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Contents

Discrete models vs. models based on real numbers. Why digital
geometry?

Distance transforms. Infimal convolution. Chamfer distances.
Comparing distances.

Skeletons.

[Inverses and quotients of mappings between complete lattices.]

Digitization. Digital straight lines and planes as Diophantine
approximations of real straight lines and planes. Chord properties.

Convexity. Digital straight lines and planes as convex sets.

[Discrete optimization.]

Topology. The Khalimsky line. The Khalimsky plane. Khalimsky
straight line segments and planes. Khalimsky curves and surfaces.
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Discrete models vs. models based on real numbers

Mathematical models based on the real or complex numbers have
been extremely successful in the sciences during several centuries
(Newton and Leibniz).

How can the real numbers be a model of reality?

Physics with a smallest positive distance.

Real numbers versus discrete spaces.

Real numbers versus p-adic numbers.
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f (x +h)− f (x)
h

= 5x4 +10x3h +10x2h2 +5xh3 +h4

f (x +1)− f (x) = 5x4 +10x3 +10x2 +5x +1

Z x

0
t3dt =

x4

4
;

x

∑
t=0

t3 =
x4

4
+Ax3 +Bx2 +Cx +D =

x4

4
+

x3

2
+

x2

4
.

This formula was shown on South Korean Television, EBS, channel
48, 2006-03-15 06:30. And Japan, Channel 9, 2007-08!
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Bernoulli numbers: B1 = 1/2, B2 = 1/6, B4 =−1/30, B6 = 1/42;
B3 = B5 = B7 = · · ·= 0 (Gradštejn & Ryžyk, p. 15, 16).

Compare with Z x

0
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A final example:

(fg)′ = f ′g + fg′, (f ∗g)′ = f ′ ∗g = f ∗g′

for functions defined on the real line. The second holds without
change for functions on the integer line Z, while the first is very
problematic to translate to Z. (Drell, Weinstein & Yankielowicz 1976,
Bouguenaya & Fairlie 1986).

All this can be read in two different ways:
(1) as propaganda for differential and integral calculus;
(2) as a challenge.

Thinking about this Summer School on board the FinnEagle
2007-07-13: Has the whole world gone digital?
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Why digital geometry?

The geometry of the computer screen.

Points, straight line segments, planes. Ellipses, hyperbolas.
Lemniscates, cardioids.

Euclid: ευθει̃α, eutheı̃a ‘straight line segment, rectilinear segment’.
Between two points on a line there is always a third point (hence
infinitely many). There are no equilateral triangles in Q2.

Digital objects might be viewed as approximations of Euclidean
objects. But it is better to treat them for what they are! Finite sets of
objects!

Rosenfeld 1974. Tessellations of the Euclidean plane. Pixels, voxels!
Adresses of pixels, voxels: Z2, Z3.
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Distance transforms

Distance transforms of digital images: a useful tool in image analysis.

The distance transform of a set (or shape, or image) is a function on
the image carrier. Outside the set, the value of the distance transform
at a certain pixel is defined to be the distance from that pixel to the set.

Inside the set we shall define it as minus the distance to the
complement. The choice of signs has a very simple motivation: the
distance transform of a Euclidean ball B = {x ∈ R2;‖x − c‖2 6 r} is
DTB(x) = ‖x − c‖2− r , a convex function. More generally, the
distance transform of a convex set in Rn is a convex function with this
definition.
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The distances can be measured in different ways, e.g., by
approximating the Euclidean distance in the two-dimensional image,
the Euclidean distance between two pixels x = (x1,x2) and
y = (y1,y2) being

d2(x ,y) = ‖x − y‖2 =
√

(x1− y1)2 +(x2− y2)2.

Other distances: the city-block distance or l1-distance

d1(x ,y) = ‖x − y‖1 = |x1− y1|+ |x2− y2|,

and the chessboard distance or l∞-distance

d∞(x ,y) = ‖x − y‖∞ = max(|x1− y1|, |x2− y2|).

We shall define many more distances on Zn later.
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Let X be any nonempty set. A function d : X ×X → R is called a
distance if d is positive definite, i.e.,

d(x ,y) > 0 with equality precisely when x = y , x ,y ∈ X ,

and symmetric, i.e.,

d(x ,y) = d(y ,x) for all x ,y ∈ X .

A distance will be called a metric if in addition it satisfies the triangle
inequality ,

d(x ,z) 6 d(x ,y)+d(y ,z) for all x ,y ,z ∈ X .

Every nonempty set can be equipped with a metric, viz. the discrete
metric d0 defined as

d0(x ,x) = 0, d0(x ,y) = 1 if x 6= y .
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Symmetry? A cost function need not be symmetric...

The set X will usually be the image plane Z2 consisting of all points in
the plane with integer coordinates (the addresses of the pixels), or
more generally the image space Zn, or Rn.

Whenever X is an abelian group it is of particular interest to use
translation-invariant distances, i.e., those which satisfy

d(x −a,y −a) = d(x ,y) for all a,x ,y ∈ X .
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A metric space is simply a set provided with a metric.

The strict ball (or open ball) of center c and radius r

B<(c, r) = {x ;d(c,x) < r}.

The non-strict ball (or closed ball) of center c and radius r is

B6(c, r) = {x ;d(c,x) 6 r}= B<(c, r)∪{x ;d(c,x) = r}.

Careful: the closure of B<(c, r) with respect to the topology defined by
d is not necessarily equal to B6(c, r), and the interior of B6(c, r) is
not necessarily equal to B<(c, r).

Also note that if two balls B<(c1, r1) and B<(c2, r2) with r1, r2 > 0 are
disjoint, then we can only conclude that max(r1, r2) 6 d(c1,c2),
whereas in a normed space a stronger inequality,
max(r1, r2) 6 r1 + r2 6 ‖c1− c2‖, holds.
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Every metric defines a topology: a set is declared to be open if and
only if it is a union of open balls. However, we shall often use another
topology on X than that defined by d .

We note that in any abelian group with a translation-invariant metric
we have the relations

B<(c1, r1)+B<(c2, r2)⊂ B6(c1, r1)+B<(c2, r2)⊂ B<(c3, r3);

B6(c1, r1)+B6(c2, r2)⊂ B6(c3, r3),

where c1 + c2 = c3, r1 + r2 = r3. In a vector space over R, with d
defined by d(x ,y) = ‖x − y‖ using some norm ‖ · ‖, the inclusions
here are actually equalities if r1, r2 > 0.
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Tessellations

The plane may be divided into triangles, rectangles, or hexagons.
These are the most common tessellations of the plane. The centers of
the pixels form, respectively, a hexagonal, rectangular, or triangular
pattern. (M. C. Escher; Gunilla Borgefors.)
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Definition

Let A and B be subsets of an abelian group G. Then we define their
Minkowski sum as the set

A+B = {x + y ∈ G;x ∈ A,y ∈ B}.

If B is finite, as is often the case in Zn, only finitely many checks are
needed to decide whether a point x belongs to A+B: we check
whether x −b belongs to A for some b ∈ B.

If B is a singleton set, B = {b}, we may write A+{b}= A+b.
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Definition

Dilation by C, δC : P(G)→P(G), and erosion by C,
εC : P(G)→P(G), are defined by

δC(A) = A+C, εC(A) = {x ;x +C ⊂ A}.

For symmetry they may be written

δC(A) =
[
x

(
{x}+C;{x} ⊂ A

)
, εC(A) =

[
x

(
{x};{x}+C ⊂ A

)
.
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There are two kinds of duality between the two operations:

Proposition

(Group-theoretical duality.) Define Č = {−c;c ∈ C}. Then

δC(A) = {εČ

(
{A

)
.

Proposition

(Lattice-theoretical duality.) Let A, B and C be three subsets of an
abelian group. Then δC(A)⊂ B if and only if A ⊂ εC(B).

Dilation commutes with the formation of unions, and erosions with the
formation of intersections:

δC
(S

j∈J Aj
)

=
S

j∈J δ(Aj), εC
(T

j∈J Aj
)

=
T

j∈J ε(Aj).

These properties are taken as definitions in the lattice-theoretical
approach to dilations and erosions.
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Given two functions f ,g : G → [−∞,+∞] with values in the extended
real line [−∞,+∞] = R∪{−∞,+∞}, we define a new function
h = f � g, called the infimal convolution of f and g, as

(f � g)(z) = h(z) = inf
x ,y∈G

(
f (x)+· g(y);x + y = z

)
, z ∈ G.

The infimum is taken over all elements x ,y ∈ G such that their sum is
z, the argument of h.

There is a complication if f takes the value +∞ at x and g takes the
value −∞ at y . We resolve this conflict by declaring that +∞ shall win.
So s +· t is the usual sum if s and t are real numbers; if only one is
infinite or both are infinite of the same sign, the sum takes that value; if
s and t are infinite of opposite signs, we define the sum to be +∞. In
this way, this operation, called upper addition, becomes an upper
semicontinuous mapping from [−∞,+∞]2 into [−∞,+∞].

Similarly we define lower addition, s +· t =−
(
(−s)+· (−t)

)
; here

minus infinity wins.
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The points where f or g takes the value +∞ play no role in the
formation of the infimum: the definition of upper addition guarantees
this. Removing these points therefore yields an equivalent definition:

(f � g)(z) = inf
x ,y∈G

(f (x)+g(y);x + y = z, f (x) < +∞,g(y) < +∞) .

The effective domain, written dom f , of a function f : X → [−∞,+∞]
defined on an arbitrary set X is the set where it is strictly less than plus
infinity:

dom f = {x ∈ X ; f (x) < +∞}.

With this notation we can write

(f � g)(z) = inf
x∈dom f
y∈domg
x+y=z

(
f (x)+g(y)

)
, z ∈ G.
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Intuitively, plus infinity corresponds to vacuum and −∞ to an infinitely
dense neutron star. We should think of the density as e−f (x), and then
of course e−(+∞) = 0. Infimal convolution is related to supremal
convolution of the functions e−f , e−g , viz.

sup
y

[
e−f (y)e−g(x−y)

]
= e−(f � g)(x).

The supremum is often comparable to integration in Rn, which means
that we sometimes have a remarkably good approximation

e(f � g)(x) = sup
y∈Rn

[
e−f (y)e−g(x−y)

]
≈

Z
Rn

e−f (y)e−g(x−y)dy =
(
e−f ∗e−g)(x), x ∈ Rn,

where the asterisk denotes usual convolution, which is defined by the
integral

(F ∗G)(x) =
Z

Rn
F(y)G(x − y)dy , x ∈ Rn.
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Example

Define for a > 0,

fa(x) =
x2

2a
, x ∈ R.

Then
fa � fb = fa+b

and
e−fa ∗e−fb = Ca,be−fa+b ,

where

Ca,b =

√
2πab
a+b

.
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Proposition

Infimal convolution is associative: (f1 � f2) � f3 = f1 � (f2 � f3).

Now why is infimal convolution more general than Minkowski addition?
This is because of the formula

dom(f � g) = dom f +domg,

which is easily proved. A special case of this formula is obtained when
we consider indicator functions.

To any subset A of a set X we define its indicator function, indA,
which is simply defined as indA(x) = 0 when x ∈ A and
indA(x) = +∞ when x /∈ A. It is related to the characteristic function
χA of A by the formula χA = exp(−indA).
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It is clear that dom(indA) = A. We have indA � indB = indA+B for all
subsets A, B of an abelian group G. Hence the Minkowski sum may be
defined in terms of infimal convolution as A+B = dom(indA � indB).

We can go also in the other direction.

The epigraph of a function f : X → [−∞,+∞] defined on an arbitrary
set X is

epi f = {(x , t) ∈ X ×R; f (x) 6 t},

and the strict epigraph is

epis f = {(x , t) ∈ X ×R; f (x) < t}.

If X = G is an abelian group, we make G×R into a group by defining
(x ,s)+(y , t) = (x + y ,s + t). It is not difficult to show that

epis(f � g) = (epis f )+(epis g).

This means that the function f � g can be defined as the function
whose strict epigraph is the sum (epis f )+(epis g).
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Distance transforms

Definition

In a metric space X we define the distance transform DTA of a
subset A of X by

DTA(x) =


− inf

y /∈A
d(x ,y), x ∈ A;

inf
y∈A

d(x ,y), x ∈ X r A.

Lemma

The distance transform satisfies

DTA(x) =

{
−sup

(
r ;B<(x , r)⊂ A

)
, x ∈ A;

sup
(
r ;B<(x , r)⊂ {A

)
, x ∈ X r A.
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Note the symmetry: DTXrA =−DTA. The distance transformation
A 7→ DTA is decreasing in the sense that DTA(x) > DTB(x) for all
x ∈ X if A ⊂ B. In the two extreme cases A = Ø and A = X we have
DTØ = +∞ and DTX =−∞. In all other cases DTA is real-valued,
DTA : X → R.

Every real-valued function can be written as the difference between
two nonnegative functions: f = f +− f−, where f + = max(f ,0) and
f− = max(−f ,0). In particular, DTA = (DTA)+− (DTA)−. The function
(DTA)− is sometimes called the quench function of A.
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Proposition

If A is a subset of a metric space X other than Ø and X, then (DTA)+

and (DTA)− are Lipschitz continuous with Lipschitz constant 1 with
respect to d:∣∣(DTA)+(x)− (DTA)+(y)

∣∣ 6 d(x ,y), x ,y ∈ X ,

and similarly for (DTA)−. (In particular the restrictions DTA
∣∣
A and

DTA
∣∣
{A are Lipschitz continuous with Lipschitz constant 1.) As a

consequence, DTA is Lipschitz continuous with Lipschitz constant 2. If
X is a vector space with distance d(x − y) = ‖x − y‖ defined by a
norm, the Lipschitz constant is 1.
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Proof. The restriction to A of DTA is the supremum of a family of Lip-1
functions x 7→ d(x ,y). Hence |(DTA)−(a)− (DTA)−(b)|6 d(a,b) if
a,b ∈ A. If a,b /∈ A the function takes the value zero at both points.

Now take a ∈ A and b ∈ X r A and define r =−DTA(a) > 0 and
s = DTA(b) > 0. Then B<(a, r)⊂ A and B<(b,s)⊂ {A, so that
r ,s 6 d(a,b). The two balls are disjoint. In general this only implies
that max(r ,s) 6 d(a,b), but in a normed vector space case the
stronger inequality s + r 6 d(a,b) follows, thus that
0 6 DTA(b)−DTA(a) = s + r 6 d(a,b); proving that the Lipschitz
constant is 1 in this case.

When a ∈ A and b /∈ A, we have
0 =−DTA(b)− 6 DTA(a)−−DTA(b)− = r 6 d(a,b) and the Lipschitz
continuity of (DTA)− is established. Passing to the complement, we
obtain the result for (DTA)+ = (DTXrA)−.
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The Lipschitz constant 2 in the proposition cannot be improved: take
X = Z with the usual metric and A = {0}. However, in the distance
transform there is a jump 2 only when we go from a point in A to a
point in X r A. This indicates that it might be possible to adjust the
distance transform in A by an additive constant so that the modified
function is Lip-1.

Proposition

Let G be an abelian group with a translation-invariant metric
d(x ,y) = f (x − y), and let A be an arbitrary subset of G. Then

(DTA)+ = max(DTA,0) = indA � f

and
(DTA)− = max(−DTA,0) = ind{A � f ,

and, taking the difference between the two,

DTA = (DTA)+− (DTA)− = (indA � f )− (ind{A � f ).
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Proposition

Let G be an abelian group with a translation-invariant metric d. Then
for any subsets A, B of G we have

(DTA+B)+ = (DTA)+ � indB = indA � (DTB)+ = (DTA)+ � (DTB)+.

Proof. We know from the preceding proposition that (DTA)+ =
indA � f , where f (x) = d(x ,0) is the distance from x to the origin.
Hence, using the associativity and commutativity of infimal convolution
as well as the functional equation f � f = f (comes up soon),

(DTA)+ � (DTB)+ = (indA � f ) � (indB � f ) = (indA � indB) � f

= indA+B � f = (DTA+B)+.

Also

(DTA)+ � indB = (indA � f ) � indB = (indA � indB) � f

= indA+B � f = (DTA+B)+.
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The sublevel sets of a function f : X → [−∞,+∞] are the sets of the
form

{x ∈ X ; f (x) < s} or {x ∈ X ; f (x) 6 s}

for some element s of [−∞,+∞]. We shall denote them by {f < s}
rather than {x ∈ X ; f (x) < s}.

Lemma

If X is a metric space with metric d, and DTA is the distance transform
of a subset A of X calculated with the use of d, then the closure,
interior and boundary of A can all be recovered from knowledge of the
sublevel sets of DTA:

A = {DTA 6 0}, A◦ = {DTA < 0}, ∂A = {DTA = 0}.

Moreover DTA = DTA in {A and DTA◦ = DTA in A.
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If A is any subset of Rn satisfying B<(c, r)⊂ A ⊂ B6(c, r), where
r > 0 and we use the distance d(x ,y) = ‖x − y‖ defined by some
norm ‖ · ‖ on Rn, then DTA(x) = ‖x − c‖− r . This simple example
shows that we cannot expect to recover A exactly from DTA; we have
to be content with its interior and closure. However, if X = Zn, then the
topology induced by a norm in Rn is the discrete topology, so that, for
any set A,

A = A◦ = A = {DTA < 0}= {DTA 6 0}.

The boundary is empty and DTA never takes the value zero.
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Proposition

Let G be an abelian group with a translation-invariant metric d, and let
A be an arbitrary subset of G. Then for all positive numbers r and ε we
have

{DTA < r}= A+B<(0, r) = δB<(0,r)(A)⊂ A+B6(0, r)

= δB6(0,r)(A)⊂ {DTA 6 r} ⊂ {DTA < r + ε};

and

{DTA 6−r}= εB<(0,r)(A)⊃ εB6(0,r)(A)⊃ {DTA <−r}

⊃ {DTA 6−r − ε}.

The dilations by the strict balls B<(0, r), A+B<(0, r) = δB<(0,r)(A),
thus determine the strict sublevel sets of DTA for positive values;
similarly for the erosions εB<(0,r)(A) and the nonstrict sublevel sets of
DTA for negative values.
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Proposition

Let G be an abelian group and fj : G 7→ [−∞,+∞], j = 1,2, two
arbitrary functions defined on G. Define f3 = f1 � f2. Then for all real
numbers r1, r2 and r3 = r1 + r2 we have

{f1 < r1}+{f2 < r2} ⊂ {f1 < r1}+{f2 6 r2} ⊂ {f3 < r3};

{f1 6 r1}+{f2 6 r2} ⊂ {f3 6 r3}.

Moreover, for any real number r3 we have[
r1∈R

(
{f1 < r1}+{f2 < r3− r1}

)
= {f3 < r3}.
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When the functions fj are distance transforms and r3 is positive we can
say more:

Proposition

Let G be an abelian group equipped with a translation-invariant metric,
and let Aj , j = 1,2, be two subsets. Then their distance transforms
fj = DTAj satisfy

{f1 � f2 < r}=
(
{f1 6 0}+{f2 < r}

)
∪

(
{f1 < r}+{f2 6 0}

)
= A1 +A2 +B<(0, r)

for all positive r .
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Chamfer distances

While the Euclidean distance is easy to visualize geometrically, it has
certain drawbacks when it comes to calculations: we need to keep in
memory a vector rather than a scalar at each pixel; we need more
operations per pixel; and, perhaps most importantly, the Euclidean
distance is more difficult to use for various morphological operations,
such as skeletonizing, than for instance the city-block distance; see
Borgefors (1994). For a study of the computation of the Euclidean
distance transform in any dimension, see Ragnemalm (1993).
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In the case of the city-block (l1) and chessboard (l∞) distances, one
first defines the distances between neighboring pixels; we shall call
them, following Starovoitov (1995:501), prime distances. Then the
distance between any two pixels is defined by following a path and
taking as the distance the minimum over all admissible paths of the
sum of the prime distances. As an example, for the city-block distance
the admissible paths consists of horizontal and vertical moves only,
and the prime distance between two pixels which share a side is
declared to be one. Thus the distance is calculated successively from
neighboring pixels, which is convenient both for sequential and parallel
computation. This is impossible for the Euclidean distance in spaces
of dimension two or more.

It turns out that many metrics used in image analysis are conveniently
defined from the prime distances by infimal convolution over all grid
points.
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1
1 0 1

1

9 8 7 6 5 4 5 6 7 8 9
8 7 6 5 4 3 4 5 6 7 8
7 6 5 4 3 2 3 4 5 6 7
6 5 4 3 2 1 2 3 4 5 6
5 4 3 2 1 0 1 2 3 4 5
6 5 4 3 2 1 2 3 4 5 6
7 6 5 4 3 2 3 4 5 6 7
8 7 6 5 4 3 4 5 6 7 8
9 8 7 6 5 4 5 6 7 8 9
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1 1 1
1 0 1
1 1 1

5 4 4 4 4 4 4 4 4 4 5
5 4 3 3 3 3 3 3 3 4 5
5 4 3 2 2 2 2 2 3 4 5
5 4 3 2 1 1 1 2 3 4 5
5 4 3 2 1 0 1 2 3 4 5
5 4 3 2 1 1 1 2 3 4 5
5 4 3 2 2 2 2 2 3 4 5
5 4 3 3 3 3 3 3 3 4 5
5 4 4 4 4 4 4 4 4 4 5
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The following result is well known and easy to prove.

Lemma

Any translation-invariant distance d on an abelian group G defines a
function f (x) = d(x ,0) on X which is positive definite:

f (x) > 0 with equality precisely when x = 0;

and symmetric:
f (−x) = f (x) for all x ∈ X .

Conversely, a function f which satisfies these two conditions defines a
distance d(x ,y) = f (x − y).

Note that we do not need the triangle inequality here. But that special
case is easy to recognize:
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Lemma

Let d be a translation-invariant distance on an abelian group G and f a
function on G related to d as in the previous lemma. Then d is a
metric if and only if f is subadditive:

f (x + y) 6 f (x)+ f (y) for all x ,y ∈ X .

Often the infimum in an infimal convolution over Zn is in fact a
minimum over a finite set. One such case is when f is bounded from
below and g is coercive in the strong sense that all sublevel sets
{y ;g(y) 6 a, a ∈ R}, are finite. Then in particular the sublevel set
{y ;g(y) 6 (f � g)(x)+1− inf f} is finite for every x , and it is enough
to search for a minimizing y in that set.

Even simpler is the case when g < +∞ in a finite set P only. Then the
infimal convolution with any function f is equal to the minimum

(f � g)(x) = min
y∈P

(
f (x − y)+· g(y)

)
, x ∈ G.
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We have seen that subadditive functions are important when it comes
to defining metrics. Therefore it is of interest to know that subadditivity
can be characterized using infimal convolution:

Lemma

A function f on an abelian group is subadditive if and only if it satisfies
the inequality f � f > f . If f (0) = 0, this is equivalent to the equation
f � f = f .
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Infimal convolution is a commutative and associative operation on
functions, so we can write iterated convolutions as f � g � h without
using parentheses. A k -fold convolution can be defined by

(f1 � · · · � fk)(x) = inf
k

∑
j=1

fj(x j), x ∈ G,

where the infimum is over all choices of elements x j ∈ G such that
x1 + · · ·+ xk = x , and with the understanding that the sum receives
the value +∞ as soon as one of the terms has that value, even in the
presence of a value −∞. It is natural to think of a path leading from 0
to x consisting of segments [0,x1], [x1,x1 + x2], . . . ,
[x1 + · · ·+ xk−1,x ]; if G = Z2 this path can be realized in R2.
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If A is a subset of an abelian group G, we shall write N ·A for the
semigroup generated by A:

N ·A = {∑miai ; mi ∈ N,ai ∈ A} ,

where all but finitely many of the mi are zero. Similarly, we shall write
Z ·A for the group generated by A:

Z ·A = {∑miai ; mi ∈ Z,ai ∈ A} .

If A is symmetric, A =−A, then of course Z ·A = N ·A.

It seems plausible that if a repeated convolution F � F � · · · � F has
a limit f as the number of terms tends to infinity, then this limit will
satisfy the equation f � f = f . This is actually so under very general
hypotheses:
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Theorem

Let F : G → [0,+∞] be a function on an abelian group G satisfying
F(0) = 0. Define a sequence of functions (Fj)∞

j=1 by putting F1 = F,
Fj = Fj−1 � F, j = 2,3, . . . , in other words, Fj is the infimal
convolution of j terms all equal to F . Then the sequence (Fj)j is
decreasing, and its limit limFj = f > 0 is subadditive. Moreover
dom f = N ·domF, i.e., f is finite precisely in the semigroup generated
by domF.
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Proof. That the sequence is decreasing is obvious if we take y = 0 in
the definition of Fj+1:

Fj+1(x) = inf
y

(
Fj(x − y)+F(y)

)
6 Fj(x)+F(0) = Fj(x).

Next we shall prove that f (x + y) 6 f (x)+ f (y). If one of f (x), f (y) is
equal to +∞ there is nothing to prove, so let x ,y be given with
f (x), f (y) < +∞ and fix a positive number ε. Then there exist numbers
j,k such that Fj(x) 6 f (x)+ ε and Fk(y) 6 f (y)+ ε. By associativity
Fj+k = Fj � Fk , so we get

f (x + y) 6 Fj+k(x + y) 6 Fj(x)+Fk(y) 6 f (x)+ f (y)+2ε.

Since ε is arbitrary, the inequality f (x + y) 6 f (x)+ f (y) follows.
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Theorem

With F as in the previous theorem, assume in addition that there is a
translation-invariant metric d1 on G such that F(x) > d1(x ,0) for all
x ∈ G. Then the limit f of the sequence Fj also satisfies this inequality,
f (x) > d1(x ,0), so that it is positive definite. If F is symmetric, f is also
symmetric and defines a metric d(x ,y) = f (x − y) > d1(x ,y) on the
subgroup Z ·P = N ·P of G generated by P = domF.

Proof. Define H(x) = d1(x ,0) and let Hj be the infimal convolution of j
terms equal to H. We know that H � H = H and so all Hj are equal to
H. Therefore F > H implies Fj > H and also the limit f must satisfy
f > H. This proves the theorem.
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When applying this theorem we could for instance let d1 be εd0, where
ε is a small positive number and d0 is the discrete metric. In Zn we can
also use d1(x ,y) = ε‖x − y‖ for any norm on Rn.

Corollary

Let P be a finite set in an abelian group G containing the origin, and let
F be a function on G with F(0) = 0, taking the value +∞ outside P
and finite positive values at all points in P r{0}. Then f = limFj is a
positive definite subadditive function. If P is symmetric and
F(−x) = F(x), then f defines a metric on the subgroup Z ·P = N ·P
of G generated by P.

Proof. Since P is finite, there is a positive number ε such that F(x) > ε

for all x ∈ P except x = 0. Thus F(x) > εd0(x ,0), where d0 is the
discrete metric defined earlier. We can now apply the theorem.
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Definition

We shall say that a metric d(x ,y) = f (x − y) is a chamfer distance,
or finitely generated if it is constructed as in the corollary.

It is easy to prove that the Euclidean metric d(x ,y) =
√

∑(xj − yj)2 on
Zn is a chamfer distance if and only if n 6 1.
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It is by no means necessary that f be positively homogeneous in the
corollary.

1 7 2
8 0 8
2 7 1

12 4 10 5 11 6 12 7 13 8 16
6 11 3 9 4 10 5 11 6 14 9
13 5 10 2 8 3 9 4 12 7 15
7 12 4 9 1 7 2 10 5 13 8
14 6 11 3 8 0 8 3 11 6 14
8 13 5 10 2 7 1 9 4 12 7
15 7 12 4 9 3 8 2 10 5 13
9 14 6 11 5 10 4 9 3 11 6
16 8 13 7 12 6 11 5 10 4 12
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Several metrics on Z2 have been studied. When presenting the
generating function F defining the prime distances it shall be
understood that F is invariant under permutation and reflection of the
coordinates. Therefore it is enough to define F(x) for 0 6 x2 6 x1.
Also it is understood that F(0) = 0 in all cases, and that F(x) = +∞

when not mentioned.

Consider first P = {x ∈ Z2;∑ |xj |6 1} and F(1,0) = 1. Then the
corresponding metric is the city-block (l1) metric, introduced and
studied by Rosenfeld & Pfaltz (1966).

If instead we let P = {x ∈ Z2; |xj |6 1} and F(1,0) = F(1,1) = 1,
then the metric is the chessboard (l∞) metric, introduced by Rosenfeld
& Pfaltz (1968). Some other metrics that have been studied are
modifications of this; to define them, put F(1,0) = a and F(1,1) = b.
Then the choices (a,b) = (1,

√
2) (Montanari 1968); (a,b) = (2,3)

(Hilditch & Rutovitz 1969); and (a,b) = (3,4) (Borgefors 1984) have
all been studied.
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Next we can increase the size of the neighborhood where prime
distances are defined to include the knight’s move (2,1) as an element
of P. The distance defined by this move only has been studied by Das
& Chatterji (1988). It seems more natural, however, to allow also (1,0)
and (1,1) in P. Then a very good choice under certain criteria is
F(1,0) = 5, F(1,1) = 7, and F(2,1) = 11 (the 5-7-11 weighted
distance). This distance was proposed and studied by Borgefors
(1986).
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We always have f 6 F , and it may happen that f (x) < F(x) for some
pixel x ∈ P. Let for instance F(1,0) = a, F(2,1) = c, and extend F by
reflection and permutation of the coordinates. Then

f (1,0) 6 F3(1,0) 6 F(2,1)+F(1,−2)+F(−2,1) = 3c,

so if 3c < a we get f (1,0) 6 3c < a = F(1,0).

This is undesirable, because we expect the prime distance originally
defined between the origin and (1,0) ∈ P to survive and to be equal to
the distance defined by the minimum over all paths. It is therefore
natural to require that f = F everywhere in P.
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Since f (x) is the limit of an infinite sequence Fj(x), it is reassuring to
know that this sequence is in fact stationary in the cases of interest
here. It is easy to find explicitly an index j such that Fj(x) is equal to
the limit f (x):

Proposition

Let F be as in the corollary. Then the sequence (Fj) is pointwise
stationary, i.e., for every x ∈ G there is an index s(x) such that
Fj(x) = f (x) for all j > s(x).

It is not true that Fj(x) = Fj−1(x) implies that Fk(x) = Fj(x) for all
k > j , so Fj(x) = Fj−1(x) at a particular point x is not a sufficient
criterion. For example, we may define F(±1) = 1 and
F(±100) = 101. Then Fj(100) = 101 for j = 1, . . . ,99 but
f (100) = F100(100) = 100.
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Corollary

The positive part of a distance transform is a limit
(DTA)+ = lim(indA � F � F � · · · � F), where the number of terms
tends to infinity. This formula can be used in actual calculations:
starting from g0 = indA one calculates gj(x) = (gj−1 � F)(x) and
stops when the criterion of the proposition is satisfied.

What about lim(indA � F1 � F2 � F3 � · · · � Fk) with different Fj?
Benedek Nagy and Robin Strand!
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Comparing distances

The l1 (city-block) and l∞ (chessboard) metrics in R2 are translation
invariant but not rotation invariant. (In the plane a rotation can distort
distances by a factor of up to

√
2; in Rn by

√
n.) The Euclidean metric

is rotation invariant, and it is desirable to construct a chamfer distance
in Zn which is reasonably close to being rotation invariant. There are
many studies on the problem of defining an optimal distance in a given
family of finitely generated distances. Of course the property of being
optimal depends on the criteria employed; beauty is in the eye of the
beholder.

A basic problem is how to measure deviation: we may ask how far the
quotient of two quantities is from 1, alternatively how far their
difference is from 0. We shall look briefly into this problem and
describe some methods of comparing two nonnegative functions.
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It is natural to measure the deviation of a function f : X → [0,+∞[ from
a given nonnegative function g defined on the same set by the
smallest constant C ∈ [0,+∞] such the inequalities f (x) 6 Cg(x) and
g(x) 6 Cf (x) hold for all x ∈ X . We introduce a notation for this
constant,

Λ(f ,g) = max

(
sup
x∈X

f (x)
g(x)

,sup
x∈X

g(x)
f (x)

)
,

where the supremum is taken over all points in the common domain of
definition, and where we count 0/0 as 0 and t/0 as +∞ if t > 0 (this is
to allow for zeros; Λ(f ,g) is finite only if the two functions have the
same zero set). It is noteworthy that logΛ(f ,g) = ‖ log f − logg‖∞ is a
distance on a suitable space of functions; in particular it is symmetric.

If f satisfies an inequality C1 6 f (x)/g(x) 6 C2, then a slightly
modified function, viz. f1 = f/

√
C1C2, satisfies Λ(f1,g) 6

√
C2/C1.
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Verwer (1991) used instead the functional

Λ
′(f ,g) = sup

x∈X

∣∣∣∣ f (x)
g(x)

−1

∣∣∣∣ .
One might just as well consider Λ′(g, f ). Clearly Λ′(f ,g) = Λ(f ,g)−1
when f > g, and Λ′(f ,g) = 1−1/Λ(f ,g) when f 6 g. In general,
Λ′(f ,g), Λ′(g, f ) as well as logΛ(f ,g) lie between two limits,

1− 1
Λ(f ,g)

6 Λ
′(f ,g),Λ′(g, f ), logΛ(f ,g) 6 Λ(f ,g)−1,

where we have inserted also the well-known inequality
1−1/t 6 log t 6 t −1. In particular,
|Λ′(f ,g)− logΛ(f ,g)|6 (Λ(f ,g)−1)2/Λ(f ,g).

We may also note that Λ′ is approximately symmetric when f and g
are close, and there is an estimate

Λ′(f ,g)
Λ(f ,g)

6 Λ
′(g, f ) 6 Λ(f ,g)Λ′(f ,g),

which, by the way, may be written as

Λ(Λ′(f ,g),Λ′(g, f )) 6 Λ(f ,g).
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When f and g are reasonably close, Λ′(f ,g)≈ Λ′(g, f )≈ logΛ(f ,g).
For many purposes either one may be used. Note, however, that
Λ(f ,g) has better functional properties than Λ′(f ,g). In particular, as
already noted, logΛ(f ,g) is a metric, whereas Λ′(f ,g) does not satisfy
the triangle inequality and is not even symmetric.

We note that for every pair (f ,g) of functions there are constants c0,
c1, and c2 such that, respectively, Λ(c0f ,g), Λ′(c1f ,g) and Λ′(g,c2f )
are minimal. It is easy to see that c0 is the geometric mean of c1 and
c2.

If the prime vectors are (±1,0), (0,±1) and (±1,±1) with prime
distances a and b respectively, we note that the optimal prime
distances for both Λ and Λ′ are related by b = a

√
2, but that the actual

values are slightly different.
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For Λ(f ,‖ · ‖2), the optimal choice is

a0 =
4

√
2+

√
2

4
≈ 0.961186523, b0 = a0

√
2 =

4
√

2+
√

2≈ 1.359323017.

Verwer (1991:676) found the optimal choice for Λ′(f ,‖ · ‖2) to be
approximately

a1 ≈ 0.9604 and b1 = a1

√
2 ≈ 1.3583.

The exact values are a1 =
(

1
2 +

√
1−1/

√
2

)−1

and b1 = a1
√

2.
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One can calculate also the optimal choice for Λ′(‖ · ‖2, f ), which is

a2 = 1
2 +

1
4

√
2+

√
2 ≈ 0.961939766, b2 = a2

√
2 ≈ 1.3603882.

The vertices of the octagon protrude as much outside the disk as the
midpoints of the edges go into the disk. As expected, a0 =

√
a1a2.
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Skeletons

If A is any subset of a metric space X , then its interior A◦ is the union
of all open balls contained in A. This is typically the union of a very
large family of sets. We would like to describe A◦ as the union of a
smaller family. It is obvious that if we have two balls contained in A,
B<(a, r) and B<(b,s), and one is contained in the other, then we may
throw away the smaller ball without changing the union. In fact, for
every ball B<(a, r) in the union, we may throw away all balls contained
in that ball without changing the union. This leads to the concept of a
maximal ball. A maximal ball must be retained, but all balls contained
in a maximal ball may be dispensed with.
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The importance of skeletons in applications is due to the fact that they
are thin in some sense but nevertheless retain important information
about an object, for instance its general shape, and that, given the
skeleton and the distance transform at the points in the skeleton, we
can reconstruct the whole object. Typically we save memory when
listing only the skeleton and the quench function.

If a is the center of a maximal open ball B<(a, r) contained in a set A,
then necessarily r =−DTA(a). In fact, when we defined the distance
transform DTA(a) at a point a, we looked at all balls with center a
contained in A and we took the largest such ball. Note that then we
kept the center fixed. There is a largest ball with center a, which in
particular is maximal among these balls. By way of contrast, when we
define the skeleton we shall vary both the center and the radius and
look at all balls contained in A, regardless of their centers. We shall
now give a name to the centers of maximal balls.
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Definition

Let A be a subset of a metric space X . We define the skeleton of A,
denoted by sk(A), as the set of all centers of maximal nonempty strict
balls contained in A.

The definition means that a ∈ sk(A) if and only if there exists a
number r > 0 such that B<(a, r)⊂ A and such that if a ball B<(b,s) is
contained in A and contains B<(a, r), then B<(b,s) = B<(a, r). The
skeleton may be empty: think of a set with empty interior or of a
half-space in Rn. A half-space contains lots of balls, but there are no
maximal balls. So obviously we need to investigate whether there exist
maximal balls—and whether there are enough of them in the formation
of the interior of A. To do this in Rn, we shall need Zorn’s Lemma.

Contents Introduction Why digital geometry? Distance transforms Chamfer distances Skeletons Digital lines Convex functions on discrete sets with integer values The real case Convex sets Convex functions Affine functions Digital hyperplanes Topology

Preorders and orders

Definition

A preorder in a set X is a relation (a subset of X 2) which is reflexive
and transitive.

This means, if we denote the relation by 6, that for all x ,y ,z ∈ X we
have

x 6 x

and
x 6 y and y 6 z implies x 6 z.
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Definition

An order is a preorder which is antisymmetric.

This means that it satisfies: for all x ,y ∈ X ,

x 6 y and y 6 x implies x = y .

Definition

An ordered set X is said to be totally ordered if for any two elements
x ,y ∈ X we have x 6 y or y 6 x .
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Definition

An ordered set X is said to be inductive or inductively ordered
(Bourbaki 1963:34) if every totally ordered subset of X possesses a
majorant in X .

This means that for every Y ⊂ X which is totally ordered, there exists
an element b ∈ X such that y 6 b for all y ∈ Y . This concept is of
interest because it is used as an hypothesis in Zorn’s Lemma, which
guarantees the existence of maximal elements.
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Theorem

(Zorn’s Lemma) Every inductively ordered set possesses a maximal
element.
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Theorem

Let Zn be equipped with a metric which either is inherited from a norm
on Rn or a chamfer distance, and let A be a finite subset. Then the set
of all strict balls contained in A is inductively ordered.

Proof. Let us consider a union AM =
S

(c,r)∈M B<(c, r) of a family of
open balls contained in A, where M is a subset of Zn×R. Assume
that the family is totally ordered, i.e., that for any two pairs
(a, r),(b,s) ∈ M, either B<(a, r) is a subset of B<(b,s) or conversely.
Clearly AM , being a subset of A, is finite, which implies that it is equal
to one of the balls B<(c, r) with (c, r) ∈ M. We are done.
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In Rn things are less simple.

Theorem

Let A be a set in a finite-dimensional normed vector space E. Assume
that A is bounded and has nonempty interior. Then the set of open
balls contained in A is inductively ordered.
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If the norm is Euclidean, it is enough to assume that A does not
contain a half-space. Also, for any given norm in Rn, it is enough to
assume that A does not contain a cone of a certain aperture.
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Corollary

Let A be a bounded subset of a finite-dimensional normed vector
space, or a bounded subset of Zn, where Zn is provided with a metric
as in the theorem. The union of all open balls with center c belonging
to the skeleton and radius equal to −DTA(c) is equal to the interior of
A. In particular, if A has interior points, then the skeleton of A is
nonempty.

Proof. Take any point x ∈ A◦. The ball B<(x ,ε) is contained in A◦ for
some small positive ε. By Zorn’s lemma and one of the two previous
theorems, there is a maximal ball B<(c, r) containing B<(x ,ε) and
contained in A. Thus c ∈ sk(A) and x ∈ B<(c, r), with
r =−DTA(c).
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In any metric space where the conclusion of the theorem holds we
have

A◦ =
[

c∈sk(A)

B<(c,−DTA(c)).

Here −DTA(c) = (DTA(c))− is the quench function evaluated at c.
Knowledge of sk(A) and the restricion of DTA to sk(A) is equivalent to
knowing A◦. This shows how we can reconstruct A◦ from sk(A) and
the quench function. However, it is sometimes not necessary to use
even all the points in the skeleton, e.g., when A is the union of two
disks.

In some sense the skeleton is a thin set. For instance, it is easy to
prove that a skeleton in Rn has no interior points. On the other hand,
the closure of the skeleton need not be of Lebesgue measure zero.
These results are mentioned by Serra (1982:378) and Matheron
(1988:218). Rivière (1996) proved that the skeleton is of Lebesgue
measure zero. It is probably unknown whether the interior of its
closure is empty.
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The skeleton has, generally speaking, bad continuity properties.

Example

Let D be the open unit disk in R2, D = {(x ,y) ∈ R2;x2 + y2 < 1}. Its
skeleton is just the origin. Then add a small open disk Dε with center
at (1,0) and radius ε > 0. The skeleton of the new set A = D∪Dε is
the entire segment [(0,0),(1,0)] for all small positive ε. Thus a very
small change in the set causes the skeleton to grow. Note that here it
is not necessary to use all the points in the skeleton to reconstruct A: it
suffices to take the disks with centers at (0,0) and (1,0). Even more
dramatic is perhaps the growth in the skeleton when we remove a
small closed disk: consider D r Dε.
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In Z2 the continuity properties are of course different, but a small
change can still cause points to appear far from the original skeleton.

Example

Let A = [−m,m]Z× [−m,m]Z be a large square in Z2. Its skeleton for
the chess-board metric is just the origin. If we add a single point
(m +1,0) to A, the skeleton of the new set is {0,(m +1,0)}. What
happens if we remove a point? Consider A r{(m,0)}.

The skeleton of a set A in R2 need not be a closed set, even if A has a
smooth boundary.
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We shall now give a characterization of points in the skeleton. The
following result was proved in Rn by Matheron (1988:225).

Theorem

Let E be a normed space with metric given by the norm,
d(x ,y) = ‖x − y‖. Let A be a nonempty proper subset of E, fix a point
c in the interior of A, and define h(x) = d(x ,c)+DTA(x), x ∈ E. Then
c belongs to the skeleton of A if and only if h has a minimum only at c.

There are similar results for discrete spaces, but they are not so easy
to describe.
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Thanks to the calculus of balls we can generalize this result to other
groups. In a normed space of positive dimension, the open ball of
radius r =−DTA(a) is the interior of the closed ball of the same radius
and the same center. In a group where the set of distances is discrete,
the open ball B<(a, r) can be described as the closed ball of radius
ρ−(r). Since the conditions for working with closed balls are more
easily satisfied than those for open balls, we will get a more applicable
result if we replace the function x 7→ d(x ,c)+DTA(x) by
x 7→ d(x ,c)−ρ−(−DTA(x)).

Theorem

Let G be an abelian group with a translation-invariant metric d which is
upper regular for the triangle inequality and such that the set of all
distances is discrete. Let A be a nonempty proper subset of G, fix a
point c ∈ A, and define h(x) = d(x ,c)−ρ−(−DTA(x)), x ∈ G. Then c
belongs to the skeleton of A if and only if h has a minimum only at c.
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Digitization

Let us now discuss what a good digitization should mean, and then
study the notion of a digital line.

Let X be a set and Z an arbitary subset of X . (Think of X as R2 and Z
as Z2 if you like.) If we want to digitize X we may start with a mapping
f : X → Z and then define the digitization of a set A as the direct
image of A under f , f∗(A) = {f (x);x ∈ A}.

However, it is often not possible to start with a pointwise mapping.
Instead, we shall define here a digitization of X into Z as a mapping
F : P(X)→P(Z ) with certain desirable properites. We shall think of
F(A) as a digital representation of A. A very simple such
representation is F(A) = A∩Z , but it is not very faithful, since many
sets are mapped to the empty set, for example A = X r Z . (However,
it works for sufficiently fat sets.) One desirable condition is therefore
that F(A) be empty only if A is empty. We also remark that the
mapping F(A) = A∩Z is not of the form F = f∗ if Z 6= X .
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The mappings f∗ are dilations in the lattice-theoretical sense: they
commute with the formation of unions. It seems desirable to require in
general that a digitization F : P(X)→P(Z ) be a dilation.

In particular this means that it is determined by its images on points,
i.e., F(A) =

S
x∈A F({x}). So it is enough to know the digitization of

an arbitrary point in X ; however, nothing requires the F({x}) to be
singleton sets.

The following setup seems to be sufficiently flexible.
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Definition

Let two sets X and Z be given, Z being a subset of X . Let there be
given, for every p ∈ Z , a subset C(p) of X , called the cell with
nucleus p. Then the digitization determined by these cells is the
mapping F : P(X)→P(Z ) defined by

F({x}) = {p ∈ Z ;x ∈ C(p)}, x ∈ X ,

and

F(A) =
[
x∈A

F({x}) = {p ∈ Z ;A meets C(p)}, A ∈P(X).
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We may think of the cell C(p) as a pixel or voxel, and of p as its
address. If we think of C as a mapping C : Z →P(X), then
F(A) = C∗(CA), where CA ∈P(P(X)) is the family of all cells which
meet A. (In general, we define f ∗ for a mapping f : X → Y by
f ∗(B) = {x ∈ X ; f (x) ∈ B}, the preimage of B.)

It is clear that a digitization in this sense is always a dilation in the
lattice-theoretical sense. As already pointed out, it is desirable that a
nonempty set have a nonempty digitization; this is true if and only if the
union of all cells is equal to the whole space X .

If X is an abelian group and Z a subgroup, it is desirable that the
digitization commute with translations, which means that
C(p) = C(0)+p for all p ∈ Z . Indeed, if C(p)−p varies too much, it
is easy to construct strange examples. We will see one soon.
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Example

A simple choice is C(p) = {p}. This yields the digitization
F(A) = Z ∩A already mentioned. If the set is fat, this digitization may
work out well. In an abelian group with a metric we can even fatten the
set using a dilation, defining C(p) to be a ball B6(p, r) of radius r ; this
yields F(A) = Z ∩ (A+B6(0, r)).
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Example

If X = R and Z = Z we may choose C(p) =
[
p− 1

2 ,p + 1
2

]
. Then

every set has a nonempty digitization, but the half-integers have a
digitization consisting of two points. If we choose instead
C(p) =

]
p− 1

2 ,p + 1
2

[
, then the digitization of a half-integer is empty.

As a compromise we may choose C(p) =
]
p− 1

2 ,p + 1
2

]
; the

digitization of a point is then always a point: F({x}) =
{⌈

x − 1
2

⌉}
. But

then a new disadvantage appears: this digitization does not commute
with the reflection x 7→ −x .
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If X = R2 and Z = Z2, we may construct digitizations from what we
have already done on the real axis. We may take

C(p) =
[
p1− 1

2 ,p1 + 1
2

]
×

[
p2− 1

2 ,p2 + 1
2

]
, p ∈ Z2,

and similarly for the open and half-open intervals.

Another choice is not to take the Cartesian product but to define the
cell with nucleus p as

CR(p) =
{

x ;x1 = p1 and p2− 1
2 < x2 6 p2 + 1

2

}
∪

{
x ;p1− 1

2 < x1 6 p1 + 1
2 and x2 = p2

}
.
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Thus CR(p) is a cross with center at p. This is the digitization used by
Rosenfeld (1974). It is based on the mapping R 3 x 7→

⌈
x − 1

2

⌉
∈ Z

already mentioned, a digitization of R which takes a non-half-integer to
the closest integer and moves down by one half in the case of
half-integers. Let us call it the Rosenfeld digitization of R2.

It is clear that in this case the union of the cells is very small compared
with R2, so that many sets have empty digitization. However, the union
of all cells is equal to all grid lines (R×Z)∪ (Z×R), so that every
straight line has a nonempty digitization. The same is true of a
sufficiently long straight line segment. Thus this digitization can be
used in the study of digital straight lines. Note that the family of all cells
is disjoint, which implies that the digitization of a point is either empty
or a singleton set.
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The definition as such says nothing about how close a digitization of a
point is to the point. To achieve this we must of course add some
requirement that points in the cell C(p) shall be reasonably close to p.
This leads us to the next topic, that of Voronoi cells.
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Voronoi cells

Let a metric space X be given as well as a subset Z . The metric of X
shall be denoted by d . For a point x ∈ X we view the points in Z close
to x as approximants; there may be a best approximant. Given p ∈ Z
we shall give a name to the set of all x for which this particular p is a
(not necessarily unique) best approximant: the Voronoi cell with
nucleus p is

Vo(p) = {x ∈ X ;∀q ∈ Z ,d(x ,p) 6 d(x ,q)}, p ∈ Z .

Thus x ∈ Vo(p) if and only if p is a best approximant of x . We also
define the strict Voronoi cell as

Vos(p) = {x ∈ X ;∀q ∈ Z r{p},d(x ,p) < d(x ,q)} p ∈ Z .

Thus x ∈ Vos(p) if and only if p is the unique best approximant of x .
Finally, one might define the very strict Voronoi cell as

Vovs(p) = {x ∈ X ;d(x ,p) < inf
q∈Zr{p}

d(x ,q)}, p ∈ Z .
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It is easy to construct examples where the very strict Voronoi cell is
different from the strict Voronoi cell, but in all applications we are
interested in they are equal.

Two different strict Voronoi cells are disjoint. Even more can be said: a
(nonstrict) Voronoi cell is disjoint from every strict Voronoi cell with a
different nucleus. The union of all strict Voronoi cells is almost equal to
the whole space X ; there is only some garbage left out: these are the
points which have at least two best approximants in Z . However, we
do not have the right to throw away that garbage; we must be careful
and consider both the strict and the nonstrict Voronoi cells.

We now return to the topic of digitization. It seems reasonable that the
digitization of a point should consist only of nuclei of Voronoi cells
which contain that point. After all, these nuclei are the best
approximants in Z of the point. This argument leads us to the following
definition.
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Definition

Let X be a metric space and Z a subset of X such that Z ∩B<(c, r) is
finite for all c ∈ X and all r ∈ R. A Voronoi digitization of X into Z is
a dilation dig : P(X)→P(Z ) such that

dig({x})⊂ {p ∈ Z ;x ∈ Vo(p)}.

Note that if x belongs to some strict Voronoi cell Vos(c), then it can
belong to only one Voronoi cell, viz. the nonstrict cell Vo(c) with the
same nucleus, so that the right-hand side is a singleton set. Hence
dig({x}) is either empty or equal to the singleton set {p}. But if x
belongs to, say, two Voronoi cells, the right-hand side consists of a set
{p,q} with p 6= q, and there is a choice: dig({x}) may be equal to Ø,
{p}, {q}, or {p,q}. And if x belongs to m Voronoi cells, the value can
be any of 2m subsets of Z .
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Thus dig({x}) is either empty or a singleton set whenever x belongs
to the union of all strict Voronoi cells, but in the complement of that
union, the value of the function may be a set with several elements.

In some situations we do make a choice and define dig({x}) to be a
singleton set by introducing a new criterion. In fact, we shall do so
when we define the Khalimsky topology. If X = R and Z = Z, then the
Voronoi cells are the intervals

[
n− 1

2 ,n + 1
2

]
and the strict cells are the

open intervals
]
n− 1

2 ,n + 1
2

[
, n ∈ Z.

It is clear that the digitization of a real number which is not of the form
n + 1

2 is the empty set or
{⌊

x + 1
2

⌋}
. When x = n + 1

2 , we may choose
F({x}) to be Ø, {n}, {n +1}, or {n,n +1}. When we define the
Khalimsky topology, we shall choose {n} for n even and {n +1} for n
odd. But this is of course only one of many admissible choices.
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Example

We get examples of Voronoi digitizations by taking C(p) = Vo(p) or
C(p) = Vos(p). Sometimes it is possible to choose a cell in between
these two, so that the space is covered exactly once by the different
cells; an example was already mentioned: if X = Rn and Z = Zn we
may choose C(p) = ∏

]
pj − 1

2 ,pj + 1
2

]
.

Example

The digitization used by Rosenfeld (1974) is a Voronoi digitization,
since the cell CR(p) is contained in the Voronoi cell, which is
Vo(p) =

{
x ∈ R2;‖x −p‖∞ 6 1

2

}
.

Contents Introduction Why digital geometry? Distance transforms Chamfer distances Skeletons Digital lines Convex functions on discrete sets with integer values The real case Convex sets Convex functions Affine functions Digital hyperplanes Topology

Digital lines

We know what a straight line in R2 is: it is a set of the form
{(1− t)a+ tb; t ∈ R}, where a and b are two distinct points in the
plane. And a straight line segment (remember Euclid’s eutheı̃a) is a
connected subset of that line. We shall consider closed segments of
finite length only, and may then write them as
{(1− t)a+ tb;0 6 t 6 1}, where a and b are the endpoints. We shall
denote this segment by [a,b].

We shall choose Z = Z2 in the discussion that follows. The digitization
of a straight line segment is the image under dig of [a,b], thus

dig([a,b]) =
[

t∈[0,1]

F({(1− t)a+ tb})⊂ Z2.
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Suppose we are dealing with a Voronoi digitization. When
x = (1− t)a+ tb belongs to a strict Voronoi cell, which in this case is
Vos(p) = {x ;‖x −p‖∞ < 1

2}, p ∈ Z2, then

F
(
{x}

)
=

{(⌊
x1 + 1

2

⌋
,
⌊
x1 + 1

2

⌋)}
,

the unique point in Z2 closest to x . However, when x1 is a half-integer,
and x2 is not, the digitization may be empty or consist of one or two
points; when both coordinates are half-integers, the value may be a
set of zero, one, two, three or four points.

In Rosenfeld’s digitization a point is always mapped to a point. For
straight lines with slope less than 45◦, he considered the intersections
of its line segments with the vertical grid lines only. However, a line
segment may intersect a horizontal grid line but no vertical grid line at
all. In this case the cell is just the first segment in the union, but this
does not matter so much, since the result will be trivially true for empty
digitizations and the digitization is nonempty anyway for sufficiently
long line segments.
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Definition

We shall say with Rosenfeld that a subset A of R2 has the chord
property if for all points a,b ∈ A the segment [a,b] is contained in
A+B<(0,1), the dilation of A by the open unit ball (or disk or square)
for the l∞ metric.

The theorems to be presented are due to Rosenfeld (1974) and give
together a characterization of the digitization of a straight line
segment. (The proof of the second theorem is new and is much
shorter than the original proof.)

Theorem

The Rosenfeld digitization of a straight line segment has the chord
property.
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Example

Let A be the set consisting of the five points (0,0), (1,0), (2,0), (3,1),
(4,2). This set does not have the chord property. Indeed, the point
(2,1) belongs to the segment [(0,0),(4,2)], but it does not belong to
the dilated set A+B<(0,1), although it does belong to the closed set
A+B6(0,1). Thus, in view of the theorem, it cannot be the Rosenfeld
digitization of a straight line segment. However, we may define a
Voronoi digitization by declaring the digitization of

(
0,−1

2

)
to be (0,0),

that of
(
2, 1

2

)
to be (2,0), and that of

(
4,1 1

2

)
to be (4,2). Then A is

the digitization of the straight line segment [
(
0,−1

2

)
,
(
4,1 1

2

)
].
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The digitization just described does not commute with translations,
which offers a kind of explanation—of course it should not be allowed
to move up by one half from

(
0,−1

2

)
and

(
4,1 1

2

)
and down by one half

from
(
2, 1

2

)
. Rosenfeld avoided this by always moving down in the

case of half-integers.
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Proof. If the digitization of a line L has the chord property, so does the
digitization of every segment of L. We may therefore restrict attention
to the case of a whole line L. Let L be a straight line and D ⊂ Z2 its
digitization. Let p,q be two points in D, and y an arbitrary point on the
segment [p,q]. We shall prove that there exists a point d ∈ D such
that ‖d − y‖∞ < 1.

First we reduce to the case when the slope of L is between 0 and
1—note that the hypothesis and the conclusion are invariant under
reflection and permutation of the coordinates. When it is exactly 0 or 1
the result is easy.

We shall now use only the vertical part of the cell,

CR,v(p) =
{

x ;x1 = p1 and p2− 1
2 < x2 6 p2 + 1

2

}
.

When the slope of a line is strictly between 0 and 1, CR and CR,v yield
the same result.
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When the slope of L is strictly between 0 and 1 we consider first the
case when y1 ∈ Z. In this case we define s ∈ R2 as the point in L with
s1 = y1. The digitization d = dig({s}) ∈ D of s satisfies ‖d −s‖∞ 6 1

2 ,
thus ‖d − y‖∞ 6 ‖d − s‖∞ +‖s− y‖∞ 6 1. But can equality occur
here? No. If we analyze the definition of the digitization we find that

y2− 1
2 < s2 6 y2 + 1

2

because of corresponding inequalities for p and q with respect to
points on L, and that d2− 1

2 < s2 6 d2 + 1
2 . Combining the two

inequalities we see that

d2−1 < s2− 1
2 6 y2 < s2 + 1

2 6 d2 +1,

so that actually |d2− y2|< 1, while |d1− y1|= 0, thus y ∈ B<(d ,1).
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Next we consider the case y1 /∈ Z; m < y1 < m +1 for some integer
m. We now define s, s′ and s′′ as the points on L such that s1 = y1,
s′1 = m and s′′1 = m +1, and let d ′ and d ′′ be the digitizations of s′ and
s′′. Concerning d ′ and d ′′ we must have d ′2 6 d ′′2 6 d ′2 +1. We shall
therefore look separately at the two cases d ′′2 = d ′2 and d ′′2 = d ′2 +1.

In case d ′′2 = d ′2 we have d ′2− 1
2 < s′2,s

′′
2 6 d ′2 + 1

2 , so the same
inequality follows also for s2, since s2 is between s′2 and s′′2 . We see
that

d ′2−1 < s2− 1
2 6 y2 < s2 + 1

2 6 d ′2 +1,

and conclude that y ∈ B<(d ′,1)∩B<(d ′′,1).

In case d ′′2 = d ′2 +1 we must have y2 > d ′2−1 and y2 < d ′′2 +1 so that
y ∈ B<(d ′,1)∪B<(d ′′,1). The theorem is now completely proved.
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To prove a converse we shall need the concept of digital arc. Let us
say that two points in Z2 are eight-neighbors if their l∞ distance is 1.
Then a digital arc is a mapping from a finite integer interval [a,b]Z
into the plane Z2 which is Lipschitz-1 for the l∞-norm and such that
γ(a) and γ(b) have one eight-neighbor and γ(x) has two
eight-neighbors for x = a+1, . . . ,b−1.

Theorem

If a digital arc D in Z2 has the chord property, then it is the Rosenfeld
digitization of some straight line segment in R2.
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Lemma

Denote by πj : Z2 → Z the projection (x1,x2) 7→ xj , j = 1,2. If a digital
arc D has the chord property, then one of the restrictions
πj

∣∣
D : D → Z, j = 1,2, is injective.

Proof. Since D is a finite set it is contained in a minimal rectangle
[p1,q1]× [p2,q2]. If p1 = q1 or p2 = q2 we are done, so assume that
p1 < q1 and p2 < q2. We claim that π1

∣∣
D is injective if

q1−p1 > p2−q2; otherwise π2
∣∣
D is injective. So assume that

q1−p1 > q2−p2 > 0. Each side of the rectangle must contain an
endpoint of the arc; otherwise it cannot have the chord property. Since
there are only two endpoints, they must be mapped to the vertices of
the rectangle.
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After a possible reflection of the coordinates we may assume that the
endpoints are γ(a) = (p1,p2) = p and γ(b) = (q1,q2) = q. We claim
that there are no two points on the arc with the same abscissa. If this
were so, there would exist two such points with distance 1: s = (s1,s2)
and t = (t1, t2) with t1 = s1 and t2 = s2 +1. The point t cannot be an
endpoint—that would violate the chord property for the segment [p, t]
and the point r ∈ [p, t] with r1 = t1−1. Therefore t has a second
neighbor in addition to s. But then this other neighbor must be
t ′ = (t1 +1, t2 +1), which violates the chord property for the segment
[p, t ′] and the point r ′ ∈ [p, t ′] with r ′1 = t1−1. This contradiction
proves the lemma.
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Proof of the theorem. Let D be a digital arc with the chord property. In
view of the lemma and the symmetry of the digitization procedure, we
may assume that there are no pairs of points a,b in D with a1 = b1,
a2 6= b2. Given three real numbers α, β, γ we define a strip in the
plane by

S(α,β,γ) = {x ∈ R2;αx1 +β 6 x2 6 αx1 + γ}.

Let us define the height of the strip as γ−β. The boundary ∂S(α,β,γ)
of the strip has two components, given by the straight lines
x2 = αx1 +β and x2 = αx1 + γ. A finite set D of integer points is a
subset of the digitization of a non-vertical straight line segment if and
only if D is contained in a strip of height strictly less than 1.
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For every given α there is a smallest strip S(α,β,γ) containing D.
Moreover, varying also α, there is a strip S0 = S(α0,β0,γ0) of smallest
height. If D consists of only one or two points, the conclusion follows
easily, so let us assume that D has at least three points. Clearly there
must be at least one point of D in each component of the boundary of
S0; otherwise we could increase β or decrease γ to obtain a narrower
strip. And one of these lines must contain a second point of D;
otherwise we could rotate the line slightly to obtain a strip of smaller
height. For definiteness we shall assume that the three points on the
boundary of the strip are p, s, q with p1 < s1 < q1 and where p and q
are on the lower boundary and s on the upper boundary. Let y be the
point on [p,q] with abscissa equal to that of s. (We note that p,s,q
belong to Z2, while y need not do so.)
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Now assume that D is not a subset of the digitization of a straight line.
Then the height of this smallest strip is at least 1, so that s2 > y2 +1,
showing that y does not belong to B<(s,1). To see that D does not
satisfy the chord property we must however show that there is no
d ∈ D such that y ∈ B<(d ,1). So far we only know that y does not
belong to B<(s,1). However, s is the only point in D on the vertical line
x1 = s1 and all other points d ∈ D satisfy |d1− y1|= |d1− s1|> 1, so
that ‖y −d‖∞ > |y1−d1|> 1. Therefore D does not satisfy the chord
property.

We have thus proved that a digital arc D having the chord property is a
subset of the digitization of some straight line L. However, since D is a
digital arc, it is the digitization of a connected subset of L. Obviously
this subset can be taken to be compact, i.e., a straight line
segment.
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Convex functions on discrete sets with integer values

In Euclidean geometry, convex sets play an important role, and convex
functions of real variables are of importance in several branches of
mathematics, especially in optimization.

We will now propose definitions of convex sets and convex functions in
a digital setting, definitions that have many desirable properties. They
are in fact very simple—some may call them naive—but it seems to be
necessary to investigate them first before one can go on to more
sophisticated definitions. We shall show that functions which are both
convex and concave have interesting relations to a refined definition of
digital hyperplanes.
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Since Rosenfeld’s seminal paper (1974), where he explained how to
digitize a real straight line segment, variants of this digitization have
been introduced, among them digitizations which respect the
Khalimsky topology; see Melin (2003). Here we shall not consider the
Khalimsky topology, however. Instead, we shall look at definitions of
digital hyperplanes, in particular that of Reveillès (1991), and compare
them with the notion of digitally convex and concave functions.

Eckhardt studies no less than five different notions of convexity; one of
them he calls H-convexity (2001:218)—this is the notion studied in the
present paper.

When defining functions with integer values, we shall often use the
floor and ceiling functions R 3 t 7→ btc,dte ∈ Z. They are uniquely
determined by the requirement that btc and dte be integers for every
real number t and by the inequalities

t −1 < btc6 t < btc+1; dte−1 < t 6 dte< t +1, t ∈ R.
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The real case

Let E be a vector space over R. A subset A of E is said to be convex if
the segment [a,b] = {(1− t)a+ tb;0 6 t 6 1} is contained in A for
every choice of a,b ∈ A; in other words if {a,b} ⊂ A implies [a,b]⊂ A.

And convex functions are most conveniently defined in terms of convex
sets: a function u : E → [−∞,+∞] = R∪{+∞,−∞} is said to be
convex if its epigraph

epiu = {(x , t) ∈ E ×R;u(x) 6 t}

is a convex set in E ×R. For functions
f : P → [−∞,+∞]Z = Z∪{+∞,−∞}, where P is a subset of E , we
define the epigraph as a subset of P×Z:

epi f = {(p,q) ∈ P×Z; f (p) 6 q}.
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It is also possible to go in the other direction and define convex sets in
terms of convex functions: a set A in E is convex if and only if its
indicator function indA is convex, where we define indA(x) = 0 if x ∈ A
and indA(x) = +∞ otherwise. Naturally we would like to keep these
equivalences in the digital case.

Important properties of the family of convex sets in a vector space are
the following.

Proposition

If Cj , j ∈ J, are convex sets, then the intersection
T

Cj is convex. If the
index set J is ordered and filtering to the right, and if (Cj)j∈J is an
increasing family of convex sets, then its union

S
Cj is convex.
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Because of this result, the intersection

cvxA =
\(

C ∈P(E);C is convex and C ⊃ A
)
, A ∈P(E),

of all convex sets containing a given subset A of E is itself convex; it is
called the convex hull of A.

Proposition

If uj , j ∈ J, are convex functions on a vector space, then supuj is
convex. If the index set J is ordered and filtering to the right, and if
(uj)j∈J is a decreasing family of convex functions, then its infimum
infuj is convex.

To a given function u : E → [−∞,+∞] we associate two convex
functions, viz. the supremum v of all convex minorants of u and the
supremum w of all affine minorants of u. These functions are
themselves convex, and of course w 6 v 6 u. We shall denote v by
cvx(u), and w by ˜̃u, a notation which will become clear when we have
introduced the Fenchel transformation.
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The function v = cvx(u) will be called the convex hull of u. For
functions f : P → [−∞,+∞], P being a subset of E , we shall use the
same notation. Such a function can be extended to a function u
defined in all of E simply by taking u = +∞ in the complement of P
(then u and f have the same epigraph), and we define
cvx(f ) = cvx(u).

In many cases, but not always, ˜̃u is equal to cvx(u). We note that ˜̃u
has two extra properties in addition to being convex, properties that
are not always shared by cvx(u). The first is that ˜̃u is lower
semicontinuous for any topology for which the affine functions are
continuous. The second is that if u takes the value −∞ at a point, then
˜̃u must be identically equal to −∞ (there are no affine minorants),
whereas cvx(u) may take also finite values or +∞.

We thus have
w = ˜̃u 6 v = cvx(u) 6 u.

However, in our research it will not be enough to study these functions:
it is necessary to look at their epigraphs.
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The epigraph epiu of u is a subset of E ×R and its convex hull
C = cvx(epiu) is easily seen to have the property

(PLUS) (x ,s)∈C,s 6 t implies (x , t)∈C.

The function VC(x) = inf
(
t;(x , t) ∈ C

)
satisfies

epis VC ⊂ cvx(epiu)⊂ epiVC .

It is clear that VC is convex and equal to the largest convex minorant
v = cvx(u) of u already introduced. Thus cvx(u) can be retrieved
from cvx(epiu) but not conversely. We combine the results:

epis u ⊂ epis(cvx(u))⊂ epis(cvx(u))∪ epiu

⊂ cvx(epiu)⊂ epi(cvx(u))⊂ epi ˜̃u,

and in general we cannot claim that cvx(epiu) is an epigraph.
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Convex sets which are squeezed in between the epigraph and the
strict epigraph of a function will now play an important role. Such sets
C satisfy epis u ⊂ C ⊂ epiu for some function u. This means that C is
obtained from the strict epigraph by adding some points in the graph:

C = epis u∪{(x ,u(x));x ∈ A} ⊂ epis u∪graphu = epiu.

Extreme examples are the following. If u is strictly convex, like
u(x) = ‖x‖p

2, x ∈ Rn, with 1 < p < +∞, then any such set is convex,
even though A may be very irregular. (For the Euclidean norm, a set of
the form B<(c, r)∪A is convex for any subset A of the sphere.) If on
the other hand u = 0, then such a set is convex if and only if A itself is
convex.
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Definition

Let E be a real vector space and denote by E? its algebraic dual (the
set of all real-valued linear forms on E). For any function
u : E → [−∞,+∞] we define its Fenchel transform ũ by

ũ(ξ) = sup
x∈E

(
ξ(x)−u(x)

)
, ξ ∈ E?.

For any function v : F → [−∞,+∞] defined on a vector subspace F of
E? we define its Fenchel transform by

ṽ(x) = sup
ξ∈F

(
ξ(x)− v(ξ)

)
, x ∈ E .
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The Fenchel transform of a function u : R→ R.

Contents Introduction Why digital geometry? Distance transforms Chamfer distances Skeletons Digital lines Convex functions on discrete sets with integer values The real case Convex sets Convex functions Affine functions Digital hyperplanes Topology

The second Fenchel transform ˜̃u of u is well-defined if we fix a
subspace F of E?. This subspace can be anything between {0} and
all of E?, in particular we can take F as the topological dual E ′ of E if
E is equipped with a vector space topology.

The restriction ũ
∣∣
F of the Fenchel transform to a subspace F of E?

describes all affine minorants of u with linear part in F : a pair
(ξ,β) ∈ F ×R belongs to epi ũ if and only if x 7→ ξ(x)−β is a
minorant of u. This implies that ˜̃u is the supremum of all affine
minorants of u with linear part in F . This function is a convex minorant
of u, but it has the additional properties that it cannot take the value
−∞ unless it is the constant −∞, and it is lower semicontinuous with
respect to the topology σ(E ,F), the weakest topology on E for which
all linear forms in F are continuous. One can prove that ˜̃u is the largest
convex minorant of u with these properties.
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Convex sets

Definition

Let E be a real vector space and fix a subset P of E . A subset A of P
is said to be P-convex if there exists a convex set C in E such that
A = C∩P.

We are mostly interested in the case E = Rn, P = Zn.
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For digitizations of convex sets the mapping C 7→ C∩Zn is not always
satisfactory, because it yields the empty set for some long and narrow
convex sets C. One might then want to replace it by a mapping like
C 7→ (C +B)∩Zn, where B is some fixed set which guarantees that
the image is nonempty when C is nonempty, e.g., B = B6(0, r), where
r = 1/2 if we use the l∞ norm in Rn, r =

√
n/2 if we use the l2 norm,

or r = n/2 if we use the l1 norm. However, for our purpose, when we
apply this operation to the epigraph of a function, this phenomenon will
not appear: the epigraph of a function with finite values always
intersects Zn×Z in a nonempty set.
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Lemma

Given a vector space E and a subset P of E, the following properties
are equivalent for any subset A of P.
1. A is P-convex;
2. A = (cvxA)∩P;
3. A ⊃ (cvxA)∩P.
4. For all n, all a0, . . . ,an ∈ A, and for all nonnegative numbers
λ0, . . . ,λn with ∑

n
0 λj = 1, if ∑

n
0 λjaj ∈ P, then ∑

n
0 λjaj ∈ A.

Definition

Fix two subsets P and Q of a vector space E and define an operator
γ = γP,Q : P(E)→P(P) by γ(A) = cvx(A∩Q)∩P.
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We can think of E = Rn, P = mZn, m = 1,2, . . . , and Q = Zn. We
note that γ(C) is P-convex if C is convex in Rn.

Lemma

The mapping γ is increasing; it satisfies γ(γ(A))⊂ γ(A); and it satisfies
A ⊂ γ(A) if A ⊂ P ∩Q. Thus γ

∣∣
P(P) is a closure operator in P(P) if

Q ⊃ P.

Proof. The mapping γ = jP ◦ cvx◦ jQ is a composition of three
increasing mappings, viz. jQ (intersection with Q), cvx (taking the
convex hull), and jP (intersection with P), and as such itself increasing.
The composition γ◦ γ is equal to jP ◦ cvx◦ jQ ◦ jP ◦ cvx◦ jQ , which is
smaller than jP ◦ cvx◦ cvx◦ jQ = jP ◦ cvx◦ jQ = γ. Finally, it is clear that
γ(A) contains A if A is contained in P ∩Q. If Q ⊃ P, then γ is
increasing, idempotent and extensive, thus a closure operator in
P(P).
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Proposition

Let E be a real vector space and P any subset of E. Then A is
P-convex iff A = γ(A) for all Q ⊃ P iff A = γ(A) for some Q ⊃ P.

Corollary

If A = C∩P for some convex set C ⊂ E, then C ⊃ γ(A) for any Q.

Thus in the definition of P-convex sets we may always take
C = γ(A) = cvxA provided Q ⊃ P.
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It is now easy to prove the following result.

Proposition

Let E be a vector space and P any subset of E. If Aj , j ∈ J, are
P-convex sets, then the intersection

T
Aj is P-convex. If the index set

J is ordered and filtering to the right, and if (Aj)j∈J is an increasing
family of P-convex sets, then its union

S
Aj is also P-convex.

While the intersection of two P-convex epigraphs gives a reasonable
result, the intersection of an epigraph and a hypograph may consist of
two points quite far from each other:
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Example

Let A = {p ∈ Z2;p2 > p1/m} and B = {p ∈ Z2;p2 6 p1/m}, where
m ∈ Nr{0}. Then A and B are Z2-convex and their intersection
consists of all points (mp2,p2), p2 ∈ Z. We can easily modify the
example so that the intersection consists of exactly two points, (0,0)
and (m,1), where m is as large as we please.
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Convex functions with integer values

Definition

Let E be a vector space and P any of its subsets. A function
f : P → [−∞,+∞]Z is said to be (P×Z)-convex if its epigraph

epi f = {(p, t) ∈ P×Z; f (p) 6 t}

is a (P×Z)-convex subset of E ×R.

We have mainly the case E = Rn and P = Zn in mind.
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If f : P → [−∞,+∞]Z is a P-convex function, then there is a convex set
C in E ×R such that C∩ (P×Z) = epi f . In view of the previous
corollary, the smallest such set C is the convex hull of epi f . However,
a set C such that C∩ (P×Z) = epi f does not necessarily have the
property (PLUS), so we introduce

C+ = {(x , t) ∈ E ×R;∃s 6 t with (x ,s) ∈ C}.

There is a function VC+ : E → [−∞,+∞] such that

epis VC+ ⊂ C+ ⊂ epiVC+ .

It would perhaps seem natural to require that C+ be closed or open so
that one could always take either the epigraph or the strict epigraph of
VC+ , but simple examples will show that this is not possible. We note
that when we take C = cvx(epi f ), then C+ = C.
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Some care is needed, because even if epi f is closed, its convex hull
need not be closed:

Example

Let f0(p) = dαpe, p ∈ Z, where α is irrational. We also define
f1(p) = f0(p) for p ∈ Zr{0} and f1(0) = 1. These functions are easily
seen to be (Z×Z)-convex. Indeed, cvx(epi f1) is the open half plane
C1 = {(x , t); t > αx}, a strict epigraph, and cvx(epi f0) is the convex
set C0 = C1∪{(0,0)}, which is neither an epigraph nor a strict
epigraph. (However, also the closed half plane {(x , t); t > αx}
intersects Z2 in epi f0.) We finally note that the functions −f0 and −f1
are (Z×Z)-convex as well.
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Proposition

Let u : E → [−∞,+∞] be a convex function on a vector space E. Let
P be a subset of E. Then the restrictions buc

∣∣
P and due

∣∣
P are

(P×Z)-convex. In particular dcvxge
∣∣
P and d ˜̃g e

∣∣∣
P

are (P×Z)-convex

for any function g : P → [−∞,+∞]Z.

Proof. Writing f = buc
∣∣
P and g = due

∣∣
P we have

u−1 < f 6 u and u 6 g < u +1 in P,

which implies that epis(u−1)∩ (P×Z) = epi f and
epiu∩ (P×Z) = epig. Hence the functions f and g are
(P×Z)-convex.
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Theorem

Let E be a vector space and P one of its subsets. For any
(P×Z)-convex function f : P → Z we have
cvxf 6 dcvxfe6 f 6 cvxf +1 in P.

The first two inequalities are easy; the third is the essential result of
the theorem.
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We define

P j = {p ∈ P; f (p) = d(cvxf )(p)e+ j}, j = 0,1.

In view of the last theorem we have P = P0∪P1. We also define

Aj = {p ∈ P; f (p) = (cvxf )(p)+ j}, j = 0,1.

Corollary

With f as in the theorem, P can be divided into three disjoint sets:
P0 r A0, A0, and A1 = P1. The first set is precisely the set of points p
such that (cvxf )(p) is not an integer.

Proof. It is clear that the three sets P0 r A0, A0 and P1 are pairwise
disjoint. It is also easy to see that p ∈ A0∪A1 if and only if (cvxf )(p) is
an integer. It follows that Aj ⊂ P j . Finally, we shall prove that P1 ⊂ A1.
If p ∈ P1, then d(cvxf )(p)e is equal to f (p)−1. But we always have
(cvxf )(p) > f (p)−1, so that (cvxf )(p) = d(cvxf )(p)e and p belongs
to A1.
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Let us say that a function u : Rn → [−∞,+∞] is of fast growth if for any
constant c the set {x ∈ Rn;u(x) 6 c‖x‖2} is bounded. The same
terminology applies to a function defined in a subset P of Rn; we
understand that it takes the value +∞ outside P. In particular, if f is
equal to plus infinity outside a bounded set, it is of fast growth.

Theorem

Let P be a discrete subset of Rn and let f : P → [−∞,+∞]Z be a
function of fast growth. Then f is (P×Z)-convex if and only if
f = dcvxfe, in other words the set P1 is empty. We have for all
(P×Z)-convex fucntions f ,

(cvxf )(p) 6 f (p) < (cvxf )(p)+1, p ∈ P.

It is equivalent to say that there exists a convex function
u : Rn → [−∞,+∞] such that f = due.
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Proposition

Let E be a vector space and P any of its subsets. If fj , j ∈ J, are
(P×Z)-convex functions, then sup fj is (P×Z)-convex. If the index
set J is ordered and filtering to the right, and if (fj)j∈J is a decreasing
family of (P×Z)-convex functions, then its infimum inf fj is
(P×Z)-convex as well.
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Affine functions

A function u such that −u is convex is called concave.

A real-valued function on Rn which is both convex and concave is
necessarily affine, i.e., of the form u(x) = α · x +β for some α ∈ Rn

and β ∈ R.

We shall now investigate in the discrete case functions which are both
convex and concave.
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Proposition

Let P be a nonempty subset of a vector space E and f : P → R a
real-valued function. Given a linear form α ∈ E? and a real number β

we let hα,β be the smallest constant h ∈ [0,+∞] such that

0 6 α(p)+β 6 f (p) 6 α(p)+β+h, p ∈ P.

We let hα = infβ∈R hα,β be the smallest constant h such that this holds

for some β ∈ R. Then hα = f̃ (α)+ g̃(−α), where for ease in notation
we have written g for −f . Moreover, hα = hα,β for a unique β, viz.

β =−f̃ (α).
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Proof. The inequality α(p)+β 6 f (p) for all p ∈ P is equivalent to
f̃ (α) 6−β, and the inequality f (p) =−g(p) 6 α(p)+β+h for all
p ∈ P is equivalent to g̃(−α) 6 β+h. Therefore
α+β 6 f 6 α+β+h implies that f̃ (α)+ g̃(−α) 6−β+(β+h) = h.

Conversely, if h is a real number and f̃ (α)+ g̃(−α) 6 h, then f̃ (α) is a
real number: f̃ (α) =−∞ would imply that f is identically equal to +∞,
which is excluded by hypothesis, and g̃(−α) =−∞ would imply that f
is identically −∞, which is also excluded by hypothesis; finally, the
inequality excludes that f̃ (α) is equal to +∞. Therefore β =−f̃ (α)
(obviously the best choice of β) yields f̃ (α) 6−β and g̃(−α) 6 β+h.

The infimum of all real h satisfying α+β 6 f 6 α+β+h is equal to
the infimum of all real h satisfying f̃ (α)+ g̃(−α) 6 h, which completes
the proof.
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Proposition

Let E be a vector space and P a subset such that cvxP = E. Let a
real-valued function f : P → R be given, and let h∗ = infα∈E? hα be the
smallest constant h such that the double inequality
α+β 6 f 6 α+β+h holds for some α ∈ E? and some β ∈ R.
Assume that h∗ is finite. Then cvxf + cvx(−f ) is constant and equal to
−h∗.

Proof. Let h be a number such that α+β 6 f 6 α+β+h in P for
some α ∈ E? and some β ∈ R. Then

α+β 6 u 6 f 6−v 6 α+β+h in P,

where u = cvxf and v = cvx(−f ). Adding v to all members we obtain

α+β+ v 6 u + v 6 f + v 6 0 6 α+β+h + v in P.

We see that u + v is a convex function which is nonpositive in all of P,
thus also in cvxP, which by hypothesis is equal to E .
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But such a function must be constant; let us define ω =−(u + v) > 0.
By the same argument, v +α is a constant γ.

We now have γ+β 6−ω 6 0 6 γ+β+h, which shows that h > ω,
and, by taking the infimum over all such h, that h∗ > ω.

Conversely, we note that −ω 6 f + γ−α 6 0, thus
α− γ−ω 6 f 6 α− γ, which shows that ω > hα > h∗. We conclude
that ω = h∗.
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Theorem

Let E be a vector space and P a subset of E such that cvxP = E. If
both functions f : P → Z and −f are (P×Z)-convex, then f deviates
at most by 1

2 from an affine function: there exist a linear form α ∈ E?

and constants β,ω ∈ R such that

0 6 f (p)−α(p)−β 6 ω 6 1, p ∈ P.

The best constant ω is equal to the constant −cvxf − cvx(−f ). Also
(cvxf )(x) = α(x)+β and cvx(−f )(x) =−α(x)−β−ω if ω is
chosen as the smallest possible constant.
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We rewrite the theorem in the most common situation:

Corollary

If both f : Zn → Z and −f are (Zn×Z)-convex, then there exist
α ∈ Rn and β ∈ R such that

0 6 f (p)−α ·p−β 6 ω, p ∈ Zn,

where ω is the constant −cvxf − cvx(−f ) 6 1.

Is it possible to take one of the inequalities here strict? Actually not.

Examples show that there is a choice between the intervals [0,ω[ and
]0,ω] in the inequality for different values of p. This choice is made
precise in the following result.
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Theorem

Let f : Zn → Z and −f be (Zn×Z)-convex and let α ∈ Rn and β ∈ R
be such that 0 6 f (p)−α ·p−β 6 ω holds with ω = h∗, i.e., with the
smallest h possible. Define

Dj = {(p, f (p)) ∈ Zn×Z; f (p) = α ·p +β+ jω}, j = 0,1,

and

Aj = πn+1(Dj) = {p ∈ Zn; f (p) = α ·p +β+ jω}, j = 0,1,

where πn+1 : Zn×Z→ Zn denotes the projection which forgets the
last coordinate. Assume that ω > 0. Then A0 and A1 are disjoint, and
D0 and D1 are (Zn×Z)-convex.
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Digital hyperplanes

The concept of naive discrete line was introduced by Reveillès
(1991:48). Such a line is defined to be the set of all integer points
p ∈ Z2 such that 0 6 α1p1 +α2p2 +β < max(|α1|, |α2|) for some β,
where α1 and α2 are relatively prime integers.

Generalizing this slightly, we define a naive digital hyperplane as the
set of all points p ∈ Zn which satisfy the double inequality

0 6 α ·p +β < h,

for some α ∈ Rn r{0} and some β ∈ R, where h = ‖α‖∞.
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We remark that one can always interchange the strict and the
non-strict inequalities: the set just defined can equally well be defined
by

0 < (−α) ·p−β+h 6 h.

The precise size of h is important for the representation of the
hyperplane as the graph of a function of n−1 variables as shown by
the following result.
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Theorem

Define

T = {p ∈ Zn;0 6 α ·p +β 6 h} and Ts = {p ∈ Zn;0 < α ·p +β < h},

where α ∈ Rn r{0}, β ∈ R and h > 0, and let

T j = {p ∈ Zn;α ·p +β = jh}, j = 0,1.

Let D be a subset of Zn which is contained in T and contains Ts and
define Ds = D∩Ts and Dj = D∩T j . Fix an integer k = 1, . . . ,n and let
πk : Zn → Zn−1 be the projection which forgets the k th coordinate.
Then πk

∣∣
D is injective if h < |αk |, and πk

∣∣
D is surjective if h > |αk |. If

h = |αk |, then πk
∣∣
D is injective if and only if πk(D0) and πk(D1) are

disjoint, and πk
∣∣
D is surjective if and only if

πk(D0∪D1) = πk(T 0∪T 1).
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Proof. For ease in notation we let k = n and write p′ = (p1, . . . ,pn−1)
and similarly for α. Then p belongs to T if and only if

−α
′ ·p′−β 6 αnpn 6−α

′ ·p′−β+h,

and p belongs to Ts if and only if

−α
′ ·p′−β < αnpn <−α

′ ·p′−β+h.

Clearly for every p′ there is at most one pn which satisfies the
inequalities if h < |αn| or if h = |αn| and (α′ ·p′+β)/h is not an
integer. Also there is at least one pn if h > |αn| or if h = |αn| and
(α′ ·p′+β)/h is not an integer. Here it does not matter whether we
use the first or the second inequality, so the conclusion holds also for
D.
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The case when h = |αn| and (α′ ·p′+β)/h is an integer remains to be
considered. Then we see that there are two values of pn which satisfy
the nonstric inequality and and none that satisfies the strict inequality.
Hence there is at most one pn such that (p′,pn) belongs to
D = D0∪Ds∪D1 if and only if πk(D0) and πk(D1) are disjoint. There
is at least one pn such that (p′,pn) belongs to D if and only if
πk(D0∪D1) contains every point in the projection of T 0∪T 1. This
completes the proof.
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We do not suppose here that h = ‖α‖∞. However, this is the most
natural case: we then know that πk

∣∣
D is a bijection for any k such that

|αk |= ‖α‖∞ and the conditions on the Dj are satisfied, and that πj
∣∣
D

is surjective for all j such that |αj |< ‖α‖∞.

It seems reasonable to propose the following definition.

Definition

A refined digital hyperplane is a Zn-convex subset D of Zn which is
contained in the slab T and contains the strict slab Ts for some
α ∈ Rn r{0}, β ∈ R, and h > 0; and in addition is such that, for at
least one k such that |αk |= h, the sets Dj = D∩T j have disjoint
projections πk(Dj), and πk(D0∪D1) = πk(T 0∪T 1).
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The naive hyperplanes now appear as a special case, viz. when
D0 = T 0, and D1 is empty, or conversely, and |αk |= ‖α‖∞.

Example

Define D = (D0×{0})∪ (D1×{1}), where Dj , j = 0,1, are two
subsets of Zn−1 such that D1 = Zn−1 r D0. Then D is a refined digital
hyperplane if and only if both D0 and D1 are Zn−1-convex.

Example

Define D = {(p1,p1) ∈ Z2;p1 6 0}∪{(p1,p1 +1) ∈ Z2;p1 > 0}. This
is a refined digital hyperplane with |α1|= |α2|= ‖α‖∞ = 1. The
projection π1 satisfies the requirements in the definition, but π2 does
not.
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The following result motivates the definition just given and relates it to
the digitally convex functions we have introduced.

Theorem

A subset D of Zn is a refined digital hyperplane if and only if, after a
permutation of the coordinates, it is the graph of a function
f : Zn−1 → Z such that both f and −f are (Zn−1×Z)-convex.

Proof. Let f be a (Zn−1×Z)-convex function such that also −f is
(Zn−1×Z)-convex. Then D = graph f is a refined digital hyperplane
according to the previous theorem.
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Conversely, if D is a refined digital hyperplane and h = |αn|, then the
projection πn

∣∣
D is bijective, and this allows us to define a function

f : Zn−1 → Z, f (p′) =−α′ ·p′−β+ jh with j = 0 or 1 being uniquely
determined by the requirements on the Dj . This function as well as its
negative are (Zn−1×Z)-convex, since both its epigraph and its
hypograph are Zn-convex. To wit, assuming αn to be positive, its
epigraph is equal to D +({0}×N), and its hypograph is equal to
D +({0}× (−N)).
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Conclusion: Functions that are both convex and concave are of
interest as candidates for defining digital hyperplanes; in fact we have
shown that they define sets which are precisely the sets satisfying a
refined definition of digital hyperplanes.

Remark: For other classes of convex functions, see my paper on
discrete optimization.
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Topology

A topology on a set X is a collection τ = U (X) of subsets of X—thus
an element of P(P(X))—which is closed under the formation of
arbitrary unions and finite intersections. The elements of U (X) are
called open sets; thus any union of open sets is open and any finite
intersection of open sets is open. In particular, the union and the
intersection of the empty family is open, so Ø and X are always open
subsets of X .

A set F is called closed if its complement X r F is open.

The closure of a subset A of a topological space X is the intersection
of all closed sets containing A. It will be denoted by A. It is the
smallest closed set which contains A.
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If we have two topologies U1(X) and U2(X) on the same set X we
say that the first is weaker or coarser than the second, and that the
second is finer or stronger than the first, if U1(X)⊂U2(X).

The weakest topology is the chaotic topology {Ø,X} and the
strongest is the discrete topology P(X). The closure of a nonempty
set in the chaotic topology is always the whole space, wheras the
closure of a set in the discrete topology is the set itself.

These two extreme topologies are not so interesting to work with.

Contents Introduction Why digital geometry? Distance transforms Chamfer distances Skeletons Digital lines Convex functions on discrete sets with integer values The real case Convex sets Convex functions Affine functions Digital hyperplanes Topology

In a metric space there is a topology defined by the metric: it consists
of all unions of strict balls B<(c, r).

If we consider Z2 as a subspace of R2 and define a set U ⊂ Z2 to be
open if there is an open set V in R2 such that U = V ∩Z2, then every
subset of Z2 is open, i.e., Z2 gets the discrete topology. This is, as
already noted, not interesting.

Instead we shall define another topology on Z2, called the Khalimsky
topology, and which can be described as a quotient space of R2. So
we shall think of Z2 not as a subspace of R2 but as a quotient space!
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A two-point space can have four topologies: in addition to the two just
mentioned, they are {Ø,{x},{x ,y}} and {Ø,{y},{x ,y}}. The two
latter are called Sierpiński topologies. Of the four, only three are
different in the sense that they cannot be obtained from another one
by renaming the points.

The Sierpiński topology gives a pretaste of the Khalimsky topology.
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Continuous mappings

Let f : X → Y be a mapping of a topological space X into a topological
space Y . We say that f is continuous if the preimage

f ∗(V ) = {x ∈ X ; f (x) ∈ V}

is open in X for every open subset V of Y .
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Connectedness

The family of all open and closed sets of a topological space X
(sometimes called the “clopen” sets) is a Boolean algebra. This
algebra must contain the two sets Ø,X , for they are always both open
and closed. (If X is empty, there is of course only one such set.)

A topological space is said to be connected if the only sets which are
both open and closed are the empty set and the whole space. A
subset of a topological space is called connected if it is connected as
a topological space with the induced topology. A connectivity
component (sometimes called a “connected component”) of a
topological space is a connected subset which is maximal with respect
to inclusion.
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A connected subset which is both open and closed is a component. It
is easy to prove that the closure of a connected subset is connected.
Therefore all components are closed. They need not be open.

Proposition

Let f : X → Y be a continuous mapping of a topological space X into a
topological space Y . If X is connected, then so is its image imf .
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Corollary

Let f : X → Y be a mapping of a topological space X into a set Y .
Equip Y with the strongest topology such that f is continuous.
Suppose that X is connected. Then imf is connected, and the points
in Y r imf are isolated.

Of the four topologies that can live on a space consisting of two points,
only three are connected, and out of these, only two are different in the
sense that they cannot be obtained from another one by renaming.
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Let f : R→ Z be a surjective mapping. Then we can define a topology
in Z by declaring a subset V of Z to be open if its preimage

f ∗(V ) = {x ∈ R; f (x) ∈ V}

is open in R. It is easy to prove that this defines a topology.

In this situation we say that Z is a quotient space of R.

Now there exist very many surjective mappings R→ Z. It is not
unnatural to restrict attention to increasing surjections f : R→ Z. Then
{x ; f (x) = n} is an interval for every integer n; denote its endpoints by
an and bn > an, so that

]an,bn[⊂ {x ; f (x) = n} ⊂ [an,bn].

We can normalize the situation to an = n− 1
2 , bn = n + 1

2 ; this does
not change the topology on Z. Then f (x) = bx + 1

2c for all
x ∈ Rr (Z+ 1

2), and f (n + 1
2) = n or f (n + 1

2) = n +1 for n ∈ Z. The
topology is therefore determined if we know for which n we have
f (n + 1

2) = n.

Contents Introduction Why digital geometry? Distance transforms Chamfer distances Skeletons Digital lines Convex functions on discrete sets with integer values The real case Convex sets Convex functions Affine functions Digital hyperplanes Topology

{1}, {4} and {7} are open sets; {2}, {6} and {8} are closed.
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For every subset A of Z we get a topology on Z by declaring that
f (n + 1

2) shall be equal to n for n ∈ A and that, for all other real
numbers x , we have f (x) = bx + 1

2c. Thus A describes faithfully all
topologies obtained from increasing surjections—the others are just
too many . . .

It is natural to think of Z as an approximation of the real line R and to
consider mappings f : R→ Z expressing this idea. We may define
f (x) to be the integer closest to x ; this is well-defined unless x is a
half-integer: f (x) =

⌊
x + 1

2

⌋
when x ∈ Rr

(
Z+ 1

2

)
. So when

x = n + 1
2 we have a choice for each n: shall we define f

(
n + 1

2

)
= n

or f
(
n + 1

2

)
= n +1?

If we choose the first alternative for every n, thus putting
{x ; f (x) = n}=

]
n− 1

2 ,n + 1
2

]
, the topology defined in the corollary is

called the right topology on Z; if we choose the second, we obtain
the left topology on Z; cf. (Bourbaki 1961:I:§1: Exerc. 2).
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Another choice is to always choose an even integer as the best
approximant of a half-integer. Then the closed interval [−1

2 , 1
2 ] is

mapped to 0, so {0} is closed, whereas the inverse image of 1 is the
open interval

]
1
2 , 3

2

[
, so that {1} is open. This topology was introduced

by E. D. Halimskiı̆ (Efim Khalimsky), and we shall call it the Khalimsky
topology ; Z with this topology is called the Khalimsky line.

Thus a set V of integers is open for the Khalimsky topology if and only
if, for every even number 2k ∈ V , also its odd neighbors 2k −1 and
2k +1 belong to V .

A set F of integers is closed for the Khalimsky topology if and only if
for every odd number 2k +1 ∈ F , also its even neighbors 2k and
2k +2 belong to F .
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{1}, {3}, {5} and {7} are open sets; {0}, {2}, {6} and {8} are
closed.
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The Khalimsky line is connected, but the complement of any point is
disconnected.

And the real line R has the same property: R is connected and
Rr{a} is disconnected for any a ∈ R.

Among all the topologies defined by increasing surjections f : R→ Z
only two have this property: the one just defined and the one obtained
by translating everything by one step. For the left topology, for
instance, all subsets are connected.
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Separation axioms

A neighborhood of a point x ∈ X is a set V such that there is some
open set U with x ∈ U ⊂ V .

The intersection of all neighborhoods of a point y will be denoted by
N(y). We note that x ∈ N(y) if and only if y ∈ {x} (i.e., y is in the
closure of the singleton set {x}). The relation x ∈ N(y) defines a
preorder in X . We shall denote it by x 4 y ; thus x 4 y if and only if
x ∈ N(y) if and only if y ∈ {x}.

It was introduced by Aleksandrov (1937:503). We shall call it the
specialization preorder following Kong et al. (1991:905). (However,
they defined it as the opposite preorder.)
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A Kolmogorov space (Bourbaki 1961:I:§1: Exerc. 2), also called a
T0-space, is a topological space such that x ∈ N(y) and y ∈ N(x)
only if x = y , thus precisely when the specialization preorder is an
order. It is quite reasonable to impose this axiom; if x belongs to N(y)
and vice versa, then x and y are indistinguishable from the point of
view of topology: we cannot distinguish points from knowledge of the
open sets to which they belong. We should therefore identify them and
consider a quotient space.

The separation axiom T1 states that N(x) = {x}. It is too strong to be
of interest for the spaces considered here. The specialization preorder
in this case is the discrete order: we have x 4 y if and only if x = y .

Two points x and y in a topological space Y are said to be adjacent if
x 6= y and {x ,y} is connected. We note that {x ,y} is connected if and
only if either x ∈ N(y) or y ∈ N(x). Hence two points are adjacent if
and only if they are different and comparable for the specialization
preorder.
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Smallest neighborhood spaces

In a topological space the union of any family of open sets is open. It
may happen that also the intersection of any family of open sets is
open. Equivalently, every point in the space possesses a smallest
neighborhood. A topological space with this property we shall call a
smallest-neighborhood space.

The intersection N(x) of all neighborhoods of a point x is open for all x
if and only if the space is a smallest-neighborhood space.
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Aleksandrov (1935, 1937) introduced the term espace discret,
diskreter Raum ‘discrete space’ for a topological space such that the
intersection of any family of open sets is open.

The closed set of a smallest-neighborhood space satisfies the axioms
of the open sets of a topology. We can declare a closed set to be
open—in this way we get a new topology. There is a complete
symmetry between the two topologies in such a space.
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It is easy to see that a mapping f : X → Y between two
smallest-neighborhood spaces is continuous if and only if it is
increasing for the specialization preorder. Thus continuity in these
spaces is actually order theoretic, and the smallest-neighborhood
spaces are actually special cases of preordered sets. This means that
the rich theory of (pre)ordered sets can be put to work here.
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We can define a topology on the digital line Z by declaring all odd
points to be open, thus N(2k +1) = {2k +1}, and all even points to
have a smallest neighborhood N(2k) = {2k −1,2k ,2k +1}. The
even points are closed, for the complement of an even point 2k is the
union of all N(x) with x 6= 2k , thus an open set.

The Khalimsky line.

A Khalimsky interval is an interval [a,b]Z = [a,b]R∩Z equipped with
the topology induced by the Khalimsky topology on Z. A Khalimsky
circle is a quotient space Zm = Z/mZ of the Khalimsky line for some
even integer m > 4. (If m is odd, the quotient space receives the
chaotic topology.)
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The Khalimsky plane is the Cartesian product of two Khalimsky lines,
and, more generally, Khalimsky space is the Cartesian product of n
copies of Z. Equivalently, we can define Khalimsky n-space by
declaring {x ∈ Zn;‖x − c‖∞ 6 1} to be open for any point c ∈ (2Z)n

and then taking all intersections of such sets as open sets, then all
unions of such intersections.

There are, however, other topologies in Z2 which are of interest: we
may declare {x ∈ Z2;‖x − c‖1 6 1} to be open for any c such that
∑cj ∈ 2Z as well as all intersections of such sets (Wyse et al. 1970).
The Khalimsky topology and the topology just defined are not
comparable: none is stronger than the other. However, they are
related, for if we rotate the Khalimsky plane by 45◦ and delete all
points which are not open or closed, we obtain the other topology.

Contents Introduction Why digital geometry? Distance transforms Chamfer distances Skeletons Digital lines Convex functions on discrete sets with integer values The real case Convex sets Convex functions Affine functions Digital hyperplanes Topology

The Khalimsky plane.
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To exhibit some of the analogies between topological spaces and
preordered sets, let us list some properties of continuous and
increasing mappings.

Mappings X → Y between Mappings X → Y between
topological spaces preordered sets

X has the discrete topology ⇒ X has the discrete order ⇒
all mappings are continuous all mappings are increasing

Y has the chaotic topology ⇒ Y has the chaotic preorder ⇒
all mappings are continuous all mappings are increasing

X has the chaotic topology and X has the chaotic preorder and
Y has a Kolmogorov topology ⇒ Y is ordered ⇒
only the constants are continuous only the constants are increasing

Y has the discrete topology and Y has the discrete order
X is connected ⇒ and X is connected ⇒
only the constants are continuous only the constants are increasing
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The Khalimsky plane

We observe that the following functions are continuous:
(1) Z 3 x 7→ a ∈ Z, where a is a constant;
(2) Z 3 x 7→ ±x + c ∈ Z, where c is an even constant;
(3) max(f ,g) and min(f ,g) if f ,g are continuous.
Actually every continuous function on a bounded Khalimsky interval
can be obtained by a finite succession of the rules (1), (2), (3). Note
that the function x 7→ x +1 is discontinuous.

We can describe continuity in terms of even and odd coordinates.
However, the description becomes much simpler if we use the
specialization order 4, for then a continuous function is just an
increasing function. We know that, in Z,

· · ·4−2 <−1 4 0 < 1 4 2 < 3 4 4 < · · ·
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In Z2, (0,0) < (1,0),(0,1) < (1,1) and, in general,

(2m,2n)< (2m+1,2n),(2m,2n+1)< (2m+1,2n+1) for all m,n∈Z.

So continuity at x boils down to x 4 y ⇒ f (x) 4 f (y) for all y ∈ Z2;
continuity everywhere to the same implication but now for all x ,y ∈ Z2.
For example, if both components of x are odd, the only y which
satisfies x 4 y is y = x , so f (x) 4 f (y) holds automatically. If, on the
other hand both components of x are even, then
{y ;x 4 y}= B6(x ,1) for the l∞ norm, and if f (x) in addition is odd,
then f (x) 4 f (y) holds only for f (y) = f (x), so f must be constant on
B6(x ,1).
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We note that if x ,y ∈ Z and x 4 y , then |x − y |6 1. Conversely, if
|x − y |6 1, then either x 4 y or y 4 x . Hence |x − y |6 1 implies
|f (x)− f (y)|6 1 for any continuous function f : Z→ Z, and we see
that f is Lip-1. In two variables we have the same conclusion. In the
proof of this fact we shall need the following notation. For any two
points x ,y ∈ Z2 we define q(x ,y) = (x1,y2). The four points
x ,y ,q(x ,y),q(y ,x) thus form a rectangle (perhaps degenerate); if
yj = xj ±1, j = 1,2, they form a square with side length 1.
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Theorem

A continuous function f : Z2 → Z is Lip-1 for the l∞ norm. More
generally, the conclusion holds for any continuous function f : X → Z,
where X is a connected subset of Z2 such that q(x ,y),q(y ,x) ∈ X for
all x ,y ∈ X such that yj = xj ±1, j = 1,2, and we do not have x 4 y,
nor y 4 x.
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Theorem

A function f : Z2 → Z is continuous if and only if it is separately
continuous. More generally, the equivalence holds for any function
f : X → Z where X is a subset of Z2 such that one of q(x ,y), q(y ,x)
belongs to X if yj = xj ±1 and x 4 y.

Proof.

Assume that f is separately continuous and that x 4 y . Then we shall
prove that f (x) 4 f (y). If x1 = y1, then x2 4 y2, and the inequality
f (x) 4 f (y) follows from the separate continuity of the function
x2 7→ f (x) for a fixed x1. The conclusion is similar if x2 = y2; then the
continuity of x1 7→ f (x) for a fixed x2 does the job.

The case when x1 6= y1 and x2 6= y2 remains to be considered. Then
yj = xj ±1. One of the points q(x ,y) and q(y ,x) belongs to X ; let z
be one of them that does. Then clearly x 4 z 4 y , which in view of the
separate continuity implies f (x) 4 f (z) and f (z) 4 f (y), and we are
done.
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Like in real analysis there is an intermediate-value theorem for the
Khalimsky line:

Theorem

Let two continuous functions f ,g : I → Z be given on a Khalimsky
interval I = [a,b]Z. Assume that there are points s, t ∈ I with
f (s) > g(s) and f (t) 6 g(t). Then there exists a point p, intermediate
between s and t, such that f (p) = g(p).

In particular this means that two Khalimsky lines which are not parallel
intersect.
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Two digital straight lines without a common point.
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Here digitizations must move along the drawn lines.
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Erik Melin’s digitization respecting the Khalimsky topology.

Shiva Samieinia’s unified treatment of the Khalimsky chord property
and the chord property for 8-connectedness.
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Thank you for your interest!

I hope we meet again!
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