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Abstract
Inspired by mathematical morphology we study generalized convexity and prove that certain
subsets of Hartogs domains are convex in a generalized sense.

1. Introduction

By the Hahn–Banach theorem, an open convex set in Rm is an intersection of open
half-spaces; its complement a union of closed half-spaces. What if we replace the latter
by balls? We shall study here a kind of generalized convexity where a set is called
concave if it is a union of closed balls; its complement thus being an intersection of
complements of closed balls. This will be done in particular for Hartogs domains which
are lineally convex.

Lineal convexity is a kind of complex convexity intermediate between usual con-
vexity and pseudoconvexity. More precisely, if A is a convex set in Cn which is either
open or closed, then A is lineally convex (this is true also in the real category), and if
Ω is a lineally convex open set in Cn, then Ω is pseudoconvex.

There are several different notions of convexity related to lineal convexity. In in-
creasing order of strength we have:

1. Local weak lineal convexity in the sense of Yužakov & Krivokolesko (Kiselman
2016: Definition 4.3);
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2. Local weak lineal convexity (Kiselman 2016: Definition 4.1);

3. Weak lineal convexity, originally introduced as Planarkonvexität by Behnke &
Peschl (1935:158, 162);

4. Lineal convexity, introduced as convexité linéelle by André Martineau (1966:73;
1977:228);

5. C-convexity, originally introduced as convexité linéelle forte by Martineau (1967:
400; 1968; 1977:265, 325). Defined for subsets of Cn in Hörmander (1994: Defini-
tion 4.6.6) and (slightly differently) for subsets of projective space Pn in Anders-
son et al. (2004: Definition 2.2.1)

The main results are presented in Sections 8 and 10. It is shown there that certain
subsets of Hartogs domains have convexity properties originating in mathematical mor-
phology. We also study external tangent planes of sets that do not necessarily have a
smooth boundary.

Notation

The inner product of two vectors in Rm or Cn shall be denoted by a dot:

x · y = x1y1 + · · ·+ xmym; z · w = z1w1 + · · ·+ znwn, x, y ∈ Rm, z, w ∈ Cn.

The Euclidean norm will be written like this:

‖x‖2 =
√
x · x; ‖z‖2 =

√
z · z̄, x ∈ Rm, z ∈ Cn.

We shall write

B<(c, r) = {x ∈ Rm; ‖x− c‖2 < r}; B6(c, r) = {x ∈ Rm; ‖x− c‖2 6 r}

for the open (strict) and closed (non-strict) balls, respectively, with center at c and of
radius r. Similarly for balls in Cn. When n = 1, we write instead D<(c, r) and D6(c, r)
for the disks in C.

When any norm can serve, we write just ‖x‖.
For derivatives we write

fxj
= ∂f

∂xj
, fyj

= ∂f

∂yj
, j = 1, . . . , n,

and
fzj

= 1
2(fxj

− ifyj
), fz̄j

= 1
2(fxj

+ ifyj
), fz = (fz1 , . . . , fzn).

For real-valued functions of one complex variable we have grad f = (fx, fy) with
norm ‖grad f‖2 = 2|fz|.
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2. Real and complex hyperplanes

Hyperplanes are affine subspaces with real or complex codimension 1, and they will
play an important role in the sequel.

To any real hyperplane Y in Cn and every point a ∈ Y there is a unique complex
hyperplane Y[a] which contains a and is contained in Y . In fact

Y[a] = Y ∩ (i(Y − a) + a).

We note that Y[a] depends continuously on (Y, a) for the natural topology on hyper-
planes and points.

Conversely, every complex hyperplane Z in Cn is contained in a real hyperplane,
but there are now several choices. If a complex hyperplane Z is given and is defined
by the equation β · (z − a) = 0, then for any complex number θ with |θ| = 1 the real
hyperplane Z [θ] defined by Re θ(β · (z − a)) = 0 contains Z. The real hyperplane Z [θ]

does not depend on the choice of a ∈ Z and satisfies (Z [θ])[b] = Z for every b ∈ Z.
If a real hyperplane Y and a point a ∈ Y are given, then (Y[a])[θ] = Y for two values

of θ with |θ| = 1. Explicitly, if Y is given by the equation Re β · (z − a) = 0, then Y[a]
is given by β · (z − a) = 0 and (Y[a])[θ] by Re θ(β · (z − a)) = 0; the two choices θ = ±1
give us Y back.

Definition 2.1. Given an open subset Ω of Cn with boundary of class C1, we denote
by TΩ,R(b) the real tangent space at a boundary point b, and by TΩ,C(b) the complex
tangent space at b (both containing the origin). The real or complex tangent planes
which pass through b are b+ TΩ,R(b) and b+ TΩ,C(b), respectively. �

Clearly TΩ,C(b) = TΩ,R(b)[0]; for the tangent planes, b+ TΩ,C(b) = (b+ TΩ,R(b))[b].

Definition 2.2. If A is a subset of Cn, we shall denote by ΓA(a) the set of all complex
hyperplanes Z which pass through the origin and are such that a+Z does not intersect
A. �

A mapping F : X → P(Y ) will be called a multifunction from X into Y and will
be written F : X ⇒ Y . This means that the value, image, or fiber F (x) of F at a
point x is a subset of Y , possibly empty. The graph of a multifunction F , denoted by
graph(F ), is the set {(x, y) ∈ X × Y ; y ∈ F (x)}.

If X and Y are topological spaces, we can equip X ×Y with the Cartesian product
topology. In all cases considered here, X is a T1 space—equivalently, all singleton sets
are closed. If so, for graph(F ) to be a closed subset of X × Y , it is necessary but not
sufficient that the fiber

F (a) = ({a} × Y ) ∩ graph(F )

be a closed subset of Y for every a ∈ X.
Thus ΓA is a multifunction ΓA : Cn ⇒ Grn−1(Cn) = Mn,n−1(C) with values in the

Grassmann manifold of all complex hyperplanes in Cn passing through the origin. If
Ω is open, ΓΩ(a) is closed for every a ∈ Cn. See also Proposition 7.2.

Lineal convexity of a set A means that ΓA(a) is nonempty for every a ∈ Cn r A;
weak lineal convexity of an open set Ω that ΓΩ(b) is nonempty for every b ∈ ∂Ω.
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Let us agree to say that a topological space is connected if the only sets which are
both open and closed are the empty set and the whole space (not necessarily distinct).1
A subset of a topological space is said to be connected if it is connected as a topological
subspace.

Zelinskĭı (1981) has proved that a bounded lineally convex open set Ω is C-convex
if and only if ΓΩ(b) is connected for every boundary point b. See also Andersson et al.
(2004:46, Theorem 2.5.2) for the corresponding result on subsets of projective space.

3. Notions from mathematical morphology

Mathematical morphology is a branch of science which was created in the 1960s by
Georges Matheron (1930–2000) and Jean Serra. It thrives in complete lattices, but
here we shall need only those complete lattices which are the power set P(X) of some
set X; most often either Rm or Cn. All definitions in the sequel can be given for
general complete lattices—it is enough to replace ⋂ by ∧ and ⋃ by ∨.
3.1. Inverse and direct images

To any mapping f : X → Y we define two mappings on a higher level, f ∗ : P(Y ) →
P(X) and f∗ : P(X)→P(Y ). The first is defined by

(3.1) f ∗(B) = {x ∈ X; f(x) ∈ B}, B ∈P(Y ).

Here f ∗(B) is called the inverse image of B. The second is defined by

(3.2) f∗(A) = {f(x); x ∈ A}, A ∈P(X).

The set f∗(A) is called the (direct) image of A.

3.2. Increasing and co-increasing mappings

Let X and Y be any sets. A mapping ϕ : P(X)→P(Y ) is said to be increasing if

for all A,B ∈P(X) with A ⊂ B we have ϕ(A) ⊂ ϕ(B).

It is called co-increasing if conversely

for all A,B ∈P(X) with ϕ(A) ⊂ ϕ(B) we have A ⊂ B.

A set A ∈ P(X) said to be a fixed point of a mapping ϕ : P(X) → P(X) if
ϕ(A) = A. We denote by

invar(ϕ) = {A ∈P(X); ϕ(A) = A},

the invariance set or the set of fixed points of a mapping ϕ : P(X)→P(X).
A mapping ϕ : P(X) → P(X) is said to be idempotent if ϕ ◦ ϕ = ϕ. So

idempotency means that ϕ maps P(X) into invar(ϕ) (in fact onto invar(ϕ)).
1We follow here Bourbaki (1961: I: §11: 1) in that the empty space is defined to be connected. Adrien

Douady (personal communication, 2000 June 26) argued for the empty space not to be connected.
The difference is important in Definition 5.2, where C-convexity is defined.
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3.3. Inverses of mappings

Any mapping ϕ : P(X) → P(Y ) has an upper inverse ϕ[−1] : P(Y ) → P(X)
defined by

ϕ[−1](B) =
⋂

A∈P(X)
(A; ϕ(A) ⊃ B), B ∈P(Y ),

and a lower inverse ϕ[−1] : P(Y )→P(X) defined by

ϕ[−1](B) =
⋃

A∈P(X)
(A; ϕ(A) ⊂ B), B ∈P(Y ).

So the upper inverse is obtained when considering values of ϕ containing a certain
set B, and inversely for the lower inverse. The upper inverse is not always larger than
the lower inverse; the names should rather be understood as approaching from above
and approaching from below. We always have

ϕ[−1] ◦ ϕ 6 idP(X) 6 ϕ[−1] ◦ ϕ,

so that in particular ϕ[−1] 6 ϕ[−1] if ϕ is surjective.
If ϕ is co-increasing we have ϕ[−1] ◦ ϕ = idP(X) = ϕ[−1] ◦ ϕ, so that in particular

ϕ[−1] = ϕ[−1] if ϕ is surjective and co-increasing.

3.4. Dilations and erosions: lattice-theoretical duality

Definition 3.1. A mapping δ : P(X)→P(Y ) is said to be a dilation if it commutes
with the forming of unions, i.e., if

δ(⋃j∈J Aj) =
⋃
j∈J

δ(Aj), Aj ∈P(X).

It follows that δ(Ø) = Ø, whereas δ(X) = ⋃
A∈P(X) δ(A) ⊂ Y .

Definition 3.2. Amapping ε : P(Y )→P(X) is said to be an erosion if it commutes
with the forming of intersections, i.e., if

ε(⋂j∈J Bj) =
⋂
j∈J

ε(Bj), Bj ∈P(Y ).

It follows that ε(Y ) = X and that ε(Ø) = ⋂
B∈P(Y ) ε(B) ⊃ Ø.

The lower inverse δ[−1] of a dilation δ is an erosion, and the upper inverse ε[−1] of
an erosion ε is a dilation (Kiselman 2010, Theorem 6.13).

Example 3.3. The mappings f ∗ and f∗ defined by (3.1) and (3.2) satisfy

f∗(A) ⊂ B if and only if A ⊂ f ∗(B), A ⊂ X, B ⊂ Y,

from which we deduce that (f∗)[−1] = f ∗ and (f ∗)[−1] = f∗. We note that f ∗ is both a
dilation and an erosion, while f∗ is a dilation but in general not an erosion. �
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3.5. Ethmomorphisms, anoiktomorphisms, and cleistomorphisms

Definition 3.4. A mapping η : P(X) → P(X) is called an ethmomorphism if it
is increasing and idempotent.

An ethmomorphism is called an anoiktomorphism if it is smaller than the iden-
tity, and a cleistomorphism if it is larger than the identity. �

The set of all fixed points of a cleistomorphism κ has the property that the whole
space X belongs to invar(κ) and that, if Aj ∈ invar(κ), j ∈ J , then also ⋂j∈J Aj is a
fixed point of κ. In other words, invar(κ) = F is a Moore family, and κ(A) is the
infimum of all supersets of A which belong to F . Conversely, given a Moore family
F , the intersection of all supersets in F of an element A defines a cleistomorphism.

Classical examples are the operation of taking the interior in a topological space,
α(A) = int(A) = A◦, and the operation of taking the closure, κ(A) = clos(A) = A.
The fixed points of the former are the open sets; the fixed points of the latter, the
closed sets.

For any dilation δ and any erosion ε, the compositions κ[δ] = δ[−1] ◦ δ and κ[ε] =
ε ◦ ε[−1] are cleistomorphisms in P(X), and the compositions α[δ] = δ ◦ δ[−1] and
α[ε] = ε[−1] ◦ ε are anoiktomorphisms in P(Y ) (Kiselman 2010: Corollary 6.14).

Lemma 3.5. The supremum of a family of anoiktomorphisms is an anoiktomorphism.
Explicitly: if αj : P(X)→P(X), j ∈ J , is an arbitrary family of anoiktomorphisms,
then α = supj∈J αj, defined by

α(A) =
⋃
j∈J

αj(A), A ∈P(X),

is an anoiktomorphism. By duality, the infimum any family of cleistomorphisms is a
cleistomorphism.

The proof is easy.

Lemma 3.6. The composition of an anoiktomorphism and a cleistomorphism in any
order is an ethmomorphism.

Proof. Clearly α◦κ and κ◦α are increasing mappings for any anoiktomorphism α and
any cleistomorphism κ : P(X)→P(X). To prove idempotency we use the inequality
α 6 idP(X) 6 κ to conclude that

α ◦ κ = (α ◦ idP(X)) ◦ (α ◦ κ) 6 (α ◦ κ) ◦ (α ◦ κ) 6 (α ◦ κ) ◦ (idP(X) ◦ κ) = α ◦ κ.

By duality, also κ ◦ α is idempotent. �

In general, the ethmomorphisms α ◦ κ and κ ◦ α are neither anoiktomorphisms nor
cleistomorphisms.

When we take α = int and κ = clos in Lemma 3.6, we obtain the ethmomorphisms
int ◦ clos and clos ◦ int. The fixed points of the former are the regular open sets;
those of the latter the regular closed sets.2

These sets are those for which we do not lose information by taking the interior
or the closure. In fact, if U is a regular open set, then U◦ = (U)◦ = U . Similarly,

2The expressions regularly open and regularly closed are also in use.
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C = C◦ = C if C is a regular closed set. There are subsets A of R such that A as well
as its complement B = R r A have the property that A◦ = B◦ = Ø ⊂ A = B = R,
for instance A = Q, so these sets cannot be reconstructed from knowledge of their
interiors and closures.

The complement of a regular open set is regular closed. Also, the closure of an open
set is regular closed, and the interior of a closed set is regular open. The intersection
of two regular open sets is regular open, but not always their union.

If A◦ ⊂ B ⊂ A and A is regular open, then B◦ = A. Similarly, if A is regular
closed, then these inclusion relations imply that B = A.

3.6. Operations on power sets

If G is an abelian group, it is well known that, for fixed sets S, T ⊂ G (called structuring
elements),

P(G) 3 A 7→ δS(A) = A+ S ∈P(G)
is a dilation and that

P(G) 3 B 7→ εT (B) = {x; x+ T ⊂ B} ∈P(G)

is an erosion. If 0 ∈ S, we have εS 6 id 6 δS.
We note that δS commutes with translations, while εS anticommutes with trans-

lations:

(3.3) δS+ c(A) = δS(A) + c, εS+ c(A) = εS(A)− c, c ∈ G, A ∈P(G).

We have (δS)[−1] = εS and (εS)[−1] = δS. This is the lattice-theoretical duality
already mentioned in Subsection 3.4.

We define
αS(A) = δS(εS(A)), κS(A) = εS(δS(A)).

In view of (3.3), αS and κS are invariant under translation: αS+ c = αS and κS+ c = κS.
Also, in view of (3.3) we may assume that 0 ∈ S as soon as S is nonempty. We can

conclude that, when S contains 0,

εS 6 αS 6 idP(G) 6 κS 6 δS.

It may be convenient to put these mappings under a common roof: let us define

ϕS,T,U(A) =
⋃
x∈G

(x+ S; x+ T ⊂ A+ U), A ∈P(G),

where S, T , U are three subsets of an abelian group G. Then

(3.4) δS = ϕS,{0},{0}, εS = ϕ{0},S,{0}, αS = ϕS,S,{0}, κS = ϕ{0},S,S.

With the notation from Kiselman (2010: Definition 7.1), we have αS = δS/?δS, the
lower quotient of δS and δS. Similarly, the cleistomorphism κS is the upper quotient
κS = δS/

?δS of δS and δS.
When G is equal to Rm or Cn with the usual topologies, we can also form the

composition clos ◦αS = αS, which is an ethmomorphism in view of Lemma 3.6, in
order to get a closed set. When passing to complements we get an ethmomorphism
◦κS yielding open sets, and when applied to open sets we see that it is larger than the
identity: (◦κS)(Ω) = (κS(Ω))◦ ⊃ Ω.

It is convenient to express some of these properties in terms of accessibility:
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Definition 3.7. If A is a subset of Rm or Cn and b a point in this space, we shall say
that b is S-accessible from the outside if b belongs to the closure of αS({A). In
particular we shall speak about accessibility from the outside by balls of radius r if S
is equal to B6(0, r) or B<(0, r). �

Remark 3.8. If b is S-accessible from the outside of a certain class, then there is also a
set T of the same class such that A ∩ T = {b}. Indeed, if S satisfies

{x; f(x) < 0} ⊂ S ⊂ {x; f(x) 6 0},

then T can be taken as the set of all x such that f(x) + ‖x− b‖2
2 6 0. �

We shall consider regularity classes Ck,β, where k ∈ N and 0 6 β 6 1, meaning that the
functions considered are of class Ck and all derivatives of order k are Hölder continuous
of order β, with the understanding that Ck,0 = Ck.

Definition 3.9. If b ∈ ∂A is accessible from the outside by a structuring element S
having boundary of class Ck,β with k > 1, then we shall say that the unique tangent
plane to S at b is an external tangent space of A at b. The set of all external tangent
spaces at a point b, a subset of the Grassmann manifold Grm−1(Rm) = Mm,m−1(R) of
all real hyperplanes passing through the origin, will be denoted by Θk,β

A,R(b), and the
corresponding multifunction ∂A⇒ Grm−1(Rm) by Θk,β

A,R.
If Ω is an open subset of Cn, we shall denote by Θk,β

Ω,C(b) the set of all complex
hyperplanes through the origin contained in planes in Θk,β

Ω,R(b); we call them complex
external tangent spaces. It is the set of all complex hyperplanes Z = Y[0], Y ∈
Θk,β

Ω,R(b).
When the class is clear from the context or is unimportant, we shall omit the

superscripts k,β. �

It is easy to see that Θ1,1
Ω,R = Θ2

Ω,R = Θ∞Ω,R.
The relation between ΓΩ(b) and Θ2

Ω,C(b), b ∈ ∂Ω, seems to be of interest.

Definition 3.10. Let us say that Ω is tangentially lineally convex at b ∈ ∂Ω if
no complex external tangent plane of class C2 at b meets Ω, i.e., if Θ2

Ω,C(b) ⊂ ΓΩ(b).
�

Proposition 3.11. Let b ∈ A ⊂ Rm be accessible from the outside by balls of radius
r > 0. Then Θk,β

A,R(b) is connected.

Proof. Take b = 0 and assume that A ∩ Uj = {0}, j = 0, 1, where Uj is the set of
all points x such that fj(x) < 0, and fj is a function of a given regularity and with
nonvanishing gradient wherever it is zero. This is justified by Remark 3.8. We now
form fs = (1−s)f0 +sf1, 0 6 s 6 1, and claim that the set where fs is negative defines
an open set Us which serves to prove that all gradients

(grad fs)(0) = (1− s)(grad f0)(0) + s(grad f1)(0)

can occur, implying that there is a curve connecting the hyperplane defined by f0 to
that defined by f1. We note that the gradient of fs is nonzero at the origin except in the
case when (grad f1)(0) is a negative multiple of (grad f0)(0). In that case, however,
the hyperplanes defined by the two gradients are the same, so there is nothing to prove.
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We modify fs outside a neighborhood of the origin if necessary to make sure that it
satisfies the requirement that its gradient be nonzero everywhere where the function
itself vanishes.

If x ∈ A r {0}, then x /∈ Uj, j = 0, 1, so that fj(x) > 0, j = 0, 1. This implies
that fs(x) > 0, so that x /∈ Us. Thus we have proved that A ∩ Us ⊂ {0}; obviously
A ∩ Us ⊃ {0}. In conclusion, we have proved that the tangent plane of Us at b = 0
belongs to Θk,β

A,R(0) for all s with 0 6 s 6 1. �

Example 3.12. Let us define a cleistomorphism κr : P(Cn) → P(Cn) or P(Rm) →
P(Rm) as the cleistomorphism with structuring element U = {B<(0, r) for some
positive radius r. It follows that κr(A) is closed for any set A, perhaps most easily seen
by observing that its complement, denoted by αr({A), is the union of all open balls
B<(x, r) which are contained in {A.

Thus κr(A) is the smallest invariance set containing A whose boundary points are
all accessible by balls of radius r, and we see that the boundary points of a closed set
F are accessible by such balls if and only if κr(F ) = F .

To treat open sets, we define λr(A) as the interior of κr(A). In view of Lemma 3.6
the operation A 7→ λr(A) = (κr(A))◦ is an ethmomorphism. If we restrict it to open
sets, it is larger than the identity, i.e., λr(Ω) ⊃ Ω for all open sets Ω. So accessibility
for open sets is defined by the fixed points of λr.

The infimum of all the κr, r > 0, is just the topological closure. �

3.7. Set-theoretical duality

In addition to the lattice-theoretical duality, there are also a set-theoretical duality.
It can be proved that δU({A) = {ε−U(A), where −U is the set of all points −x with
x ∈ U .

Forming compositions, we obtain, αU = δU ◦ εU , an anoiktomorphism, and κU =
εU ◦ δU , a cleistomorphism. They are related by the formula κU({A) = {α−U(A),
A ∈ P(G). This is the set-theoretical duality defined by passing to the complement
of the sets to which the operations are applied.

4. Concavity and convexity with respect to a structuring
element or a family of structuring elements

Just as it is sometimes easier to look at lineally concave sets rather than lineally
convex sets, it can be more convenient to define accessibility from the inside than from
the outside. We shall do this in terms of concavity and convexity with respect to a
structuring element, treating both properties in parallel:

Definition 4.1. Given a subset S (called structuring element) of an abelian group
G, we shall say that a subset A of G is S-concave if it is a union of translates x+ S
with x in some subset X of G. We shall say that it is S-convex if its complement is
S-concave.

We define the S-kernel of a set A, denoted by αS(A), as the union of all translates
x + S contained in A. We define the S-hull of a set B, denoted by κS(B), as the
complement of the S-kernel of {B. �
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Obviously {αS(A) = κS({A).
The anoiktomorphism αS, defined above in Subsection 3.6 as

αS(A) =
⋃
x∈G

(x+ S; x+ S ⊂ A), A ∈P(G),

has as fixed points the S-concave sets. We have αS(A) ⊂ A ⊂ κSA) for all nonempty
sets S ∈P(G) and all A.

We can consider the sets x+ S as voxels or pixels, and see that no smaller sets are
allowed to build up a S-concave set. Or we can think of elements x as atoms and sets
x+ S as molecules—no free atoms are allowed; they must all be part of a molecule.

What we have done so far is define concavity and convexity with respect to a single
set S. Let us also consider families S of structuring sets:

Definition 4.2. Given a family S of subsets of an abelian group G, we shall say that
a subset A of G is S -concave if it is a union of translates x + S with x ∈ X ⊂ G,
S ∈ S . We shall say that B is S -convex if its complement is S -concave.

We define
αS (A) =

⋃
x∈G
S∈S

(x+ S; x+ S ⊂ A) ,

called the S -kernel of A, and κS (B) = {αS ({B), called the S -hull of B. �

Thus {S}-concavity is the same as S-concavity.
Classical examples are when we take S as the family U of all open half-spaces in

Rm, defined by an inequality ξ · x > c, or the the family C of all closed half-spaces in
Rm, defined by an inequality ξ ·x > c, with ξ ∈ Rmr{0}, c ∈ R. We can also consider
the set of all real or complex hyperplanes, or intersections of complex hyperplanes with
balls.
Example 4.3. The set A = ]0, 1[ 2∪{(0, 0)} ⊂ R2 (an open square with a vertex added)
is convex, but is not an intersection of open half planes, nor of closed half planes. Here
we obtain

A◦ = ]0, 1[ 2 $ A $ κU (A) = [0, 1[ 2 $ κC (A) = [0, 1]2 = A,

indicating that more general half planes are needed. �

In view of the above example we now define more general half-spaces, called here
refined half-spaces, by which we mean convex sets Y such that

{x ∈ Rm; ξ · x < c} ⊂ Y ⊂ {x ∈ Rm; ξ · x 6 c}

for some ξ ∈ Rm r {0} and c ∈ R. Let us denote by Y the family of all such sets Y .
Obviously κC (A) is always a closed set. In view of the Hahn–Banach theorem it is

equal to the closed convex hull of A. The mapping κU takes an open set to its convex
hull (which is open) and a compact set to its convex hull (which is closed).

This is convexity viewed from the outside. We can also work with convexity from
the inside: We define the convex hull of a set A ⊂ Rm as

cvxh(A) =
{∑m+1

j=1 λja
(j); λj > 0, ∑m+1

j=1 λj = 1, a(j) ∈ A
}
, A ∈P(Rm).

Actually cvxh = κY . This operation maps any set to its convex hull, which need not
be closed even if A is closed. The composition clos ◦ cvxh takes any set to its closed
convex hull. (The composition cvxh ◦ clos is not idempotent if m > 2.)
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Definition 4.4. We shall say that an open subset of Rm or Cn is r-concave if it is a
union of open balls of radius r. A closed subset is called r-concave if it is a union of
closed balls of radius r. A set is called r-convex if its complement is r-concave. �

This definition agrees for open sets in C with that of Sergey Favorov and Leonid Golin-
skii (2015:3). They defined the r-convex hull of a set E ⊂ C, denoted by convr(E),
as the set

convr(E) =
⋂(
{D<(z, r); E ⊂ {D<(z, r)

)
, E ⊂ C, r > 0.

Thus { convr(E) is a union of open disks. They call a set r-convex if convr(E) = E.
Such a set is always closed. The generalization to Rm or Cn is obvious, and we see that
convr(E) is exactly the set κB<(0,r)(E) with the notation from Definition 4.1. When r
tends to +∞, we get the closed convex hull cvxh(E) as a limiting case.3

5. Lineal convexity viewed from mathematical morphology

Definition 5.1. A subset A of Cn is said to be lineally concave if it is a union
of affine complex hyperplanes. It is said to be lineally convex if its complement is
lineally concave. �

Thus we have here an example of S -concavity, with S equal to the family Z of all
complex hyperplanes in Cn containing the origin. Weak lineal convexity means that
κZ (Ω) does not meet the boundary of Ω.

There are also local variants of these definitions: we take S = Zr as the family of
all intersections Z ∩ B6(0, r), where Z is a complex hyperplane passing through the
origin. The corresponding Zr-convexity, for some positive r, can be called uniform
local lineal convexity.

Definition 5.2. A subset A of Cn is said to be C convex if A ∩ L is a connected
and simply connected subset of L for every affine complex line L (Hörmander 1994:
Definition 4.6.6).

A subset A of P, the complex projective space of dimension 1, is called C-convex
if A 6= P and both A and P r A are connected (Andersson et al. 2004: Definition
2.2.1).

A subset B of n-dimensional projective space Pn is called C-convex if all its
intersections with complex lines are C-convex (Andersson et al. 2004: Definition 2.2.1).

�

Since by definition the empty set is connected, it follows that it is C convex (Hör-
mander) as well as C-convex (Andersson et al.) The whole space Cn is C convex
in Hörmander’s sense, wheras the whole space Pn is not C-convex in the sense of
Andersson et al.

3The notion of r-convex closed sets is used by these authors as a hypothesis in results on Blaschke-
type conditions for the Riesz measure of a subharmonic function, thus in a context quite different
from the one studied here. Since I worked on generalized convexity during the period 1996–2001 (see
for example Proposition 4.9 in my paper (1996)) and then again since 2014, and with quite different
problems, our respective studies are independent.
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Let us take again the family S of structuring elements in Definition 4.2 as the
set Z ⊂ P(P(Cn)) of all complex affine hyperplanes in Cn. We define a dilation
ψ : P(Z )→P(Cn) by

(5.1) ψ(B) =
⋃
Z∈B

Z, B ∈P(Z ).

Its lower inverse ψ[−1] : P(Cn)→P(Z ) is defined by

(5.2) ψ[−1](A) =
⋃

B∈Z

(B; ψ(B) ⊂ A) = {Z ∈ Z ; Z ⊂ A}, A ∈P(Cn).

We note that ε = ψ[−1] is an erosion—as the lower inverse of a dilation, but also easily
seen directly. There is a relation between ΓA and ε:

ΓA(b) = {Z ∈ ε({A); b ∈ Z}.

The upper inverse ε[−1] : P(Z )→P(Cn) of ε is a dilation defined by

(5.3) ε[−1](B) =
⋂

A∈P(Cn)
(A; ε(A) ⊃ B) =

⋃
Z∈B

Z = ψ(B), B ∈P(Z ).

By composition we obtain an anoiktomorphism αZ : P(Cn)→P(Cn):

αZ (A) = (ε[−1] ◦ ε)(A) = (ψ ◦ ψ[−1])(A) =
⋃

(Z; Z ⊂ A), A ∈P(Cn),

the union of all complex affine hyperplanes contained in A. We can also form

κZ (B) = (ε ◦ ε[−1])(B) = (ψ[−1] ◦ ψ)(B), B ∈P(Z ).

We have αZ (A) = A (equivalently αZ (A) ⊃ A) if and only if A is lineally concave,
which happens if and only if {A is lineally convex. If Ω is open, it is lineally convex if
and only if αZ ({Ω) ⊃ {Ω, and weakly lineally convex if and only if αZ ({Ω) ⊃ ∂Ω.

6. Exterior accessibility of Hartogs domains

We shall now study Hartogs domains in Cn×C, where we write coordinates as (z, t) ∈
Cn ×C.

Definition 6.1. A subset A of Cn × C is said to be a Hartogs set if (z, t) ∈ A,
|s| = |t| implies (z, s) ∈ A. It is said to be a complete Hartogs set if (z, t) ∈ A,
|s| 6 |t| implies (z, s) ∈ A. �

An open complete Hartogs domains is thus given in the space Cn×C by an inequality
|t| < R(z), where R : Cn → [−∞,+∞], as

(6.1) Ω = {(z, t) ∈ Cn ×C; |t| < R(z)} = {(z, t) ∈ ω ×C; |t| < R(z)},

where we have defined ω as the set where R is positive or equal to +∞. The fact that
Ω is open implies that R|ω is lower semicontinuous.

To define complete Hartogs sets, we may use either the function R, the function
h = R2, or the function f = − logR. An open complete Hartogs set is then defined
equivalently by |t| < R(z); |t|2 < h(z); |t| < e−f , and we are free to choose whichever
is convenient for a specific calculation. We note that if f is plurisubharmonic, then Ω,
defined by log |t|+ f(z) < 0, is pseudoconvex.

Complex hyperplanes in Cn ×C are of three kinds:
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1. A hyperplane can be given by an equation β · (z− z0) = 0 for some β ∈ Cnr {0}
and some point z0 ∈ Cn (we shall call it a vertical hyperplane).

2. It can have the equation t = c for some complex constant c (we shall call it a
horizontal hyperplane).

3. Finally it can have the equation t = β · (z − z0), where β is nonzero. Such a
hyperplane intersects the hyperplane t = 0 in a hyperplane in Cn containing z0.

The projection Cn × C 3 (z, t) 7→ (z, |t|) ∈ Cn ×R can be used to visualize the set.
Equivalently, we can look at the intersection of Ω with the set {(z, t); z ∈ Cn, t > 0}.
A hyperplane is then represented in Cn ×R by either

1. a vertical plane;
2. a horizontal plane |t| = |c|; or
3. a cone |t| = |β ·(z−z0)| with vertices at all the points z satisfying β ·(z−z0) = 0;

when n = 1 just the unique point z0.

If b = (z0, t0) is a boundary point with t0 = 0, then there is a complex line of equation
z = z0 in the complement of Ω, and there may or may not exist a hyperplane in
ΓΩ(b)—if the set ω in Cn where R is positive is lineally convex, of course there is
such a hyperplane. If on the other hand b = (z0, t0) is a boundary point satisfying
|t0| = R(z0) > 0, then a hyperplane Z ∈ ΓΩ(b) is given by an equation t/t0 = β · z; the
parallel hyperplane b + Z passing through b has the equation t/t0 = 1 + β · (z − z0).
It may happen that all real hyperplanes containing b+ Z cuts Ω, but if this is not the
case, the only real hyperplane containing b + Z and not cutting Ω is that of equation
Re t/t0 = 1 + Re β · (z − z0).

Theorem 6.2. Let a function R : Cn → [−∞,+∞] be given and consider the complete
Hartogs set Ω defined by (6.1). Assume that Ω is open and weakly lineally convex. Then
R is continuous at every point where it is finite and positive, and all boundary points
of Ω satisfying (z0, t0) with |t0| = R(z0) > 0 are accessible from the outside of class C2.
In fact, every complex hyperplane which passes through a boundary point (z0, t0) with
|t0| = R(z0) > 0 and does not meet Ω is contained in a real external tangent plane. In
particular ΓΩ(b) ⊂ ΘΩ,C(b) for all points b = (z0, t0) with |t0| = R(z0) > 0 (ΘΩ,C(b) is
defined in Definition 3.9).

Proof. Any point (z0, t0) with |t0| = R(z0) > 0 belongs to the boundary of Ω, so there
exists by hypothesis a vector β ∈ Cn such that the complex hyperplane defined by
t/t0 = 1 + β · (z − z0) lies entirely in the complement of Ω. We shall prove that there
is a real external tangent plane of class C2 containing it.

That the complex hyperplane does not meet Ω means that

R(z)
|t0|

6 |1 + β · (z − z0)|, z ∈ Cn.

Now
|1 + z| 6 1

2 + 1
2 |1 + z|2 = 1 + Re z + 1

2 |z|
2, z ∈ C,

with equality if and only if |1 + z| = 1. It follows that for any γ > 1
2 ,

|1 + z| 6 1 + Re z + γ|z|2, z ∈ C,
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with equality only when z = 0. Hence

|1+β ·(z−z0)| 6 1+Re β ·(z−z0)+γ|β ·(z−z0)|2 6 1+Re β ·(z−z0)+γ‖β‖2
2‖z−z0‖2

2,

with equality between the first and last expression only when z = z0 or β = 0. There-
fore, if we choose c > 1

2‖β‖
2
2,

R(z)/|t0| 6 1 + Re β · (z − z0) + c‖z − z0‖2
2, z ∈ Cn,

with equality only when z = z0.
So the set

U = {(z, t); Re (t/t0) > 1 + Re β · (z − z0) + c‖z − z0‖2
2},

taking c > 1
2‖β‖

2
2, is a set with smooth boundary and satisfies the requirement in

Definition 2.1; the real hyperplane defined by Re t/t0 = 1+Re β · (z−z0) is an external
tangent plane of class C2 of Ω at (z0, t0).

From what we just proved it follows in particular that R is upper semicontinuous
where positive. On the other hand, Ω is open by hypothesis, which, as we noted,
implies that the restriction R|ω is lower semicontinuous. �

7. Unions of increasing squences of domains

If an increasing family (Vj)j∈N of open sets in Rm is given with union V and if b ∈ ∂V ,
let us denote by lim sup ΘVj ,R(b), understood as (lim sup ΘVj ,R)(b), all limits of real
hyperplanes Yj ∈ ΘVj ,R(b(j)) at points b(j) ∈ ∂Vj such that b(j) → b as j → ∞. We
shall use a similar notation for the complex hyperplanes: lim sup ΘΩj ,C(b) when Ωj

increases to Ω, and also lim sup ΓΩj
(b).

Proposition 7.1. Let (Vj)j∈N be an increasing family of open subsets of Rm. Define
ΘV,R as in Definition 3.9 using as structuring element a set S with boundary of class
Ck,β with k > 1. Then ΘV,R(b) ⊂ lim sup ΘVj ,R(b) for all points b ∈ ∂V . A similar
result holds for the complex external tangent planes ΘΩ,C(b) of an open subset Ω of Cn.
Here the inclusion can be strict. The limit superior is always nonempty.

Proof. Take b = 0 and let U be an open set with boundary of the class in question such
that V ∩ U = {0}, defined as the set of all points x where ϕ(x) is negative, ϕ being of
the right class and with nonvanishing gradient where it is zero. Let ϕs, s > 0, be the
function

ϕs(x) = ϕ(x)− s+ ‖x‖2
2, x ∈ Rm,

and let Us be the set where ϕs is negative. We note that when x ∈ V , then x /∈ U , so
that ϕ(x) > 0. If x ∈ V ∩Us, then ϕ(x) > 0 while ϕs(x) < 0. So ‖x‖2

2 < s− ϕ(x) 6 s.
Since ϕ is of class C1, its gradient at any point in V ∩ Us is close to its gradient at
the origin. For every large enough j there is a smallest sj such that Usj

and Vj have
a common boundary point b(j). Necessarily, then, ‖b(j)‖2

2 6 s. For large j, sj is small,
so small that the external tangent plane of Usj

at b(j) is as close as we like to the
tangent plane of U at the origin. This shows that any hyperplane in ΘV,R(0) can be
approximated by hyperplanes in ΘVj ,R(b(j)). �
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Proposition 7.2. Let (Ωj)j∈N be an increasing family of lineally convex open subsets
of Cn and denote their union by Ω. Then lim sup ΓΩj

(b) = ΓΩ(b). In particular the
graph of ΓΩ is closed.

Proof. If Z /∈ ΓΩ(b), then b + Z intersects Ω. Take a compact ball K in Ω which
contains a point of b+ Z in its interior. Then for all suffiently large j, Ωj contains K.
All hyperplanes which are close enough to b+Z intersect K and hence also Ωj for these
j. Therefore, if Zj tends to Z and b(j) ∈ ∂Ωj tends to b, then b(j) + Zj intersects Ωj

for large j. This means that hyperplanes b(j) +Zj with Zj ∈ ΓΩj
(b(j)) cannot approach

b+ Z. So we have lim sup ΓΩj
(b) ⊂ ΓΩ(b).

The opposite inclusion is trivially true. �

Lemma 7.3. If A is a closed set in Rm and b ∈ ∂A, then Θ2
A,R(b), where we use a

Euclidean ball as structuring element, is nonempty.

Proof. Given b ∈ ∂A and a positive number s, take c /∈ A with ‖c − b‖ < s. Take
then r > 0 maximal so that B<(c, r) does not cut A. Clearly r 6 s. On the boundary
of this ball, there must exist a point p ∈ A. Then ‖p − b‖ 6 r + s 6 2s, and p is
accessible from the outside of class C2, which means that Θ2

A,R(p) is nonempty. Since
s is arbitrarily small, the closure of the the graph of Θ2

A,R has a nonempty fiber over
b. �

Theorem 7.4. Let Ω be an open subset of Cn which is equal to the interior of its
closure. If Ω is tangentially lineally convex at all points b in some open subset B of
∂Ω (see Definition 3.10), then Θ1

Ω,C(b) ⊂ Θ2
Ω,C(b) ⊂ ΓΩ(b), and ΓΩ(b) is nonempty for

all b ∈ B. In particular, tangential lineal convexity at all points b ∈ ∂Ω implies weak
lineal convexity.

Proof. We apply Lemma 7.3 to A = Ω. Then the interior of A is equal to Ω. Moreover,
graph(ΓΩ) is closed, see Proposition 7.2. �

If Ω is lineally convex, ΓΩ(b) is not necessarily connected, not even when Ω is a Hartogs
set, as is shown by the example below as well as by Example 8.2 in the next section.
Example 7.5. Let Ω be the Cartesian product of an annulus and a disk,

Ω = {(z1, z2) ∈ C2; 1 < |z1| < 2, |z2| < 1},

a lineally convex set. We define complex hyperplanes Zβ passing through 0 by the
equations βz1 = (1 − β)z2, z ∈ C2, β ∈ [0, 1]. Use a ball B6(0, r) with 0 < r < 1 as
structuring element. Then Θ2

Ω,C(b), where b = (1, 1), consists of all the Zβ, β ∈ [0, 1],
whereas ΓΩ(b) consists of Z0 and Zβ, 1

2 6 β 6 1. Thus ΓΩ(b) does not contain
Θ2

Ω,C(b). We also note that ΓΩ(b) is not connected; it has two components, {Z0} and{
Zβ; 1

2 6 β 6 1
}
.

If 0 < β < 1
2 , then there are points z = (−1 − s, z2) ∈ Zβ ∩ Ω far from b = (1, 1)

(take s > 0, s = −1− z1 < 2/β − 4) as well as points in Zβ ∩ Ω arbitrarily close to b.
The set Ω is lineally convex, but if we approximate it from the inside by a set with

boundary of class C1 containing all points in Ω with distance to ∂Ω at least equal to
ε > 0, then we get a set which is Z1-convex but not Zr-convex for r > 1 + ε > 1. (For
S -convexity, se Definition 4.2; for Zr-convexity, see the beginning of Section 5.) �
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8. Convexity properties of superlevel sets

Definition 8.1. Given any function f on a set X and with values in the set [−∞,+∞]
of extended real numbers and an element c of [−∞,+∞], we define its (non-strict)
superlevel set as {x ∈ X; f(x) > c}. Analogously we define its (non-strict) sublevel
set as {x ∈ X; f(x) 6 c}. �

Given a complete Hartogs set with radius function R, we shall denote by Mc the
superlevel set {z ∈ Cn; R(z) > c}.
Example 8.2. Consider the lineally convex Hartogs set Ω ⊂ C×C defined by the radius
function

R(z) = min(|z − 2|, |z + 2|), |z| < 1; R(z) = 0, |z| 6 1.

Then (0, 2) belongs to the boundary of Ω and ΓΩ((0, 2)) consists of precisely two el-
ements, the hyperplanes defined by t = −z and t = z, respectively; thus it is not
connected. (This shows that Ω is not C-convex in view of Zelinskĭı’s criterion men-
tioned near the end of Section 2.) However, the union of all the ΓΩ(b) with b ∈ ∂Ω
is connected. We note that ΓΩ((i,

√
5)) is connected and contains ΓΩ((0, 2)). (This

example is Example 3.1 in Kiselman (1996).)
The boundary points of Ω are accessible from the outside by balls of a not too large

radius, and ΘΩ,C((0, 2)) consists of all hyperplanes t = λz, with λ ∈ [−1, 1]. We also
note that the intersection of Ω with the complex line t = c has two components if
2 6 |c| <

√
5.

Also, for a = s + i(1 − s/2) with a small positive number s, the superlevel set
MR(a) is B<(0, r)-convex for r slightly smaller than

√
5, whereas for s = 0, a = i, the

superlevel set MR(i), now equal to {i,−i}, is B6(0, r)-convex for any r but not convex.
(This is a warning that r-convexity is not so meaningful for sets that are not regular
open or regular closed.) �

For simplicity we shall assume below that n = 1.

Theorem 8.3. Let Ω ⊂ C×C be a lineally convex Hartogs domain defined as in (6.1)
with n = 1. Assume that a point a ∈ ω is such that R(a) < supR. Then there exists
an r > 0 such that a ∈ εD<(0,r)(ω) implies a ∈ αD6(0,r)({MR(a)). In other words, since
a belongs to the open set ω, the distance r to {ω is positive, and a is exterior accessible
in MR(a) by disks of radius r.

Proof. There is a complex hyperplane (thus a complex line in the present situation) in
the complement of Ω which passes through (a,R(a)). It cannot be vertical since a ∈ ω
and it cannot be horizontal since R(a) < supR, so it must have an equation of the
form

t

R(a) = 1 + β(z − a) = β(z − aβ),

where β 6= 0 and aβ = a− 1/β is the point where the line hits the line t = 0.
This implies that the cone in C × R defined by |t|/R(a) > |β(z − aβ)| does not

meet any point (z, |t|) ∈ Ω, in particular that a belongs to the disk D6(aβ, s) with
center at aβ and radius s = |a − aβ| = 1/|β|. As noted, this disk does not meet ω, so
a ∈ αD6(0,s)({MR(a)). We note finally that s = |a− aβ| > d(a, {ω) = r. �
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There is no uniformity here: r depends on a. But if Ω is bounded and we restrict
attention to points a in a compact subset of ω and with R(a) > c > 0, we can choose
a fixed r > 0. Thus MR(a) is D<(0, r)-convex.

There may be several lines of the form t = β(z − aβ) as mentioned in the proof.
Then among all the possible values of β ∈ C we can take the infimum of their absolute
values, and any limit of these numbers must also define a line in the complement of Ω,
since the complement is closed. This gives the largest possible value to r = 1/|β|.

In Example 8.2 we see that, for a real such that 0 < a < 1,

r = 2− a > d(a, {ω) = 1− a,

implying that the number r obtained in the proof can be smaller than it is in an actual
situation.
Remark 8.4. In the other direction, if a closed r-convex set M in C is given, then
there exists a lineally convex open set in Cn × C with radius function R such that
MsupR = M ; see Proposition 4.9 in my paper (1996). �

Corollary 8.5. If Ω is lineally convex and bounded, and its boundary is of class C1 at
the set where R > 0, then a point a ∈ ω belongs to αD6(0,r)({MR(a)) if

r 6
1

‖(gradR)(a)‖2
.

This is the case for all points z with R(z) = R(a) if

r 6
1

supz∈ω
(
‖(gradR)(z)‖2; R(z) = R(a)

) .
We see that r ↗ +∞ when R(a) ↗ supR, meaning that the superlevel set becomes
more and more convex. We shall make this precise in Theorem 10.1.

Proof. In this situation there is only one line in the complement of Ω passing through
(a,R(a)), and the absolute value of the coefficient β is ‖(gradR)(a)‖2 = 2|Rz|. The
radius r depends on a and may vary, but among all the points z with R(z) = R(a) its
lower bound is positive. �

We now consider a situation with two levels, R(a) and R(a) + s > R(a).

Theorem 8.6. Let Ω ⊂ C×C be a lineally convex Hartogs domain defined as in (6.1)
with n = 1 and take a point a ∈ ω ⊂ C with R(a) < supR. Then there exists a number
r > 0 such that for all s > 0,

d(a,MR(a)+s) >
sr

R(a) ,

where the inequality means that any point w with R(w) = R(a) + s is outside the disk
D<(aβ, r1) with r1 = r + sr/R(a).

It follows that w is accessible with disks of radius r1 in the complement of the
superlevel set MR(a)+s.
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Proof. As in the proof of Theorem 8.3, we see that the cone defined by |t|/R(a) >
|β(z − aβ)|, where β is the coefficient in the equation of the line in the complement of
Ω passing through (a,R(a)), viz. t/R(a) = 1 + β(z − a), does not contain any point
of the form (z, |t|) in Ω. We take r = 1/|β|. In particular the disk D<(aβ, r1) with
r1 = r + sr/R(a) for any w with R(w) = R(a) + s does not meet MR(a)+s.

Since also (w,R(w)) admits a line t/R(w) = 1 + γ(z −w) in the complement of Ω,
we must have |γ| 6 |β|, so the corresponding radius r2 = 1/|γ| is not smaller than r1.

�

9. Admissible multifunctions

Definition 9.1. Let Ω be an open subset of Cn and γ : B ⇒ Grn−1(Cn) a multifunction
defined on a subset B of the boundary of Ω and with values in the Grassmann manifold
of all hyperplanes through the origin. We shall say that γ is admissible if
(9.1.1). γ(b) ⊂ ΓΩ(b) for all b ∈ B;
(9.1.2). The graph of γ is closed; and
(9.1.3). γ(b) is nonempty and connected for every b ∈ B. �

It follows that graph(γ) is connected if ∂Ω is connected; see Lemma 9.3 below.
An example of an admissible multifunction is ΓΩ : ∂Ω⇒ Grn−1(Cn) provided ΓΩ(b)

is connected for every b ∈ ∂Ω. (In particular, this is the case if the boundary is of
class C1.) The graph is then automatically closed in view of Proposition 7.2. It is
easy to see that in Examples 7.5 and 8.2, there is no admissible multifunction γ in any
neighborhood of the points (1, 1) and (0, 2), respectively.

If Ω is tangentially lineally convex, a candidate for γ might be the closure of ΘΩ,C.
Then property (9.1.1) holds by hypothesis, (9.1.2) by construction, and (9.1.3) may
hold if the boundary of Ω is sufficiently regular.

Example 9.2. Let Ω be a convex open set in Cn. If Ω is empty or equal to the whole
space, then its boundary is empty. If Ω is a slice, then its boundary has two components.

In all other cases, ∂Ω is connected, and we know that the set of all real hyperplanes
passing through a fixed boundary point b and not intersecting Ω is connected. Then also
the set of all complex hyperplanes containing b and contained in such a real hyperplane
is connected—the mapping Y 7→ Y[b] is continuous as we noted in Section 2. Thus ΓΩ is
an admissible multifunction except in the first-mentioned cases, even if the boundary
is not of class C1. �

If a lineally convex open set Ω has a C1 boundary, ΓΩ(b), a singleton set, depends
continuously on b. When ΓΩ(b) is no longer a singleton, the following result will serve
instead of the continuity.

Lemma 9.3. Let Ω be an open set in Cn and γ : A ⇒ Grn−1(Cn) an admissible
multifunction on a subset A of ∂Ω. Then the graph of γ over B,

graphB(γ) = {(b, Z); b ∈ B and Z ∈ γ(b)},

is connected for every connected subset B of A. In particular the graph of γ is connected
if the boundary of Ω is connected and γ is defined on all of it.
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Proof. Assume that graphB(γ) = V0∪V1, where the Vj are disjoint and closed relative
to graphB(γ). Define Bj as the set of all points b such that some hyperplane in γ(B)
belongs to Vj, j = 0, 1. Then B0 and B1 are disjoint, since by hypothesis every γ(b) is
connected. Moreover B0 and B1 are closed relative to B, since the graph of γ is closed
and the manifold Grn−1(Cn) is compact. By hypothesis B is connected, so either B0
or B1 must be empty. Hence V0 or V1 is empty, proving that the graph of γ over B is
connected.

We note that γ∗(B) is connected as a continuous image of the graph (it is the
projection of the graph on the target space Grn−1(Cn)). �

Proposition 9.4. Let Ω be an open subset of Cn and F an affine subspace of Cn. De-
note by ΩF the set Ω∩F considered as an open subset of F . Every complex hyperplane
Z in Cn which does not contain F gives rise to a complex hyperplane ψ(Z) = Z ∩ F
in F . Let an admissible multifunction γ : B ⇒ Grn−1(Cn) be given and define a multi-
function γF on B ∩ ∂ΩF by γF (b) = {ψ(Z); Z ∈ γ(b)}. Then γF is an admissible
multifunction on B ∩ ∂ΩF .

Proof. Since ψ(Z) ⊂ Z, it is clear that γF (b) ⊂ ΓΩF
(b); thus (9.1.1) in Definition 9.1

holds. The graph of γ over any compact subset of ∂Ω is compact; hence the graph of
γF over any compact subset of ∂ΩF is compact, thus closed: property (9.1.2) holds.
Finally (9.1.3) follows since ψ is continuous and thus maps connected subsets onto
connected subsets. �

The proposition can in particular be applied to ΓΩ if ΓΩ(b) is connected for all b ∈ ∂Ω.

10. Links to ordinary convexity

Theorem 10.1. Let R be a continuous real-valued function defined on Cn and define
Ω by (6.1). Assume that Ω is connected and that its boundary is of class C1 (at least
in a neighborhood of MsupR). Then the set MsupR where R attains its maximum,

(10.1) MsupR = {z ∈ Cn; R(z) = supR},

is convex.

Proof. A set is convex if and only if its intersection with every one-dimensional complex
affine subspace is convex. Therefore it is enough to prove the theorem for n = 1.

So let n = 1 and let a belong to the boundary of MsupR. We shall prove that there
is an open half plane with a on its boundary which does not meet MsupR, proving the
convexity of that set.

We have (gradR)(a) = 0, and near a there are points c with (gradR)(c) nonzero
and arbitrarily small. In view of Corollary 8.5 this means that there is a disk of
arbitrarily large radius with c on its boundary. The disk is of the form D6(cβ, r), where
r = |c − cβ|, cβ = c − 1/β being the point where the line t/R(c) = 1 + β(z − c) hits
the plane t = 0. The normalized vectors (c− cβ)/|c− cβ| have an accumulation point,
and this proves that the union of all the disks D6(cβ, r) when c varies in an arbitrarily
small neighborhood of a contains an open half plane with a on its boundary. We are
done. �

The assumption that the boundary be of class C1 can be weakend, as we shall now
show.
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Theorem 10.2. Let R be a continuous real-valued function defined on Cn and define
Ω by (6.1). Assume that Ω is bounded and connected and that there exists an admis-
sible multifunction γ defined at all boundary points (z0, t0) with |t0| = R(z0) > 0 (see
Definition 9.1). Then the set MsupR where R attains its maximum is convex.

For a Hartogs domain Ω we always have ΓΩ(b) ⊂ ΘΩ,C(b) when b = (z0, t0) with
|t0| = R(z0) > 0 (Theorem 6.2); if the domain is tangentially lineally convex, we have
ΓΩ(b) = ΘΩ,C(b). For such domains we therefore have an admissible multifunction
γ = ΓΩ = ΘΩ,C: (9.1.1) is obvious; (9.1.2) follows from Proposition 7.2; (9.1.3) follows
from Proposition 3.11.

We note that the hypothesis is satisfied in particular if Ω is lineally convex and
R is of class C1. In Kiselman (1996,Theorem 4.8) the result was proved under this
hypothesis, and even under the weaker one that R can be approximated from below
by C1 functions.

In view of Zelinskĭı’s characterization of C-convex sets mentioned near the end of
Section 2, the hypotheses are satisfied for C-convex sets, again taking γ = ΓΩ. There
are easy examples which show thatMsupR need not be convex if we drop the hypothesis
of connectedness; see Example 8.2.
Proof of Theorem 10.2. Again, the setMsupR is convex if its intersection with every one-
dimensional complex affine subspace is convex. Proposition 9.4 shows that if we have
an admissible multifunction on a subset of ∂Ω, then there is one also on a corresponding
subset of ∂ΩF , F being any affine subspace of Cn × C. Therefore, taking F as the
Cartesian product of a complex line in Cn and the line z = 0, we see that it is enough
to prove the theorem for n = 1.

So let n = 1. To prove that MsupR is convex means to prove that the segment
[s0, s1] is contained in MsupR if s0, s1 ∈ MsupR. There is no loss in generality if we
assume that s0 = −1 and s1 = 1.

A non-vertical and non-horizontal complex line through (a, t0) with t0 6= 0 has the
equation

t

t0
= 1 + β(z − a) = β(z − aβ), z ∈ C,

where aβ = a− 1/β is the point where the line hits the plane t = 0. We define

q(a, β) =

a− 1/β if β 6= 0,
∞ if β = 0.

In case R is differentiable at the point a, β is uniquely determined if we require that
the line be in ΓΩ((a, t0)).

We denote as before by ω the set of all points z ∈ C such that R(z) > 0. In general
the external tangent is not unique and we shall denote by Q(a) the set of all points
a− 1/β that can be obtained from complex lines in γ((a, t0)), thus

(10.2) Q(a) = {q(a, β); β ∈ γ(a,R(a))} ⊂ S2 = C ∪ {∞}, a ∈ ω.

We define Q(a) = {a} when a /∈ ω. Thus Q is a multifunction, Q : S2 ⇒ S2 r ω; its
images Q(a) are compact and connected.

The radius can always be estimated by

R(z) 6 R(a)|β| · |z − aβ|, z ∈ C, a ∈ ω, β ∈ γ(a,R(a)), aβ = q(a, β),
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with equality for z = a, assuming β 6= 0. In particular, if w ∈MsupR, then

R(a)|β| · |a− q(a, β)| = R(a) 6 R(w) 6 R(a)|β| · |w − q(a, β)|.

If aβ ∈ Q(a) r {∞}, then necessarily β 6= 0, so that

(10.3) |a− aβ| 6 |w − aβ|, a ∈ ω, w ∈MsupR, aβ ∈ Q(a) r {∞}.

Assume that −1 and 1 belong to MsupR; we shall then prove that any point c ∈
[−1, 1] belongs to MsupR. Consider Q(c + iy) for real y. We know from Lemma 9.3
that the set Q∗(c + iR) is connected. If ω is bounded and y or −y is very large, then
Q(c+ iy) = {c+ iy}. In general we can prove that Im a > 1 implies that Im b > 0 for
all b ∈ Q(a), and similarly Im a < −1 implies Im b < 0 for all b ∈ Q(a). This follows
from the following lemma.

Lemma 10.3. If Ω is a complete Hartogs domain in C2 with radius function R and if
±1 ∈MsupR, then for all b ∈ C with |Re a| 6 1 and all b ∈ Q(a) r {∞} we have

Im a > 1 implies Im b > 1
2(Im a− 1) and Im a 6 −1 implies Im b 6 1

2(Im a+ 1).

Proof. We know from (10.3) that |a−b| 6 |±1−b|. Expanding |±1−b|2−|a−b|2 > 0,
we get

2(Re b)(Re a∓ 1) + 1− (Im a)(Im a− 2Im b) > (Re a)2 > 0,
from which we deduce that 1 > (Im a)(Im a−2Im b), an inequality which implies those
in the lemma. �

Proof of Theorem 10.2, cont’d. So Q(c + iy) must pass from the upper half plane to
the lower half plane when y goes from large positive values to large negative values,
c being fixed. But it can never pass the real axis at points with x > 1 or x 6 −1.
Indeed, if b is real and larger than or equal to 1, we get from (10.3), taking a = c+ iy,

|a− b| 6 |1− b| = b− 1,

implying Re a > 1, so that c > 1 contrary to assumption. Likewise, Q(c + iy) cannot
pass the real axis at a point with x 6 −1.

However, Q(c+ iy) cannot pass from numbers with arbitrarily large positive imag-
inary part to numbers with large negative imaginary part in the strip −1 < Re z < 1
either. In fact, ω is connected, so there exists a curve contained in ω connecting −1 to
1, and Q(c+ iy) cannot cross that curve.

Hence it is impossible for Q(c+ iy) to pass from the upper half plane to the lower
half plane if it has only finite values. So it must have an infinite value, which means
that c+ iy0 ∈MsupR for at least one y0.

We thus know that there is a y0 such that c+iy0 ∈MsupR; without loss of generality
we may assume that it is nonnegative. Choose y0 as small as possible. If y0 = 0 we
are done: c ∈MsupR. Let us assume that y0 > 0 and try to reach a contradiction.

By (10.3) any point b ∈ Q(a) r {∞} must lie in each of the three half planes

|a− b| 6 |1− b| |a− b| 6 | − 1− b|, |a− b| 6 |c+ iy0 − b|.

The intersection of these three half planes is a triangle, and the union of these triangles
when a = c + iy with y ∈ [1

2y
0, y0] is bounded. Thus the possible finite values for b
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when a varies as indicated is bounded, and for a = c+ iy with 1
2y

0 6 y < y0 the point
b cannot be infinity. On the other hand, when a = c + iy0 ∈ MsupR, then Q(a) must
contain ∞. This means that the set of all points b ∈ Q(a) originating from points
a = c + iy with y ∈ [1

2y
0, y0] consists of ∞ and a nonempty bounded set; it is not

connected, in contradiction to Lemma 9.3. This contradiction shows that we must
have c ∈MsupR and proves the theorem. �

It is easy to modify Theorem 10.2 using Möbius mappings, at least if n = 1. In fact,
any mapping

C×C 3 (z, t) 7→
(
a+ bz

c+ dz
,

t

c+ dz

)
= (z′, t′) ∈ C×C

preserves lineal convexity, as was shown in Kiselman (1996: Lemma 8.1). Denote by
aβ the point where a line t/t0 = 1 + β(z − z0) intersects the z-plane. The line can be
mapped by a Möbius mapping to a line t′ = constant. This mapping takes the point
aβ to infinity, and all circles in the z-plane which pass through aβ are mapped onto
straight lines. Convex sets are transformed accordingly:

Definition 10.4. Let b be a complex number or ∞. Let us say that a subset A of the
Riemann sphere C ∪ {∞} is b-convex if
(10.4.1). b /∈ A; and
(10.4.2). ϕ∗(A) is convex if ϕ is a Möbius mapping which maps b to infinity. �

Corollary 10.5 (to Theorem 10.2). Let Ω and γ be as in Theorem 10.2, assume that
n = 1 and let π denote the projection defined by π(z, t) = z. Consider a line Z ∈ γ(a),
where a = (z0, t0), |t0| = R(z0) > 0, and let b be the point such that (b, 0) ∈ a + Z.
Then the set π∗((a+ Z) ∩ Ω) is b-convex.
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