certain desirable properites. We shall think of F (A) as a dig-
ital representation of A. A very simple such representation is F (A) = A ∩ Z, but it is
not very faithful, since many sets are mapped to the empty set, for example A = XrZ.
(However, it works for sufficiently fat sets.) One desirable condition is therefore that
F (A) be empty only if A is empty. We also remark that the mapping F (A) = A ∩ Z
is not of the form F = f∗ if Z 6= X.

We recall that the mappings f∗ are dilations; see (8.1.4). It seems desirable to
require in general that a digitization F : P(X) → P(Z) be a dilation. In particular
this means that it is determined by its images on points, i.e., F (A) =

⋃
x∈A F ({x}).

So it is enough to know the digitization of an arbitrary point in X; however, nothing
requires the F ({x}) to be singleton sets.

The following setup seems to be sufficiently flexible.

Definition 10.1.1. Let two sets X and Z be given, Z being a subset of X. Let there
be given, for every p ∈ Z, a subset C(p) of X, called the cell with nucleus p. Then the
digitization determined by these cells is the mapping F : P(X)→P(Z) defined by

(10.1.1) F ({x}) = {p ∈ Z;x ∈ C(p)}, x ∈ X,

and

(10.1.2) F (A) =
⋃
x∈A

F ({x}) = {p ∈ Z;A meets C(p)}, A ∈P(X).

We may think of the cell C(p) as a pixel or voxel, and of p as its address. If we think of
C as a mapping C : Z →P(X), then F (A) = C∗(CA), where C∗ : P(P(X))→P(Z)
is defined by (8.1.1) and CA ∈P(P(X)) is the family of all cells which meet A.

It is clear that a digitization in this sense is always a dilation. As already pointed
out, it is desirable that a nonempty set have a nonempty digitization; this is true if
and only if the union of all cells is equal to the whole space X.

If X is an abelian group and Z a subgroup, it is desirable that the digitization
commute with translations, which means that C(p) = C(0) + p for all p ∈ Z. Indeed,
if C(p)− p varies too much, it is easy to construct strange examples.

Example 10.1.2. A simple choice is C(p) = {p}. This yields the digitization F (A) =
Z ∩ A already mentioned. If the set is fat, this digitization may work out well. In an
abelian group with a metric we can even fatten the set using a dilation, defining C(p)
to be a ball B6(p, r) of radius r; this yields F (A) = Z ∩ (A+B6(0, r)).
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Example 10.1.3. If X = R and Z = Z we may choose C(p) =
[
p− 1

2
, p+ 1

2

]
. Then

every set has a nonempty digitization, but the half-integers have a digitization consist-
ing of two points. If we choose instead C(p) =

]
p− 1

2
, p+ 1

2

[
, then the digitization of

a half-integer is empty. As a compromise we may choose C(p) =
]
p− 1

2
, p+ 1

2

]
; the

digitization of a point is then always a point: F ({x}) =
{⌈
x− 1

2

⌉}
. But then a new

disadvantage appears: this digitization does not commute with the reflection x 7→ −x.

Example 10.1.4. If X = R2 and Z = Z2 we may construct digitizations from what we
have already done on the real axis. We may take

C(p) =
[
p1 − 1

2
, p1 + 1

2

]
×
[
p2 − 1

2
, p2 + 1

2

]
, p ∈ Z2,

and similarly for the open and half-open intervals. Another choice is not to take the
Cartesian product but to define the cell with nucleus p as

(10.1.3)
CR(p) =

{
x;x1 = p1 and p2 − 1

2
< x2 6 p2 + 1

2

}
∪
{
x; p1 − 1

2
< x1 6 p1 + 1

2
and x2 = p2

}
.

Thus CR(p) is a cross with center at p. This is the digitization used by Rosenfeld
(1974). It is based on the mapping R 3 x 7→

⌈
x− 1

2

⌉
∈ Z, already mentioned, a

digitization of R which takes a non-half-integer to the closest integer and moves down
by one half in the case of half-integers. Let us call it the Rosenfeld digitization of R2.

It is clear that in this case the union of the cells is very small compared with R2, so
that many sets have empty digitization. However, the union of all cells is equal to all
grid lines (R× Z) ∪ (Z×R), so that every straight line has a nonempty digitization.
The same is true of a sufficiently long straight line segment. Thus this digitization can
be used in the study of digital straight lines. Note that the family of all cells is disjoint,
which implies that the digitization of a point is either empty or a singleton set.

The definition as such says nothing about how close a digitization of a point is to the
point. To achieve this we must of course add some requirement that points in the cell
C(p) shall be reasonably close to p. This leads us to the next topic, that of Voronoi
cells.

10.2. Voronoi cells
Let a metric space X be given as well as a subset Z. The metric of X shall be denoted
by d. For a point x ∈ X we view the points in Z close to x as approximants; there
may be a best approximant. Given p ∈ Z we shall give a name to the set of all x for
which this particular p is a (not necessarily unique) best approximant: the Voronoi
cell26 with nucleus p is

(10.2.1) Vo(p) = {x ∈ X;∀q ∈ Z, d(x, p) 6 d(x, q)}, p ∈ Z.

Thus x ∈ Vo(p) if and only if p is a best approximant of x. We also define the strict
Voronoi cell as

(10.2.2) Vos(p) = {x ∈ X;∀q ∈ Z r {p}, d(x, p) < d(x, q)} p ∈ Z.
26Named for Georgi Fedoseevič Voronoi (1868---1908)....
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Thus x ∈ Vos(p) if and only if p is the unique best approximant of x. Finally, one
might define the very strict Voronoi cell as

(10.2.3) Vovs(p) = {x ∈ X; d(x, p) < inf
q∈Zr{p}

d(x, q)}, p ∈ Z.

It is easy to construct examples where the very strict Voronoi cell is different from the
strict Voronoi cell, but in all applications we are interested in they are equal.

Two different strict Voronoi cells are disjoint. Even more can be said: a (nonstrict)
Voronoi cell is disjoint from every strict Voronoi cell with a different nucleus. The
union of all strict Voronoi cells is almost equal to the whole space X; there is only
some garbage left out: these are the points which have at least two best approximants
in Z. However, since we are mathematicians, we do not have the right to throw away
that garbage; we must be careful and consider both the strict and the nonstrict Voronoi
cells.

We now return to the topic of digitization. It seems reasonable that the digitization
of a point should be contained in the set of all nuclei of Voronoi cells which contain
that point. After all, these nuclei are the best approximants in Z of the point. This
argument leads us to the following definition.

Definition 10.2.1. Let X be a metric space and Z a subset of X such that Z∩B<(c, r)
is finite for all c ∈ X and all r ∈ R. A Voronoi digitization of X into Z is a dilation
Dig : P(X)→P(Z) such that

(10.2.4) Dig({x}) ⊂ {p ∈ Z;x ∈ Vo(p)}.

Note that if x belongs to some strict Voronoi cell Vos(c), then it can belong to only
one Voronoi cell, viz. the nonstrict cell Vo(c) with the same nucleus, so that the right-
hand side in (10.2.4) is a singleton set. Hence Dig({x}) is either empty or equal to
the singleton set {p}. But if x belongs to, say, two Voronoi cells, the right-hand side
in (10.2.4) consists of a set {p, q} with p 6= q, and there is a choice: Dig({x}) may be
equal to Ø, {p}, {q}, or {p, q}. And if x belongs to m Voronoi cells, the value can be
any of 2m subsets of Z.

Thus Dig({x}) is either empty or a singleton set whenever x belongs to the union of
all strict Voronoi cells, but in the complement of that union, the value of the function
may be a set with several elements. In some situations we do make a choice and define
Dig({x}) to be a singleton set by introducing a new criterion. In fact, we have already
done so when we defined the Khalimsky topology. If X = R and Z = Z, then the
Voronoi cells are the intervals

[
n− 1

2
, n+ 1

2

]
and the strict cells are the open intervals]

n− 1
2
, n+ 1

2

[
, n ∈ Z. It is clear that the digitization of a real number which is not of

the form n+ 1
2

is the empty set or
{⌊
x+ 1

2

⌋}
. When x = n+ 1

2
, we may choose F ({x})

to be Ø, {n}, {n + 1}, or {n, n + 1}. When we defined the Khalimsky topology, we
chose {n} for n even and {n + 1} for n odd. But this is of course only one of many
admissible choices.

Example 10.2.2. We get examples of Voronoi digitizations by taking C(p) = Vo(p)
or C(p) = Vos(p). Sometimes it is possible to choose a cell in between these two so
that the space is covered exactly once by the different cells; an example was already
mentioned: if X = Rn and Z = Zn we may choose C(p) =

∏]
pj − 1

2
, pj + 1

2

]
.
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Example 10.2.3. The digitization used by Rosenfeld (1974) is a Voronoi digitization,
since the cell C(p) defined in (10.1.3) is contained in the Voronoi cell, which is Vo(p) ={
x ∈ R2; ‖x− p‖∞ 6 1

2

}
.

10.3. Digital lines
In R2 we know what a straight line is: it is a set of the form {(1 − t)a + tb; t ∈ R},
where a and b are two distinct points in the plane. And a straight line segment is a
connected subset of that line. We shall consider closed segments of finite length only,
and may then write them as {(1− t)a+ tb; 0 6 t 6 1}, where a and b are the endpoints.
We shall denote this segment by [a, b].

We shall choose Z = Z2 in the discussion that follows. The digitization of a straight
line segment is the image under Dig of [a, b], thus

Dig([a, b]) =
⋃

t∈[0,1]

F ({(1− t)a+ tb}) ⊂ Z2.

Suppose we are dealing with a Voronoi digitization. When x = (1− t)a+ tb belongs
to a strict Voronoi cell, which in this case is Vos(p) = {x; ‖x− p‖∞ < 1

2
}, p ∈ Z2, then

F
(
{x}
)

=
{(⌊

x1 + 1
2

⌋
,
⌊
x1 + 1

2

⌋)}
,

the unique point in Z2 closest to x. However, when x1 is a half-integer, and x2 is not,
the digitization may be empty or consist of one or two points; when both coordinates
are half-integers, the value may be a set of zero, one, two, three or four points.

In his famous paper (1974), Azriel Rosenfeld defined the digitization as in (10.1.3).
In particular a point is always mapped to a point. For straight lines with slope less
than 45◦, he considered the intersections of its line segments with the vertical grid lines
only. However, a line segment may intersect a horizontal grid line but no vertical grid
line at all. In this case the cell is just the first segment in the union (10.1.3), but it
does not matter so much, since the result will be trivially true for empty digitizations
and the digitization is nonempty anyway for sufficiently long line segments.

We shall say with Rosenfeld that a subset A of R2 has the chord property if for all
points a, b ∈ A the segment [a, b] is contained in A+B<(0, 1), the dilation of A by the
open unit ball (or disk or square) for the l∞ metric.

Theorems 10.3.1 and 10.3.4 below are due to Rosenfeld (1974) and give together a
characterization of the digitization of a straight line segment. The proof of Theorem
10.3.4 is new and is much shorter than the original proof.

Theorem 10.3.1. The Rosenfeld digitization of a straight line segment has the chord
property.

Example 10.3.2. Let A be the set consisting of the five points (0, 0), (1, 0), (2, 0), (3, 1),
(4, 2). This set does not have the chord property. Indeed, the point (2, 1) belongs to the
segment [(0, 0), (4, 2)], but it does not belong to the dilated set A+B<(0, 1), although
it does belong to the closed set A+ B6(0, 1). Thus, in view of the theorem, it cannot
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be the Rosenfeld digitization of a straight line segment. However, we may define a
Voronoi digitization by declaring the digitization of

(
0,−1

2

)
to be (0, 0), that of

(
2, 1

2

)
to be (2, 0), and that of

(
4, 11

2

)
to be (4, 2). Then A is the digitization of the straight

line segment [
(
0,−1

2

)
,
(
4, 11

2

)
]. This digitization does not commute with translations,

which offers a kind of explanation—of course it should not be allowed to move up by
one half from

(
0,−1

2

)
and

(
4, 11

2

)
and down by one half from

(
2, 1

2

)
. Rosenfeld avoided

this by always moving down in the case of half-integers.

Example 10.3.3. Slightly more generally we consider a set A consisting of five or six
points (0, 0), (1, 0), (2, 0), and a = (a1, a2), (a1 − 1, a2 − 1), (a1 − 2, a2 − 2), where
a1 > 4, a2 > 2. (If a = (4, 2) we get the former example.) Then for no choice of a
does this set have the chord property. Indeed, if a2 > 1

2
a1, then the point (2, 2a2/a1),

which is on the segment [(0, 0), (a1, a2)], does not belong to A + B<(0, 1); if on the
other hand a2 6 1

2
a1, then (a1− 2, (a1− 2)a2/a1) on the same segment does not belong

to A+B<(0, 1).

Proof of Theorem 10.3.1. If the digitization of a line L has the chord property, so does
the digitization of every segment of L. We may therefore restrict attention to the case
of a whole line L. Let L be a straight line and D ⊂ Z2 its digitization. Let p, q be two
points in D, and r an arbitrary point on the segment [p, q]. We shall prove that there
exists a point d ∈ D such that ‖d− r‖∞ < 1.

First we reduce to the case when the slope of L is between 0 and 1—note that the
hypothesis and the conclusion are invariant under reflection and permutation of the
coordinates. When it is exactly 0 or 1 the result is easy.

Instead of the digitization defined by (10.1.3) we shall now use only the vertical
part of the cell,

(10.3.1) CR,v(p) =
{
x;x1 = p1 and p2 − 1

2
< x2 6 p2 + 1

2

}
.

When the slope of a line is strictly between 0 and 1, CR and CR,v yield the same result.
When the slope of L is strictly between 0 and 1 we consider first the case when

r1 ∈ Z. In this case we define s ∈ R2 as the point in L with s1 = r1. The digitization
d = Dig({s}) ∈ D of s satisfies ‖d−s‖∞ 6 1

2
, thus ‖d−r‖∞ 6 ‖d−s‖∞+‖s−r‖∞ 6 1.

But can equality occur here? No. If we analyze the definition of the digitization we
find that

(10.3.2) r2 − 1
2
< s2 6 r2 + 1

2

because of corresponding inequalities for p and q with respect to points on L, and that
d2 − 1

2
< s2 6 d2 + 1

2
. Combining the two inequalities we see that

(10.3.3) d2 − 1 < s2 − 1
2

6 r2 < s2 + 1
2

6 d2 + 1,

so that actually |d2 − r2| < 1, while |d1 − r1| = 0, thus r ∈ B<(d, 1).
Next we consider the case r1 /∈ Z; m < r1 < m + 1 for some integer m. We now

define s, s′ and s′′ as the points on L such that s1 = r1, s
′
1 = m and s′′1 = m + 1,

and let d′ and d′′ be the digitizations of s′ and s′′. Concerning d′ and d′′ we must have
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d′2 6 d′′2 6 d′2 + 1. We shall therefore look separately at the two cases d′′2 = d′2 and
d′′2 = d′2 + 1.

In case d′′2 = d′2 we have d′2− 1
2
< s′2, s

′′
2 6 d′2 + 1

2
, so the same inequality follows also

for s2, since s2 is between s′2 and s′′2. Combining with (10.3.2) we see that

(10.3.4) d′2 − 1 < s2 − 1
2

6 r2 < s2 + 1
2

6 d′2 + 1,

and conclude that r ∈ B<(d′, 1) ∩B<(d′′, 1).
In case d′′2 = d′2 + 1 we must have r2 > d′2 − 1 and r2 < d′′2 + 1 so that r ∈

B<(d′, 1) ∪B<(d′′, 1). The theorem is now completely proved.

To prove a converse we shall need the concept of digital arc. Let us say that two points
in Z2 are eight-neighbors if their l∞ distance is 1. Then a digital arc is a mapping from
a finite integer interval [a, b]Z into the plane Z2 which is Lipschitz-1 for the l∞-norm
and such that γ(a) and γ(b) have one eight-neighbor and γ(x) has two eight-neighbors
for x = a+ 1, . . . , b− 1.

Theorem 10.3.4. If a digital arc D in Z2 has the chord property, then it is the
Rosenfeld digitization of some straight line segment in R2.

Lemma 10.3.5. Denote by πj : Z2 → Z the projection (x1, x2) 7→ xj, j = 1, 2. If
a digital arc D has the chord property, then one of the restrictions πj

∣∣
D

: D → Z,
j = 1, 2, is injective.

Proof. Since D is a finite set it is contained in a minimal rectangle [p1, q1] × [p2, q2].
If p1 = q1 or p2 = q2 we are done, so assume that p1 < q1 and p2 < q2. We claim
that π1

∣∣
D

is injective if q1 − p1 > p2 − q2; otherwise π2

∣∣
D

is injective. So assume that
q1 − p1 > q2 − p2 > 0. Each side of the rectangle must contain an endpoint of the
arc; otherwise it cannot have the chord property. Since there are only two endpoints,
they must be mapped to the vertices of the rectangle. After a possible reflection
of the coordinates we may assume that the endpoints are γ(a) = (p1, p2) = p and
γ(b) = (q1, q2) = q. We claim that there are no two points on the arc with the same
abscissa. If this were so, there would exist two such points with distance 1: s = (s1, s2)
and t = (t1, t2) with t1 = s1 and t2 = s2 + 1. The point t cannot be an endpoint—that
would violate the chord property for the segment [p, t] and the point r ∈ [p, t] with
r1 = t1 − 1. Therefore t has a second neighbor in addition to s. But then this other
neighbor must be t′ = (t1 +1, t2 +1), which violates the chord property for the segment
[p, t′] and the point r′ ∈ [p, t′] with r′1 = t1 − 1. This contradiction proves the lemma.

Proof of Theorem 10.3.4. Let D be a digital arc with the chord property. In view of
the lemma and the symmetry of the digitization procedure, we may assume that there
are no pairs of points a, b in D with a1 = b1, a2 6= b2. Given three real numbers α, β,
γ we define a strip in the plane by

S(α, β, γ) = {x ∈ R2;αx1 + β 6 x2 6 αx1 + γ}.

Let us define the height of the strip as γ − β. The boundary ∂S(α, β, γ) of the strip
has two components, given by the straight lines x2 = αx1 + β and x2 = αx1 + γ. A
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finite set D of integer points is a subset of the digitization of a non-vertical straight
line segment if and only if D is contained in a strip of height strictly less than 1.

For every given α there is a smallest strip S(α, β, γ) containing D. Moreover,
varying also α, there is a strip S0 = S(α0, β0, γ0) of smallest height. If D consists of
only one or two points, the conclusion follows easily, so let us assume that D has at
least three points. Clearly there must be at least one point of D in each component of
the boundary of S0; otherwise we could increase β or decrease γ to obtain a narrower
strip. And one of these lines must contain a second point of D; otherwise we could
rotate the line slightly to obtain a strip of smaller height. For definiteness we shall
assume that the three points on the boundary of the strip are p, s, q with p1 < s1 < q1
and where p and q are on the lower boundary and s on the upper boundary. Let r be
the point on [p, q] with abscissa equal to that of s. (We note that p, s, q belong to Z2,
while r need not do so.)

Now assume that D is not a subset of the digitization of a straight line. Then the
height of this smallest strip is at least 1, so that s2 > r2 + 1, showing that r does not
belong to B<(s, 1). To see that D does not satisfy the chord property we must however
show that there is no d ∈ D such that r ∈ B<(d, 1). So far we only know that r does not
belong to B<(s, 1). However, s is the only point in D on the vertical line x1 = s1 and
all other points d ∈ D satisfy |d1−r1| = |d1−s1| > 1, so that ‖r−d‖∞ > |r1−d1| > 1.
Therefore D does not satisfy the chord property.

We have thus proved that a digital arc D having the chord property is a subset
of the digitization of some straight line L. However, since D is a digital arc, it is
the digitization of a connected subset of L. Obviously this subset can be taken to be
compact, i.e., a straight line segment.

Melin (2003: Theorem 5) has proved a modification of this result when Z2 is given the
Khalimsky topology and the digitization of any real line or line segment is homeomor-
phic to the Khalimsky line or a Khalimsky interval, respectively. [In a later version of
these notes I would like to include his result.]

Generalize to other Voronoi digitizations....
Generalize to digitizations of convex sets....

10.4. Exercises

10.1. Let X = R2, Z = {(0, 0), (a1, a2)} and determine the Voronoi cells,
(a) when the metric is the Euclidean metric l2 determined by the norm ‖ · ‖2;
(b) when the metric is the l∞ metric;
(c) when the metric is the l1 metric.

10.2. Determine the Voronoi cells when Z ⊂ C is the set of all complex numbers m + nω,
m,n ∈ Z, where ω = 1

2 + i
2

√
3 and we use the l2 metric. What about other metrics?
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Strömberg, Thomas

1996 The operation of infimal convolution. Dissertationes Math. 352. 58 pp.

Tarski, Alfred
1955 A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5,

285---309.



92 References

Thiel, Edouard
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complete lattice, 54
composition of mappings, 5
connected preordered set, 7
connected set, 70
connected space, 70
connectivity component, 70
constructed by chamfering, 34
continuous, 69
continuous at a point, 69
digitization, 82
dilatation, 5
dilated, 11
dilation, 11, 55
direct image, 66
discrete order, 6
distance, 24
distance tranform, 25
dual mapping, 13
dual norm, 42
dual space, 42
effective domain, 14
eight-neighbor, 87

the empty set, 8
epigraph, 16
equivalence relation, 6
erosion, 11, 55
expanding, 7
explicit definition, 79
extended real line, 14
extensive, 7
Fenchel transform, 44
filter, 64
finer preorder, 6
finer topology, 68
finitely generated distance, 33
fixed point, 77
fixed-point property, 77
graph, 55
group, 10
homothety, 5
hypograph, 55
idempotent, 7
image, 66
image carrier, 5
implicit definition, 79
increasing, 7
indicator function iA, 16
induced topology, 69
inductive, 48
inductively ordered, 48
inf-filter, 64
infimal convolution, 14
infimum, 53
inf-semilattice, 54
invariance set, 22
invariant, 22
inverse image, 66
isotone, 7
kernel, 20
Khalimsky circle, 73
Khalimsky interval, 73
Khalimsky line, 71
Khalimsky plane, 73
Khalimsky space, 73
Khalimsky topology, 71
Kolmogorov space, 71
lattice, 54
L-convex, 60
left topology, 71
left translation, 10
Lip-1 function, 26
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local distances, 34
lower addition +· , 14
lower inverse, 56
lower quotient, 60
lower regular for the triangle inequality, 39
lp-norm, 42
metric, 24
metric space, 25
Minkowski addition, 10
Minkowski sum, 10
Minkowski subtraction, 12
morphological filter, 55, 64
neighborhood, 67
neutral element (in a semigroup), 10
non-strict ball, 25
open ball, 25
open element, 18
open set, 67
opening, 9, 9
opposite set, 12
order, 6
ordered set, 6
order preserving, 7
pixel (picture element), 2
P -open, 52
positive definite, 24
power set, 6
preimage, 66
preorder, 6
preordered set, 6
prime distance, 30
prime distance function, 34
product, 10
pull-back of a function, 66
pull-back of a topology, 69
push-forward of a topology, 69
quasi-Euclidean distance, 34
quench function, 26
right topology, 71
right translation, 10
r-skeleton, 52
semigroup, 10
set-theoretical difference, 12
Sierpiński topology, 68
skeleton, 48
smallest-neighborhood space, 72
specialization preorder, 71
straight line segment, 85
strict ball, 25

strict epigraph, 16
stronger topology, 68
strong filter, 64
structural element, 11
sublattice, 54
sublevel sets, 28
sup-filter, 64
supporting function, 44
sup-semilattice, 54
T0-space, 71
topology, 67
totally ordered, 48
translate (noun), 11
translation, 5
triangle inequality, 24
upper addition +· , 14
upper inverse, 56
upper quotient, 60
upper regular for the triangle inequality, 39
voxel (volume element), 4
weaker topology, 68
weighted distance, 34
zero (in a semigroup), 10

Index of symbols

Ø, the empty set
A ∪B, A ∩B, the union and intersection of

two sets A and B⋃
Aj ,

⋂
Aj , the union and intersection of a

family (Aj) of sets
ArB = A∩{B, the set-theoretical difference

of two sets A and B

{a, b}, {aj}j∈J , {aj}mj=1, sets
card(A), the cardinality of a set A

χA, the characteristic function of a set A

iA, the indicator function of a set A, 16
(a, b), an ordered pair
(aj)j∈J , (aj)m

j=1, indexed families
X × Y , the Cartesian product of X and Y

Y X , the set of all mappings X → Y

P(X), the power set of X

f∗(B), the inverse image of a set, 66
f∗(A), the (direct) image of a set, 66
g ◦ f , the composition of two mappings
C(X, Y ), the set of all continuous mappings

from X into Y
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Incr(X, Y ), the set of all increasing mappings
from a preordered set X into another,
Y , 7

Filt(X), the set of all morphological filters
X → X, 55

N, the set of natural numbers {0, 1, 2, 3, . . .}
N∗, the set of positive integers {1, 2, 3, 4, . . .}
Z, the ring of integers
Z∗ = Z r {0}
Q, the field of rational numbers
R, the field of real numbers
C, the field of complex numbers
[−∞, +∞] = R ∪ {−∞, +∞}, the extended

real line
x 7→ bxc, dxe, the floor and ceiling functions
[a, b] = [a, b]R, a closed interval of real num-

bers
]a, b[, an open interval of real numbers
[a, b]Z = [a, b]R ∩ Z, an interval of integers
[a, b] = {(1− t)a + tb; 0 6 t 6 1}, a straight

line segment in a vector space, 85
[a, b] = {x; a 6 x 6 b}, an interval in a lattice
‖ · ‖p, the lp-norm in Rn, 42
‖ · ‖′, the dual norm to a given norm ‖ · ‖, 42
E′, the dual of a normed space, 42
E?, the algebraic dual of a vector space, 44
+· , +· , upper and lower addition, 14, 14
ut , infimal convolution, 14
epi(f), epis(f), the epigraph and strict epi-

graph of f , 16, 16
hypo(f), the hypograph of f , 55
graph(f), the graph of f , 55
IdX , the identity mapping X → X

Invf , the invariance set of a mapping f , 22
B6(c, r), the closed (non-strict) ball with

center c and radius r, 25
B<(c, r), the open (strict) ball with center c

and radius r, 25
DTA, the distance transform of a set A, 25
Sk(A), the skeleton of a set A, 48
x ∨ y, x ∧ y, the supremum and infimum of

two elements, 53, 53∨
xj ,

∧
xj , the supremum and infimum of a

family of elements in a (complete) lattice,
53, 53

f [−1], f[−1], the upper and lower inverses of a
mapping, 56, 56

f/?g, f/? g, the upper and lower quotients of
two mappings, 60, 60

Dig(A), the digitization of a set, 82
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