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1. Notation

We shall denote the set {0, 1, 2, ...} by N, and the set {1, 2, 3, ...} by N∗.1 Other
common notation is Z for the ring of integers, Q for the field of rationals, R for the
field of real numbers, and C for the field of complex numbers.

2. Bases and dimensions

2.1. An algebraic basis (also known as a Hamel basis) of a vector space E is an
indexed family (ei)i∈I such that every element x ∈ E can be written in a unique
way as x =

∑
i∈I xiei with only finitely many coordinates xi different from zero. If

there exists a finite basis, then all bases have the same number of elements, and this
number is called the dimension of the space.

2.2. If f :V →W is a linear mapping of one vector space V into another, called W ,
then dim ker f + dim im f = dimV , with a natural interpretation even if some of the
dimensions are infinite (two or three).

3. Normed spaces and inner product spaces

3.1. A norm on a vector space E is a function E 3 x 7→ ‖x‖ ∈ R such that (i)
‖x‖ > 0 with equality only if x = 0; (ii) ‖tx‖ = |t|‖x‖ for all x ∈ E and all scalars
t; (iii) ‖x + y‖ 6 ‖x‖ + ‖y‖ for all x, y ∈ E. Examples: ‖x‖p =

(∑
|x(j)|p

)1/p,
1 6 p < +∞ and ‖x‖∞ = supj |x(j)| for vectors such that these expressions are
finite. We denote by lp(ZN ) the space CN equipped with the norm ‖ · ‖p, and by
lp(Z) the space of all sequences (z(n))n such that ‖z‖p is finite. The space c0(Z)
of all sequences z = (z(n))n∈Z tending to zero as n → ±∞ is a closed subspace of
l∞(Z). We have

l1(Z) ⊂ l2(Z) ⊂ c0(Z) ⊂ l∞(Z).

3.2. An inner product on a vector space E is a sesquilinear form E × E 3 (x, y) 7→
〈x, y〉 such that 〈x, x〉 > 0 with equality only for x = 0. (Another common notation
is (x | y).) Then

√
〈x, x〉 is a norm. Example: 〈x, y〉 =

∑
x(j)y(j) for x, y ∈ l2(ZN ).

If (ei)i∈I with I finite is an orthonormal basis, then z =
∑
i∈I〈z, ei〉ei. In l2(ZN ) the

family (δk)N−1
k=0 of all Dirac functions forms an ON-basis (δk(j) = 1 if j = k and zero

otherwise)

1Michael W. Frazier, in his book An Introduction to Wavelets Through Linear Alge-
bra. Springer, 1999, on which this Formelsamling is based, writes N for {1, 2, 3, ...}.
Here I use N and N∗ according to the more usual convention. Otherwise I follow
Frazier closely.
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4. Bases in a normed space

4.1. A Schauder basis in a normed space E is an indexed family (ei)i∈I such that
every element can be written in a unique way as a convergent sum z =

∑
i∈I ziei for

some scalars zi. The convergence means here that for every positive ε there exists a
finite set Jε ⊂ I such that ‖z−

∑
i∈J ziei‖ < ε for all finite subsets J ⊃ Jε. If (ei)i∈I

is an orthonormal Schauder basis in an inner-product space, then z =
∑
i∈I〈z, ei〉ei

with convergence in norm, i.e., the coordinates are just zi = 〈z, ei〉. The family of all
Dirac functions (δk)k∈Z form a Schauder basis (not an algebraic basis) in the spaces
lp(Z), 1 6 p < ∞, as well as in c0(Z). For p = 2 they form an ON-basis. (In an
infinite-dimensional space, an algebraic basis must have many more elements than a
Schauder basis.) An orthogonal indexed family (ei)i∈I is said to be complete if it is
a basis, which is equivalent to saying that the closure of the vector space spanned by
all finite linear combinations of the ei is equal to the whole space.

5. Convolution on a finite group

5.1. On any finite group G we may define

(f ∗ g)(z) =
∑

f(x)g(y),

where the sum is extended over all elements x, y ∈ G such that xy = z. If the group
is commutative it is customary to write the group operation as addition, thus

(f ∗ g)(z) =
∑
y∈G

f(z − y)g(y), z ∈ G.

Convolution is commutative and associative if the group is finite and commutative.

5.2. We consider the finite cyclic group ZN = Z mod N = Z/NZ. A function on
that space can be represented by its values (z(0), z(1), ..., z(N − 1)), but equally well
by its values (z(1), z(2), ..., z(N)) or any other period. Convolution of two functions
or vectors is defined as

(z ∗ w)(n) =
∑
j

z(j)w(n− j), n ∈ ZN ,

where it is understood that summation is extended over a period, the vectors being
periodic functions. The translation operator Rk is defined by (Rkz)(n) = z(n − k).
We have z ∗ δk = Rkz, where δk is the Dirac delta placed at position k.

5.3. Any linear translation-invariant operator T : l2(ZN ) → l2(ZN ) is given by con-
volution by some vector b:

T (z) = b ∗ z, z ∈ l2(ZN ).

6. The discrete Fourier transform

6.1. For z ∈ l2(ZN ) we define its Fourier2 transform

ẑ(n) =
∑
j

z(j)ωjn =
∑
j

z(j)e−2πijn/N , n ∈ ZN .

2Jean-Baptiste-Joseph Fourier, 1768–1830.
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Here ω = e−2πi/N is a root of unity: ωN = 1. It is easy to express the Fourier
transform of a convolution product in terms of that of the factors:

ẑ ∗ w(n) = ẑ(n)ŵ(n), n ∈ ZN .

6.2. For any z ∈ l2(ZN ), we define z̃ ∈ l2(ZN ) by z̃(n) = z(−n). We note that ̂̃z = ẑ,
that ẑ = ˜̂z, and that (z ∗ w̃)(k) = 〈z,Rkw〉.
6.3. Any linear operator T : l2(ZN ) → l2(ZN ) which commutes with translation is
diagonalized by the Fourier transformation in that we have

̂T (z) = b̂ · ẑ, z ∈ l2(ZN ),

for some b ∈ l2(ZN ).

7. Wavelets on a finite cyclic group

7.1. Downsampling and upsampling. We define D: l2(ZN ) → l2(ZM ), where N =
2M , by D(z)(n) = z(2n), n ∈ ZM . We define U : l2(ZM ) → l2(ZN ) by U(z)(n) =
z(n/2) when n is even, U(z) = 0 when n is odd. These are the downsampling
and upsampling operators; D ◦ U is the identity in l2(ZM ). We note that U is
a homomorphism between two convolution algebras: it is linear and U(z ∗ w) =
U(z) ∗U(w), while in general D(z ∗w) 6= D(z) ∗D(w); however there is equality here
when w = U(x) for some x.

7.2. A first stage wavelet basis is an orthonormal sequence of vectors R2ku, R2kv,
k = 0, 1...,M − 1, where u, v ∈ l2(ZN ), N = 2M .

7.3. If N is even, N = 2M , and u, v ∈ l2(ZN ), we define the system matrix A(n) of
u and v by

A(n) =
1√
2

(
û(n) v̂(n)

û(n+M) v̂(n+M)

)
.

Then the N vectors Rkv, Rku, k = 0, ...,M − 1, form an orthonormal system if and
only if A(n) is unitary for every n.

7.4. An arbitrary signal z can be reconstructed from U(D(z ∗ ṽ)) and U(D(z ∗ ũ)) as

t̃ ∗ U(D(z ∗ ṽ)) + s̃ ∗ U(D(z ∗ ũ)) = z

if and only if

A(n)
(
ŝ(n)
t̂(n)

)
=
(√

2
0

)
for all n.

7.5. The first stage Shannon3 basis. Here the basis vectors are defined by

û(n) =
{√

2, n = 0, 1, ..., 1
4N − 1 or n = 3

4N,
3
4N + 1, ..., N − 1,

0 otherwise;

v̂(n) =
{√

2, n = 1
4N,

1
4N + 1, ..., 3

4N − 1,
0 otherwise,

3Claude Elwood Shannon, b. 1916 04 30 – 2001 02 24.
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assuming that N is divisible by 4.

7.6. The first stage Haar4 basis. Here the basis vectors are

u(n) =
{ 1√

2
, n = 0, 1,

0 otherwise;

v(n) =


1√
2
, n = 0,

− 1√
2
, n = 1,

0 otherwise.

7.7. A pth stage wavelet filter sequence is a sequence of vectors u1, v1, u2, v2, ..., up, vp,
such that, for each j = 1, 2, ..., p, we have uj , vj ∈ l2(ZN/2j−1) and the system matrix

Aj(n) =
1√
2

(
ûj(n) v̂j(n)

ûj(n+ 1
2N) v̂j(n+ 1

2N)

)
is unitary for all n = 0, 1, ..., N/2j − 1. For any input z we define x1 = D(z ∗ ṽ1),
y1 = D(z ∗ ũ1), xj = D(yj−1 ∗ ṽj) ∈ l2(ZN/2j ), yj = D(yj−1 ∗ ũj) ∈ l2(ZN/2j ). The
output of the analysis phase is the sequence of vectors x1, x2, ..., xp, yp.

7.8. Suppose N is divisible by 2p and let u1, v1, u2, v2, ..., up, vp be a pth-stage wavelet
filter sequence. Define f1, f2, ..., fp, g1, g2, ..., gp by

fj = gj−1 ∗ U j−1(vj), gj = gj−1 ∗ U j−1(uj).

Then f1, f2, ..., fp, gp generate a pth-stage wavelet basis for l2(ZN ), i.e.,

R2kf1 , k = 0, ..., 1
2N − 1; R4kf2, k = 0, ..., 1

4N − 1; . . . ; R2pkfj , k = 0, ..., N/2p − 1,

R2pkgp, k = 0, ..., N/2p − 1,

form an orthonormal basis for l2(ZN ). With the notation

ψ−j,k = R2jkfj , ϕ−j,k = R2jkgj , j = 1, 2, ..., p, k = 0, 1, ..., N/2j − 1,

the pth-stage wavelet basis generated by f1, f2, ..., fp, gp is

ψ−1,k, k = 0, ..., 1
2N − 1; ψ−2,k, k = 0, ..., 1

4N − 1; ...; ψ−p,k, k = 0, ..., N/2p − 1;

ϕ−p,k, k = 0, ..., N/2p − 1.

We see that the space V−j spanned by ϕ−j,0, ..., ϕ−j,N/2j−1 and the space W−j
spanned by ψ−j,0, ..., ψ−j,N/2j−1 satisfy V−j = V−j−1 +W−j−1, while V0 = l2(ZN ).

8. Convolution on the integers

8.1. The convolution product of two vectors z, w is defined by

(z ∗ w)(n) =
∑
j∈Z

z(j)w(n− j), n ∈ Z,

4Alfred Haar, 1885 10 11 – 1933 03 16.
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whenever the sum has a sense. The following cases are noteworthy. If one of the
factors has only finitely many values different from zero, then the convolution product
always exists. If both factors are zero for large negative values of the index, i.e., if
z(j) = w(j) = 0 when j � 0, then the convolution product exists. If one of the
factors is in l1(Z) and the other is in lp(Z), then then the convolution product exists
and belongs to lp(Z). In particular, l1(Z) is a convolution algebra. If both factors
belong to l2(Z), then the convolution exists and belongs to c0(Z). Connected with
these statements are the inequalities

‖z ∗ w‖p 6 ‖z‖1 · ‖w‖p for 1 6 p 6 +∞; ‖z ∗ w‖∞ 6 ‖z‖2 · ‖w‖2.

Convolution is commutative and associative under reasonable hypotheses. Note,
however, examples like this:

1 = 1 ∗ δ = 1 ∗ ((δ0 − δ1) ∗ h) 6= (1 ∗ (δ0 − δ1)) ∗ h = 0 ∗ h = 0,

where h(n) = 0 for n < 0, h(n) = 1 for n > 0. Here all convolutions listed in the
formula do exist, but the convolution 1 ∗ h does not.

8.2. Support. The support of a sequence (z(n))n∈Z is the set of all indices n such that
z(n) 6= 0. We denote this set by supp z. It is clear that supp(z∗w) ⊂ supp z+suppw,
but the inclusion may be strict. If we denote by K(z) the smallest interval which
contains supp z, then we have an equality K(z ∗ w) = K(z) + K(w) valid for all
vectors z, w with finite support. Actually K(z) = cvx supp z; see Chapter 11.

9. The Fourier transformation on the integers

9.1. For z ∈ lp(Z) we define its Fourier transform as the periodic function

ẑ(t) =
∑

z(n)eint, t ∈ R.

The sum has to be interpreted as a limit in L2(I), I = [−π, π[, of finite sums.
However, if z ∈ l1(Z), then the sum is absolutely convergent and the transform ẑ is
a continuous function.

9.2. The inverse Fourier transform f̌ of a function f on I is the sequence

f̌(n) =
1

2π

∫ π

−π
f(t)e−intdt.

If f ∈ L2(I), then f̌ ∈ l2(Z); if f ∈ L1(I), then f̌ ∈ c0(Z).

9.3. The Fourier transform of a convolution product is given by the usual formula
ẑ ∗ w = ẑŵ, at least if z ∈ l1(Z) and w ∈ l2(Z). (Distribution theory enables us to
weaken these assumptions.)

10. Wavelets on the group of integers

10.1. Downsampling and upsampling on Z. The downsampling operator D: l2(Z)→
l2(Z) and the upsampling operator U : l2(Z)→ l2(Z) are defined on l2(Z) by the same
formulas as in the finite-dimensional case.
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10.2. A first-stage wavelet system for l2(Z) is a complete orthonormal family R2kv,
R2ku, k ∈ Z, where u, v ∈ l1(Z).

10.3. The system matrix of two vectors u, v ∈ l2(Z) is

A(t) =
1√
2

(
û(t) v̂(t)

û(t+ π) v̂(t+ π)

)
.

If u, v ∈ l1(Z), then R2kv, R2ku, k ∈ Z, is a first-stage wavelet system if and only if
A(t) is unitary for all t ∈ R.

10.4. Assume that u, v ∈ l1(Z) and that their system matrix A(t) is unitary for all
t. Let an element gj−1 ∈ l2(Z) be given such that (R2k)k∈Z is orthonormal. Define

fj = gj−1 ∗ U j−1(v), gj = gj−1 ∗ U j−1(u).

Then the system (R2jkfj)k∈Z, (R2jkgj)k∈Z is orthonormal.

10.5. Now define
V−j =

{∑
k∈Z z(k)R2jkgj ; z ∈ l2(Z)

}
,

W−j =
{∑

k∈Z z(k)R2jkfj ; z ∈ l2(Z)
}
.

Then V−j +W−j = V−j+1, and the sum is orthogonal.

10.6. A pth-stage wavelet system for l2(Z) is an indexed family

(R2jkfj , R2jkgp)k∈Z,j=1,...,p

which is orthonormal and complete.

10.7. Let uj , vj ∈ l1(Z), j = 1, ..., p, and assume that the system matrix Aj(t) of
uj and vj is unitary for all j = 1, ..., p and all t ∈ R. Define fj = v1, gj = u1 and
inductively fj = gj−1 ∗ U j−1(vj), gj = gj−1 ∗ U j−1(uj). Then the system

(R2jkfj , R2jkgp)k∈Z,j=1,...,p

is a pth-stage wavelet system for l2(Z).

10.8. A homogeneous wavelet system for l2(Z) is an indexed family (R2jkfj)k∈Z,j∈N∗

which is orthonormal and complete.

10.9. Suppose that uj , vj ∈ l1(Z), j ∈ N, and that the system matrix Aj(t) is
unitary for all t ∈ R. Define fj and gj as in 10.7 and V−j as in 10.5. Then if the
intersection of all the V−j consists of the origin only, the system (R2jkfj)k∈Z,j∈N∗ is
a homogeneous wavelet system.

10.10. The Haar wavelets on Z. Define u, v ∈ l1(Z) by

u(n) =
{ 1√

2
, n = 0, 1,

0 otherwise;

v(n) =


1√
2
, n = 0,

− 1√
2
, n = 1,

0 otherwise.
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Then the pair u, v generates a first-stage wavelet system for l2(Z), and the intersection
of all the spaces V−j , defined as in 10.7, consists of the zero vector only. Hence
(R2jkfj)k∈Z,j∈N∗ is a homogeneous wavelet system, called the Haar system for l2(Z).

10.11. Daubechies5 D6 wavelets on Z are defined by taking u(n) = 0 for n 6=
0, 1, 2, 3, 4, 5, and then

(u(0), u(1), u(2), u(3), u(4), u(5))

=
√

2
32

(b+ c, 2a+ 3b+ 3c, 6a+ 4b+ 2c, 6a+ 4b− 2c, 2a+ 3b− 3c, b− c),

where

a = 1−
√

10, b = 1 +
√

10, c =
√

5 + 2
√

10,

and then v defined by v(−4) = −u(5), v(−3) = u(4), v(−2) = −u(3), v(−1) = u(2),
v(−1) = u(2), v(0) = −u(1), v(1) = u(0), all other values being zero.

11. Convolution on the real axis

11.1. Support. The support of a function f defined on the real axis is the closure
of the set of all points where the function is nonzero; it is denoted by supp f . It
is easy to prove that supp(f ∗ g) ⊂ supp f + supp g. It is a deep theorem, called
the Titchmarsh6 support theorem, that cvx supp(f ∗ g) = cvx supp f + cvx supp g if
both supp f and supp g are bounded. Here cvxA denotes the convex hull of a set A;
the theorem is valid also in Rn. On the real axis, cvx supp f is the smallest closed
interval outside of which the function vanishes.

12. The Fourier transformation on the real axis

12.1. For a reasonable function f : R → C on the real axis we define its Fourier
transform f̂ as

f̂(ξ) =
∫

R

f(x)e−iξxdx, ξ ∈ R.

The inverse Fourier transform of a function g is

ǧ(x) =
1

2π

∫
R

g(ξ)eiξxdξ, x ∈ R.

12.2. Under some hypotheses we have (f̂)ˇ= f . In particular this is true if both f

and its transform f̂ are integrable on the real axis.

12.3. If f, g are in L2(R), the space of all square-integrable functions, then 〈f̂ , ĝ〉 =
2π〈f, g〉 (Parseval’s relation); in particular ‖f̂‖2 =

√
2π‖f‖2 (Plancherel’s formula).

5Ingrid Daubechies, b. 1954.
6Edward Charles Titchmarsh, 1899 06 01 – 1963 01 18.
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13. Wavelets on the real axis

13.1. A wavelet system for L2(R) is a complete orthonormal system of the form
{ψj,k}j,k∈Z, for some ψ ∈ L2(R), where ψj,k(x) = 2j/2ψ(2jx− k), x ∈ R.

13.2. A multiresolution analysis with scaling function ϕ is an indexed family (Vj)j∈Z

of subspaces of L2(R) such that (i) Vj ⊂ Vj+1, j ∈ Z; (ii) There exists a function
ϕ ∈ V0 (the scaling function) such that the family (ϕ0,k)k∈Z is orthonormal and
V0 =

{∑
k∈Z ϕ0,k; z ∈ l2(Z)

}
; (iii) f ∈ V0 if and only if x 7→ f(2jx) is in Vj ; (iv)⋂

j Vj = {0}; (v) The closure of
⋃
j Vj is equal to all of L2(R).

13.3. The Haar multiresolution analysis consists of the spaces Vj of functions which
are constant on the interval

[
2−jk, 2−j(k + 1)

[
for every k ∈ Z. Its scaling function

is the characteristic function of the interval [0, 1[.

13.4. The scaling sequence of a multiresolution analysis (Vj) is the sequence u ∈ l2(Z)
such that ϕ =

∑
k∈Z u(k)ϕ1,k. It follows that u(k) = 〈ϕ,ϕ1,k〉. The indexed family

(R2ku)k∈Z is orthonormal in l2(Z).

13.5. Suppose (Vj)j∈Z is a multiresolution analysis with scaling function ϕ and
such that its scaling sequence u belongs to l1(Z). Define v ∈ l1(Z) by v(k) =
(−1)k−1u(1− k), k ∈ Z, and ψ =

∑
k∈Z v(k)ϕ1,k. Then (ψ0,k)k∈Z is an orthonormal

family in L2(R). If we define W0 =
{∑

z(k)ψ0,k; z ∈ l2(Z)
}

, then V1 = V0 +W0, and
the two spaces V0 and W0 are orthogonal. Finally, (ψj,k)j,k∈Z is a wavelet system in
L2(R). (Mallat’s theorem.)

14. Orthogonal polynomials

14.1. General. We consider an inner product

〈f, g〉 =
∫ b

a

f(x)g(x)ρ(x)dx,

defined on functions on an interval [a, b], where ρ > 0 is called a weight function. A
well-known example of an orthogonal sequence on [0, π] with weight function ρ(x) = 1
is fn defined by fn(x) = cosnx.

14.2. Legendre7 polynomials. Here a = −1, b = 1, ρ(x) = 1. The polynomials are
defined by

Pn(x) =
1

2nn!

(
d

dx

)n
(x2 − 1)n.

The first few Legendre polynomials are P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1),

P3(x) = 1
2 (5x3 − 3x). A generating function is

w(x, t) =
1√

1− 2xt+ t2
=
∞∑
0

Pn(x)tn.

The polynomial u = Pn solves the equation

((1− x2)u′)′ + n(n+ 1)u = 0.

7Adrien Marie Legendre, 1752–1833.
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The inner product of Pn with itself is

‖Pn‖2ρ = 〈Pn, Pn〉 =
∫ 1

−1

P 2
ndx =

2
2n+ 1

.

A continuous function on [−1, 1] can be expanded in a series f(x) =
∑
cnPn(x),

where the coeffcients are given by cn = (n + 1
2 )〈f, Pn〉. The Legendre polynomials

can be used to define a solution to the Laplace equation in a ball in case the boundary
values are independent of the longitude: the function

u(r, θ) =
∑

rna−nfnPn(cos θ),

where the coefficients fn are defined by the expansion f(θ) =
∑
fnPn(cos θ), solves

the equation ∆u = 0 in the Euclidean ball ‖x‖2 < a with boundary values u = f
on the sphere ‖x‖2 = a. Here we use spherical coordinates defined by the equations
x = (x1, x2, x3) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ), so that π/2− θ is the latitude, ϕ
the longitude.

14.3. Hermite8 polynomials. Here a = −∞, b = +∞, ρ(x) = e−x
2
, thus∫ +∞

−∞
Hm(x)Hn(x)e−x

2
dx = 0, m 6= n.

The polynomials are defined by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
, n ∈ N.

The first few Hermite polynomials are H0(x) = 1, H1(x) = 2x, H3(x) = 4x2 − 2,
H3(x) = 8x3 − 12x. A generating function is

w(x, t) = e2xt−t2 =
∞∑
0

1
n!
Hn(x)tn, t ∈ C.

The Hermite polynomials solve the differential equation u′′ − 2xu′ + 2nu = 0. The
function v = e−x

2/2Hn solves the equation v′′ + (2n + 1 − x2)v = 0. The Hermite
polynomials can be used to solve the Laplace and Helmholtz equations in a cylinder
bounded by a parabolic cylinder surface.

14.4. Laguerre9 polynomials. Here a = 0, b = +∞, ρ(x) = xαe−x, thus∫ +∞

0

Lαm(x)Lαn(x)xαe−xdx = 0, m 6= n.

The polynomials are defined by

Lαn(x) = ex
x−α

n!
dn

dxn
(e−xxn+α), n ∈ N, α > −1.

8Charles Hermite, 1822–1901.
9Edmond Nicolas Laguerre, 1834–1886.
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The first few Laguerre polynomials are Lα0 (x) = 1, Lα1 (x) = 1 + α − x, Lα3 (x) =
1
2

(
(1 + α)(2 + α)− 2(2 + α)x+ x2

)
. The general formula is

Lαn(x) =
n∑
k=0

(n+ α)(n+ α− 1) · · · (k + 1 + α)
(−x)k

k!(n− k)!
.

A generating function is

w(x, t) = (1− t)−α−1e−xt/(1−t) =
∞∑
0

Lαn(x)tn, |t| < 1.

The Laguerre polynomials solve the differential equation xu′′ + (α+ 1− x)u′ + nu =
0. The Laguerre polynomials can be used to solve the problem of propagation of
electromagnetic waves along a transmission line.

14.5. Chebyshev10 polynomials. Here a = −1, b = 1, ρ(x) = 1/
√

1− x2, thus∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx = 0, m 6= n.

The polynomials are defined by

Tn(x) = cos(n arccosx), x ∈ [−1, 1], n ∈ N.

(Note that the Tn are polynomials and therefore can be extended to all x ∈ R.) A
generating function is

w(x, t) =
1− t2

1− 2xt+ t2
= T0 + 2

∞∑
1

Tn(x)tn, |t| < r,

where r = min(r1, r2), rj being the two roots of the equation 1 − 2xt + t2 = 0,
t = r1, r2. Chebyshev proved that every continuous function on an interval [a, b]
has a unique best approximant in the supremum norm among the polynomials of
degree < m. If a = −1, b = 1, then the best approximant to f(x) = xm among the
polynomials of degree < m is 2−m+1Tm; more precisely

xm − pm−1(x) = 2−m+1 cos(m arccosx) = 2−m+1Tm(x).

(See my lecture notes Approximation by polynomials, Uppsala University, Depart-
ment of Mathematics, Lecture Notes 1999:LN1.)

14.6. Jacobi11 polynomials. Here a = −1, b = 1, ρ(x) = (1−x)α(1 +x)β , α, β > −1,
thus ∫ 1

−1

P (α,β)
m (x)P (α,β)

n (x)(1− x)α(1 + x)βdx = 0, m 6= n.

10Pafnutĭı L′vovič Čebyšëv, 1821–1894.
11Carl Gustav Jacob Jacobi, 1804–1851.
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The polynomials are defined by

P (α,β)
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn
(
(1− x)n+α(1 + x)n+β

)
, n ∈ N.

The function u = P
(α,β)
n solves the differential equation

(1− x2)u′′ + (β − α− (α+ β + 2)x)u′ + n(n+ α+ β + 1)u = 0.

A generating function is

w(x, t) = 2α+βR−1(1− t+R)−α(1 + t+R)−β =
∞∑
0

P (α,β)(x)tn, |t| < r,

where R = (1 − 2xt + t2)−1/2, and r = min(r1, r2), rj being the two roots of the
equation 1− 2xt+ t2 = 0, t = r1, r2.

15. The Radon transformation

15.1. History. Johann Radon (1887–1956) published a remarkable paper in 1917:
Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Man-
nigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Nat. Kl. 69 (1917),
262–277.

Forty-six years later Alan M. Cormack (b. 1924) published the paper
Representation of a function by its line integrals, with some radiological applications
I, II. J. Appl. Phys. 34 (1963), 2722–2727; 35 (1964), 2908–2912.

Cormack and Godfrey N. Hounsfield (b. 1919) produced the first picture of a
brain using this method in 1972.

15.2. Definitions. The Radon transform of a function f defined in R2 is

Rf(L) =
∫
L

f,

where L is any straight line in the plane. We assume that the function f tends to
zero at infinity in such a way that the integral converges.

More generally, the Radon transform of f is:

Rf(ω, p) =
∫

ω·x=p

f(x) dm(x), (ω, p) ∈ Sn−1 ×R,

where f is defined on Rn and (ω, p) ∈ Sn−1 ×R defines a hyperplane

{x ∈ Rn; ω · x = p}.

Here, again, we must assume that the function tends to zero at infinity sufficiently
rapidly.
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The dual Radon transform R] of a function ϕ defined on the set of all hyperplanes
is

R]ϕ(x) =
∫
ξ3x

ϕ(ξ)dµ(ξ), x ∈ Rn.

The integral is defined to yield the mean value of ϕ over all hyperplanes passing
through x. If we let ξ be defined by (ω, p) ∈ Sn−1×R, then this definition takes the
form

R]g(x) =
∫

Sn−1

g(ω, ω · x)dω, x ∈ Rn,

where g is defined on Sn−1 × R and the integral is normalized to yield the mean
value over the (n− 1)-dimensional sphere.

15.3. Rules of calculus. We note that

R(∂jf) = ωj
∂

∂p
Rf ;

and that the Laplacian

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

intertwines with the operator � = ∂2/∂p2 as follows:

R ◦∆ = � ◦ R, ∆ ◦ R] = R] ◦�.

15.4. Relation to the Fourier transformation. Let Fn denote the Fourier transforma-
tion in Rn:

Fnf(ξ) =
∫

Rn

f(x)e−iξ·xdx, ξ ∈ Rn.

Then the Fourier slice theorem says that Fn = F1◦R, where F1 is the one-dimensional
Fourier transformation in the variable p.

15.5. Relation to convolution. We have R(f ∗ g) = Rf ∗p Rg, where ∗p denotes
convolution in the p variable only.

15.6. Inversion via the Fourier transformation. From the Fourier slice theorem
Fn = F1 ◦R we deduce that Id = F−1

n ◦Fn = F−1
n ◦F1 ◦R, so that f can be recovered

from its Radon transform ϕ as f = F−1
n (F1(ϕ)). This formula is actually used in

numerical computations.
When n = 2, we can recover f from Rf by the formula:

f(x) = − 1
π

∫ ∞
0

dgx(q)
q

, x ∈ R2,

a Stieltjes integral, where gx(q) is the mean value of Rf(L) over all lines L with
distance q to x.
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For n = 3:

f(x) = − 1
8π2

∆
∫
S2

Rf(ω, ω · x)dω, x ∈ R3.

The inversion formula for any dimension is:

f = cn∆(n−1)/2R]Rf, f ∈ S(Rn).

Note: When n is odd, we have an integer power of the Laplacian: the operator is local.
When n is even, the operator is not local; it has to be interpreted via the Fourier
transformation. Recall that −∆ corresponds to multiplication by ‖ξ‖22 = 〈ξ, ξ〉.
Therefore any power (−∆)α can be interpreted as multiplication by ‖ξ‖α/22 on the
Fourier transform side.

15.7. The Helgason12 support theorem. If f ∈ C(Rn) decreases so fast that
supx∈Rn ‖x‖m2 |f(x)| is finite for all m > 0 and Rf has support in {(ω, p); |p| 6 r},
then f has support in the ball {x; ‖x‖2 6 r}. More generally, if Rf(ω, p) = 0 for
all (ω, p) such that {x; ω · x = p} does not meet a convex compact set K, then
supp f ⊂ K.

To reconstruct f outside K we need to know Rf only for hyperplanes that do
not meet K.
Application: Let K contain the heart (which is pounding all the time)...
Note: The function f must decrease rapidly, faster than any power of ‖x‖2.

12Sigurdur Helgason, b. 1927.


