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1 Introduction

Discrete mathematics exhibits many phenomena analogous to those of classical analy-
sis of real and complex variables. Topics like harmonic functions on Z

n received attention
already eighty years ago. The study of holomorphic functions on Z

2 has a history of more
than sixty years.

The pioneer in the latter field is Rufus Isaacs, who introduced two difference equa-
tions, both of which are discrete counterparts of the Cauchy–Riemann equation in one
complex variable. He thus defined two classes of holomorphic functions on the Gaussian
integers Z[i], called monodiffric functions of the first and second kind, respectively[1]. In
a later paper[2] he pursued the study of the monodiffric functions of the first kind. More
recent research on this class includes that of Nakamura & Rosenfeld[3].

Ferrand[4] investigated the monodiffric functions of the second kind, which she called
préholomorphes (preholomorphic). Later studies on this class include those of Duffin[5],
Lovász[6], Kenyon[7], and Benjamini & Lovász[8].

The purpose of this paper is to prove some results for functions defined on discrete
sets which are analogous to those of holomorphic functions of one or several complex
variables. Except for the definitions in Section 2 and brief remarks in Sections 3 and 4,
we shall consider only monodiffric functions of the first kind. In particular we shall study
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the Cauchy–Riemann equation in one variable and the overdetermined system of Cauchy–
Riemann equations in two variables (Section 4). The Hartogs phenomenon in two complex
variables has a counterpart in the discrete setting (Section 6). Somewhat different is the
situation concerning domains of holomorphy: only very special domains are domains of
holomorphy in one discrete variable (Section 5).

2 Functions defined on polygons

Let Γ be a closed polygon in the complex plane C consisting of m edges [a0, a1],

[a1, a2], . . . , [am−1, a0], where a0, . . . , am−1 are given points in C. The polygon is thus
determined by (a0, . . . , am−1) ∈ C

m. We shall say that a complex-valued function f

defined on Γ is piecewise affine if f is affine on each segment [aj , aj+1] with the possible
exception of the points that belong to two or more segments. This means that, if aj+1 6=
aj ,

f(z) =
aj+1 − z

aj+1 − aj

f(aj) +
z − aj

aj+1 − aj

f(aj+1), z ∈ [aj , aj+1], j = 0, . . . ,m − 1,

except for the finitely many points belonging to some other segment [ak, ak+1]. Here
and in the sequel we count indices modulo m. If aj+1 = aj the formula reduces to
f(z) = f(aj) = f(aj+1).

The integral of a piecewise affine function is easy to calculate.

Proposition 2.1. Let f be piecewise affine on a closed polygon Γ determined by
(a0, . . . , am−1). Then

∫

Γ

f(z)dz =
1

2

m−1
∑

0

f(aj)(aj+1 − aj−1) =
1

2

m−1
∑

0

(f(aj−1) − f(aj+1))aj . (2.1)

Proof. If f is affine on a segment [aj , aj+1] we can replace it by its average over the
segment without changing the value of the integral. The average is 1

2
f(aj) + 1

2
f(aj+1).

This implies that
∫ aj+1

aj

f(z)dz =

∫ aj+1

aj

(

1

2
f(aj) +

1

2
f(aj+1)

)

dz

=

(

1

2
f(aj) +

1

2
f(aj+1)

)

(aj+1 − aj).

To finish we just need to sum over j and change the indices.

Definition 2.2. Given a closed polygon Γ in C we shall say that a function f defined
on its vertices is holomorphic on Γ if

∫

Γ
faff(z)dz = 0, where faff is the unique piecewise

affine function on Γ which takes the same values as f on the vertices.

Proposition 2.1 now yields the following result.

Corollary 2.3. Let a0, . . . , am−1 be m points in the complex plane. A function
defined on the vertices of the closed polygon Γ defined by (a0, . . . , am−1) is holomorphic
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on Γ if and only if
m−1
∑

0

f(aj)(aj+1 − aj−1) = 0. (2.2)

When m = 2, every function is holomorphic.

When m = 3 and (a0, a1, a2) = (a, b, c), the condition becomes

f(a)(b − c) + f(b)(c − a) + f(c)(a − b) = 0,

which can be written as
f(b) − f(a)

b − a
=

f(c) − f(a)

c − a
. (2.3)

This means that the difference quotient is the same in the direction from a to b as in the
direction from a to c. In particular, if b = a + 1 and c = a + i, we get

f(a + 1) − f(a)

1
=

f(a + i) − f(a)

i
. (2.4)

Definition 2.4. A complex-valued function f defined on a subset A of Z[i] shall be
said to be holomorphic in the sense of Isaacs or monodiffric of the first kind if (2.4) holds
for all a ∈ A such that also a + 1 and a + i belong to A.

When m = 4 and (a0, a1, a2, a3) = (a, b, c, d), condition (2.2) becomes

f(a)(b − d) + f(b)(c − a) + f(c)(d − b) + f(d)(a − c) = 0,

which may be written
f(c) − f(a)

c − a
=

f(d) − f(b)

d − b
, (2.5)

meaning that the difference quotient in the direction from a to c is equal to that in the
direction from b to d. This is the definition studied by Ferrand[4]. In particular, if we let
b = a + 1, c = a + 1 + i, and d = a + i, we get

f(a + 1 + i) − f(a)

1 + i
=

f(a + i) − f(a + 1)

i − 1
. (2.6)

Definition 2.5. A function f defined on a subset A of Z
2 = Z[i] shall be said to be

holomorphic in the sense of Ferrand or monodiffric of the second kind if (2.6) holds for all
a ∈ A such that also a + 1, a + i, and a + 1 + i all belong to A.

In this paper we shall study functions which are holomorphic in the sense of Isaacs.
We shall compare them with the classical theory of holomorphic functions of one or sev-
eral complex variables. Indeed we may identify the grid Z

2 with the Gaussian integers
Z[i] = Z + iZ and regard it as a subset of the complex plane C.

Concerning the history of these concepts and our choice of terms, let us note that Ru-
fus Isaacs[1] introduced functions defined on the grid Z

2 which satisfy (2.4); he called them
monodiffric of the first kind. In a later paper[2] he called them just monodiffric. He called
the functions defined on Z

2 which satisfy (2.6) monodiffric of the second kind[1]. That
class was further studied by Jacqueline Ferrand[4]. Isaacs, however, expressed the opinion
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that they “seemed less promising than the present course” (i.e., the study of monodiffric
functions of the first kind)[2, p.258]. I therefore think it is justifiable to associate the mono-
diffric functions of the first kind with the name of Isaacs, and those of the second kind
with the name of Ferrand.

3 Cauchy–Riemann operators

The Cauchy–Riemann operator that corresponds to the first definition of Isaacs is

(crf)(z) = f(z + 1) + if(z + i) − (1 + i)f(z), z ∈ Z[i]. (3.1)

A function f :A → C, where A is a subset of Z[i], is holomorphic in A in the sense of
Isaacs (Definition 2.4) if and only if cr(f)(z) = 0 at all points z such that z, z+1, z+i ∈
A. This means that f solves a convolution equation µ ∗ f = 0 in A∩ (A− 1)∩ (A− i),
where µ = δ−1 + iδ−i − (1 + i)δ0. We shall write f ∈ O(A).

This definition of a holomorphic function is not invariant under rotation by 90◦ or
180◦. However, it behaves well under the reflection z 7→ i z in Z[i], which just inter-
changes the real and imaginary parts: (x, y) 7→ (y, x) in Z

2. Let us write zrefl = i z and
Arefl for the set of all zrefl with z ∈ A. The following result is easy to prove.

Lemma 3.1. Let f be defined on a subset A of Z[i] and define g(z) = f(i z) for
z in the reflected domain Arefl. Then (crg)(z) = i (crf)(i z). Hence f is holomorphic if
and only if g is holomorphic in the reflected domain.

Example 3.2. An exponential function

Ea,b(z) = axby = eαx+βy, x + iy ∈ Z[i],

is holomorphic if and only if

cr(Ea,b)(x + iy) = axby(a + ib − 1 − i) = 0,

i.e., precisely when b = 1− i + ia. We thus have a one-parameter family of holomorphic
exponential functions hc(z) = (1 + c)x(1 + ic)y, z ∈ Z[i], c ∈ C. Of all functions
with |a| = 1, thus bounded on the real axis, the one with fastest growth as y → +∞ is
obtained when a = (−1 − i)/

√
2 and b = (

√
2 + 1)(1 − i)/

√
2,

f(x + iy) =

(−1 − i√
2

)x (

(
√

2 + 1)
1 − i√

2

)y

,

and the one with fastest decay as y → +∞ is obtained when a = (1 + i)/
√

2 and
b = (

√
2 − 1)(1 − i)/

√
2,

f(x + iy) =

(

1 + i√
2

)x (

(
√

2 − 1)
1 − i√

2

)y

.

In the first case we have |f(x+iy)| = (
√

2+1)
y; in the second |f(x+iy)| = (

√
2−1)

y,
y ∈ Z.

Another Cauchy–Riemann operator, which is more symmetric, is

CR(f)(z) = f(z + 1) − f(z − 1) + if(z − 1) − if(z − i). (3.2)
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Also this operator was introduced by Isaacs[1, p.179]. Ferrand[4] studied it in other coordi-
nates: instead of the points 1, i, −1, −i she used 1 + i, −1+ i, −1− i, 1− i. The two
operators are essentially the same; it suffices to rotate the plane by 45◦ and make a change
of scale.

The companion operator is

(CR∗f)(z) = f(z + 1) − f(z − 1) − if(z − 1) + if(z − i).

The two operators map functions defined on the pure points (the points whose real and
imaginary parts have the same parity) to functions defined on the mixed points (the points
whose real and imaginary parts are of different parity) — we denote them by CRp, CR∗

p.

Conversely CRm and CR∗

m map functions on mixed points to functions on pure points.
We note that CRm ◦ CR∗

p = ∆p, the Laplacian defined on the pure points,

(∆pf)(z) = f(z + 2) + f(z − 2) + f(z + 2i) + f(z − 2i) − 4f(z).

We refer to ref. [9] and the references mentioned there for more on the discrete Laplacian.

4 The Cauchy–Riemann equations

Theorem 4.1. There exist three fundamental solutions Ej , j = 1, 2, 3, to cr with
support respectively in

A1 = {z ∈ Z[i]; 1 − Re z 6 Im z 6 0},
A2 = Arefl

1 = {z ∈ Z[i]; 1 − Im z 6 Re z 6 0},
and

A3 = {z ∈ Z[i]; Re z 6 0, Im z 6 0}.

Proof. Define E1(z) = 0 when Re z 6 0; E1(1) = 1 (so that (crE1)(0) = 1),
and E1(1+iy) = 0 for y 6= 0. Then define recursively E1(z) when Re z = p+1, p > 1,
so that the Cauchy–Riemann equation with zero right-hand side is satisfied for Re z = p.

This is easy: the equation cr(E1)(p + iy) = 0 says that

E1(p + 1 + iy) + iE1(p + i(y + 1)) − (1 + i)E1(p + iy) = 0,

so we just solve for E1(p + 1 + iy). It is then easy to see that E1(p + 1 + iy) vanishes
when y > 1 or y 6 −p − 1. We have crE1 = δ0. The proofs for E2 and E3 are similar.

Isaacs[1, p.197] constructed these functions.

Theorem 4.2[1]. Given any function f on Z[i], the equation cru = f can be solved.

Proof. Let Ej be the fundamental solution with support in Aj , j = 1, 2, con-
structed in Theorem 4.1. We denote by χ the characteristic function of the half plane
{z; Re z > Im z}. Then we can form the convolution products in the formula

u = E1 ∗ (χf) + E2 ∗ (1 − χ)f (4.1)

and apply the Cauchy–Riemann operator and then use the associative law as follows:

cru = µ ∗ u = µ ∗ (E1 ∗ (χf)) + µ ∗ (E2 ∗ (1 − χ)f)

= (µ ∗ E1) ∗ (χf) + (µ ∗ E2) ∗ ((1 − χ)f) = χf + (1 − χ)f = f.
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We remark that convolution, defined by

(f ∗ g)(z) =
∑

w∈Z[i]

f(w)g(z − w), z ∈ Z[i],

is in general not an associative binary operation. A simple example can be found even in Z:
let h = χN be the characteristic function of N, let g = δ0−δ1, and let f = ah+b for some
constants a, b. Then (f ∗ g) ∗ h = aδ0 ∗ h = ah, while f ∗ (g ∗ h) = f ∗ δ0 = ah + b.

Associativity holds only if b = 0. Here f ∗ g and g ∗ h are well defined, but f ∗ h is
not, except when b = 0. However, in (4.1) the support of the fundamental solutions is
contained in proper cones, and not only E1 ∗ (χf) and µ ∗ E1 but also µ ∗ (χf) are well
defined: the sums defining each convolution are finite, and the associative law holds.

Duffin[5, p.348] solved the equation CRu = f (cf. (3.2)) in Z[i] using Fourier meth-
ods, but only if f is in l1(Z[i]), i.e., if

∑

z∈Z[i] |f(z)| is finite.

Theorem 4.3. A system of equations cr1u = f1, cr2u = f2, where the fj are
given in Z[i]

2, can be solved if and only if cr2f1 = cr1f2.

Proposition 4.4. An equation cr2v = g, where g is given in Z[i]
2, can be solved

with v holomorphic in z1 if and only if g is holomorphic in z1.

Proof. We construct for each fixed z1 the solution in the variable z2 as in (4.1) and
observe that it is holomorphic in z1 if g is. Indeed, using (4.1),

cr1u = µ1 ∗ u = E1 ∗ (χ(µ1 ∗ g)) + E2 ∗ ((1 − χ)(µ1 ∗ g)) = 0.

The calculation is justified by the fact that µ1 has its support in the plane z2 = 0 and χ is
a function of z2, so that µ1 ∗ (χg) = χ(µ1 ∗ g).

Proof of Theorem 4.3. We first solve cr1w = f1 for each z2. Now a new unknown
function v = u − w satisfies cr1v = 0 if and only if cr1u = f1. And cr2v = cr2u −
cr2w = f2 − cr2w if and only if cr2u = f2. So we need to solve cr1v = 0 and cr2v =

f2 − cr2w = g. This we can do using the proposition, for g is holomorphic in z1: cr1g =

cr1f2 − cr1cr2w = cr2(f1 − cr1w) = 0 in view of the condition cr1f2 = cr2f1 and the
choice of w.

5 Domains of holomorphy

Given two subsets A and B of Z[i] with A ⊂ B we have a restriction operator
RB

A: O(B) → O(A). It may well be that RB
A is injective but not surjective, or surjective

but not injective.

Example 5.1. Let A = {0, 1}, B = A ∪ {i}. Then R is bijective.

Example 5.2. Let A = {0, i, 1+ i, 2+ i, 2}, B = A∪{1}. Then R is easily seen
to be injective, but it is not surjective, for a holomorphic function on B must satisfy

(1 + i)f(0) − if(i) = f(1) =
1

1 + i
(f(2) + if(1 + i)).
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Its restriction to A must then satisfy

(1 + i)f(0) − if(i) =
1

1 + i
(f(2) + if(1 + i)).

But any function on A is holomorphic.

Example 5.3. Let A = {0, 1, i} and B = A ∪ {2}. Then the restriction mapping
is surjective but not injective.

In view of the properties of the restriction operator RB
A it seems reasonable to propose

the following definition.

Definition 5.4. A domain of holomorphy in Z[i] is a set A such that if B ⊃ A and
RB

A is bijective, then B = A.

However, in analogy with the situation in C
n, n > 2, it may be of interest to admit

also Riemann domains over Z[i] and Z[i]
n
. Blanc[10] introduced such non-schlicht do-

mains, although he did not define domains of holomorphy. Let us only mention here that
questions on domains of holomorphy receive different answers in the two settings. The
set

{z; Re z > 0, Im z > 0,Re z + Im z 6 3} r {(1, 1)}
is a domain of holomorphy in the sense of Definition 5.4, but not if we allow non-schlicht
domains. A theory of holomorphic functions on the vertices and their dual vertices on a
Riemann surface has been developed by Mercat[11,12].

Let us call a set A 8-connected if any two points in A can be joined by a path con-
sisting of vertical, horizontal and diagonal segments, all with endpoints in A. We call A

4-connected if only vertical and horizontal segments are allowed. Between these two
connectivity properties we have 6/-connectedness and 6\-connectedness. In the first,
vertical and horizontal segments and northeast-southwest diagonals are allowed; in the
second, vertical and horizontal segments and northwest-southeast diagonals are allowed.
(We should perhaps call them north-south, east-west, northeast-southwest, and northwest-
southeast segments in order not to mix the two ways of naming directions.)

To any set A in Z[i] we associate the smallest triangle T (A) of the form
{z; Re z > a, Im z > b,Re z + Im z 6 c} (5.1)

which contains it. (We allow −a,−b, c ∈ Z ∪ {+∞}.)
Example 5.5. The set A = {0, 1 + i, 2 + i, 1 + 2i} is 6/-connected but not

6\-connected. The kernel of the restriction operator R
T (A)
A has dimension 1; the cardinal-

ity of T (A) r A is 6.

Example 5.6. The set A = {i, 2i, 1 + i, 2} is 6\-connected but not 6/-connected.
The restriction operator R

T (A)
A is a bijection.

As is clear from these examples, one should preferably represent points (x, y) ∈ Z
2

not by x + iy but by x + ωy ∈ C, where ω = 1
2

+ 1
2

√
3 i. Then 6\-connectedness

becomes the natural connectedness, while 6/-connectedness looks strange. The supports
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of the three fundamental solutions also look much better in this representation: each is a
sector of opening 60◦.

Theorem 5.7. Let A ⊂ Z[i] be 6 \-connected and such that A ∩ L is an interval
whenever L is a line Re z = const., Im z = const., or Re z + Im z = const. Then every
f ∈ O(A) can be uniquely extended to the smallest triangle of the form (5.1) which
contains A.

This result is not optimal, for there are sets which do not satisfy the hypotheses and
still admit a unique continuation to the triangle.

Proof. The smallest triangle

T (A) = {z; Re z > a0, Im z > b0,Re z + Im z 6 c0}
which contains an 8-connected set A is the union of three sets,

[(A + iN) ∩ (A + (−1 + i)N)]∪ [(A + N) ∩ (A + (1 − i)N)]

∪ [(A − N) ∩ (A − iN)].

We shall prove that any holomorphic function on A can be uniquely extended to
(A + iN) ∩ (A + (−1 + i)N) by successively extending the function to larger and larger
sets. The key step is the following lemma.

Lemma 5.8. Given a bounded set A as in Theorem 5.7 and any 6 \-connected
proper subset B of (A + iN) ∩ (A + (−1 + i)N) containing A and with the properties
that B ∩ L is an interval for any horizontal or vertical line as well as a line with equation
Re z + Im z = const. and to which any holomorphic function on A can be uniquely
continued, we can find a strictly larger set B ′ with the same properties.

Proof. Let {b, b + 1, . . . , b + m − 1} be the points in B with maximal imaginary
part. Here m, the number of points with largest imaginary part, is at least 1. In the
construction of B ′ we shall distinguish between the following cases.

Case 1: m > 2. We take B ′ = B ∪ {b + i, b + 1 + i, . . . , b + m − 2 + i}.
Case 2: m = 1, Re b > a0. There exists a point c ∈ B with Re c = Re b − 1. Take

c with maximal imaginary part, so that c + i /∈ B. Define B ′ = B ∪ {c + i}. Note that
c + 1 must belong to B; this follows from the 6\-connectedness. The fact that both c and
c + 1 belong to B guarantees the uniqueness of the extension to c + i. (It is not enough
that c+1+ i belongs to B. Note that {c, c+1+ i} is 6/-connected but not 6\-connected.
The proof would break down at this point if we had used 6/-connectedness; cf. Example
5.5.)

Case 3: m = 1, Re b + Im b < c0. There exists a point c ∈ B with Re c + Im c =

Re b + Im b + 1. Take c with maximal imaginary part, so that c − 1 + i /∈ B. Define
B′ = B∪{c−1+i}. The point c−1 must belong to B, which guarantees the uniqueness
of the continuation to c − 1 + i. (Here 8-connectedness suffices.)

In these three cases it is easy to check that the new set B ′ has all properties needed.
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Case 4: m = 1, Re b = a0 and Re b + Im b = c0. This means that b is the top point
of T (A) and it follows that B = (A + iN) ∩ (A + (−1 + i)N).

Proof of Theorem 5.7 (continued). We construct A1 = A′, Aj+1 = A′

j , j ∈ N
∗.

After a while we arrive at case 4 in the proof of Lemma 5.8, which implies that Aj =

(A + iN) ∩ (A + (−1 + i)N).

The result for (A + N) ∩ (A + (1 − i)N) follows by reflection, and the proof for
(A − N) ∩ (A − iN) is similar. This concludes the proof for bounded A.

For an unbounded set A we define

Ak = {z ∈ A; Re z > −k, Im z > −k,Re z + Im z 6 k}.
Then Ak is bounded and satisfies all hypotheses of the theorem, so any holomorphic func-
tion on Ak can be uniquely continued to the triangle T (Ak). Hence any holomorphic
function on

⋃

Ak = A can be uniquely continued to
⋃

T (Ak) = T (A).

Corollary 5.9. A 6 \-connected subset of Z[i] such that the intersection A∩L is an
interval whenever L is a line Re z = const., Im z = const., or Re z + Im z = const.

is a domain of holomorphy if and only if A = T (A).

Remark 5.10. Any set A is a disjoint union of maximal 6\-connected sets Aj . A
function f ∈ O(Aj) can be extended to T (Aj), but it may of course happen that T (Aj)

intersects some other 6\-connectivity component Ak, k 6= j.

If Ω is a rectangle in Z[i], say defined by a0 6 Re z 6 a1 and b0 6 Im z 6 b1, we
define

b′Ω = {z ∈ Ω;Re z = a1 or Im z = b0},
b′′Ω = {z ∈ Ω;Re z = a0 or Im z = b1},
bΩ = b′Ω ∪ b′′Ω.

The set bΩ will serve as a kind of boundary of Ω in the following.

A holomorphic function defined on a triangle

{z ∈ Z[i]; Re z > a, Im z > b,Re z + Im z 6 c}
for some a, b, c ∈ Z is determined by its restriction to any of the three sides of the tri-
angle. Also any function defined on a side of the triangle can be extended uniquely to a
holomorphic function on the whole triangle. (This follows from Theorem 5.7, but is easy
to prove directly.) Using this result, we see that a holomorphic function on a rectangle Ω

is determined by its restriction to b′Ω; likewise by its restriction to b′′Ω. Indeed there are
formulas

h(z) =
∑

s∈b′Ω

CΩ(z, s)h(s), z ∈ Ω, h ∈ O(Ω), (5.2)

and
h(z) =

∑

s∈b′′Ω

CΩ(z, s)h(s), z ∈ Ω, h ∈ O(Ω), (5.3)
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where CΩ(·, s) ∈ O(Ω) for every s ∈ bΩ.

Conversely, if f is any function defined on b′Ω, then the formula
h(z) =

∑

s∈b′Ω

CΩ(z, s)f(s), z ∈ Ω, (5.4)

defines a holomorphic function h on Ω. Formula (5.2) gives rise to an estimate,
|h(z)| 6 sup

s∈b′Ω

|h(s)|
∑

s∈b′Ω

|CΩ(z, s)|, z ∈ Ω, h ∈ O(Ω),

which, however, is very bad. Nevertheless, h ∈ O(Ω) is determined by h|
b′Ω.

Let us take a look at another extension problem: take A = Z and B = Z[i]. Then it is
easy to see that any function f on A can be extended uniquely as a holomorphic function
F in the upper half plane Z + iN. The extension satisfies an estimate

|F (x + iy)| 6 (
√

2 + 1)
y

sup
06x′6x

|f(x′)|, (x, y) ∈ Z + iN.

In particular, if f is bounded, then F is of exponential type.

On the other hand, there are infinitely many ways to extend f to the lower half plane,
and there is no estimate on the growth. In fact, given arbitrary functions g:−N

∗ → C and
ϕ:−N

∗ → Z, there is a unique holomorphic extension G to the lower half plane Z − iN

satisfying G(ϕ(y) + iy) = g(y) for all y ∈ −N
∗. (We write N

∗ for N r {0}.) Here
g may grow as fast as we like. Thus holomorphic extension from the real axis Z to the
whole Gaussian plane Z[i] is always possible, but questions on uniqueness and bounds
have highly asymmetric answers.

6 The Hartogs phenomenon

In several complex variables it is known that a holomorphic function cannot have its
singularities contained in a compact set. More precisely, the following theorem describes
how a holomorphic function can be extended over a hole.

Theorem 6.1. Let Ω be an open set in C
n, n > 2, and K a compact subset of Ω.

If h ∈ O(Ω r K), then there exists a function H ∈ O(Ω) such that H = h in Ω r L for
some compact L ⊂ Ω.

There is a similar phenomenon in Z[i]2. We formulate it in the simplest case only.

Theorem 6.2. Let Ω = Ω1 × Ω2, where Ωj are two rectangles in Z[i], and let
K ⊂ Ω be a subset which does not meet (bΩ1 × Ω2) ∪ (Ω1 × bΩ2). If h ∈ O(Ω r K),

then there exists a function H ∈ O(Ω) such that H = h in Ω r L for some set L not
intersecting (bΩ1 × Ω2) ∪ (Ω1 × bΩ2).

Proof. Construct a function H by the formula

H(z1, z2) =
∑

s1∈b′Ω1

CΩ(z1, s1)h(s1, z2), z = (z1, z2) ∈ Ω;

cf. (5.4). Clearly H is holomorphic in z1 (since CΩ is), and holomorphic in z2 (since h

is).
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First fix z2 ∈ Ω2 rπ2(K), where π2 is the projection (z1, z2) 7→ z2. Then H(z1, z2)

= h(z1, z2) for all z1 ∈ Ω1; cf. (5.2).

Next fix z1 ∈ Ω1 r π1(K). We know that H(z1, z2) = h(z1, z2) when z2 ∈ Ω2r

π2(K), in particular when z2 ∈ b′Ω2. In view of the uniqueness of holomorphic continu-
ation, we must have H(z1, z2) = h(z1, z2) for all z2 ∈ Ω2.

Summing up, we have proved that H is holomorphic in Ω and that H = h in Ω1 ×
(Ω2 rπ2(K)) as well as in (Ω1 rπ1(K))×Ω2. We may thus take L as π1(K)×π2(K),
a set which does not meet (bΩ1 × Ω2) ∪ (Ω1 × bΩ2).

Is it possible to take a smaller L? In other words, how far can the equality H = h

be extended? This can be described using the unique extension to triangles discussed in
Section 5.
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Birkhäuser, to appear.
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