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1. Given an arbitrary index set J we define

l2(J) =
{

(xj)j∈J ∈ RJ ;
∑

j∈J x2
j < +∞

}
.

It is a Hilbert space with the inner product

(x |y) =
∑
j∈J

xjyj, x ∈ l2(J),

and norm
‖x‖2 =

√
(x |x), x ∈ l2(J).

(For each x ∈ l2(J), all coordinates xj must vanish except for denumerably many
indices j, so the sum has the usual sense.) Actually any Hilbert space is isomorphic to
l2(J) for some J . We shall write l2 for l2(N).

Consider now the following operators Sk : RN → RN.

(a) S1(x)j = xj+1, j ∈ N, x ∈ RN;

(b) S2(x)j = xj−1, j > 1; S2(x)0 = 0, x ∈ RN;

(c) S3(x)j = λjxj, j ∈ N, x ∈ RN for some real numbers λj.

Prove that S1 and S2 define continuous operators T1, T2 : l2 → l2 by restriction. Prove
that S3 maps l2 into l2 if and only if the sequence (λj)j is bounded, and that its
restriction T3 to l2 is continuous for the l2 norm if this is the case.

Now consider the inverse problem of finding x when y is given. Show that the first two
problems are ill-posed when y ∈ l2 and x ∈ l2. Prove that the third is well-posed if
and only if the sequence (λj) is bounded away from zero. Does it make any difference
here whether we use Hadamard’s classical 1902 definition, which does not mention
continuity, or the modern one, which includes continuous dependence on the data?

2. Consider the Cauchy problem for the wave equation

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
,

u(x, y, 0) = u(x, y, π) = 0; u(0, y, t) = f(y, t), u′x(0, y, t) = g(y, t).

(The data are prescribed on the timelike manifold x = 0.) Verify that the functions

un(x, y, t) = ane
nx sin(

√
5ny) sin(2nt), n ∈ N,
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solve the problem for certain data fn, gn. Define reasonable norms on some spaces
containing the fn, gn and un for which the problem is ill-posed. Is it at all possible to
define reasonable norms so that it is well-posed?

3. (a) Let E be a vector space and A : E → E a linear mapping. Define Eλ =
ker(A − λI), where I is the identity mapping and λ a scalar (real or complex). A
number λ is said to be an eigenvalue of A if Eλ is nonzero, in other words if A− λI is
not injective. If λ is an eigenvalue, the subspace Eλ is called the eigenspace belonging
to λ, and a nonzero element of Eλ is called an eigenvector.

Example. Let E = l2 = l2(N) and define A by the formula A(x)j = ajxj, j ∈ N.
Then λ is an eigenvalue if and only if there is an index j such that λ = aj, and the
corresponding eigenspace is

∑
j(Eaj

; aj = λ). In this case, the sum of all eigenspaces
is equal to the whole space.

Example. Let now E = L2([0, 1]), the space of all equivalence classes of square-
integrable functions on the interval [0, 1]. Define an operator A by declaring A(x)(t) =
g(t)x(t) for some bounded and measurable function g. Then

Eλ = {x; x(t) = 0 for almost all t such that g(t) 6= λ}.

Therefore there are no eigenvalues if g(t) = t for example. On the other hand, if
g(t) = (t− a)+ + b, then Eλ = {0} when λ 6= b, and

Eb = {x; x(t) = 0 for almost all t ∈ [a, 1]},

which is of infinite dimension when 0 < a 6 1. The sum of all eigenspaces can therefore
be zero, but also the whole space.

(b) Let now A : l2 → l2 be defined by A(x) =
∑

ajxjej, where ej are the usual basis
vectors, and xj the coordinates of x. The numbers aj are the eigenvalues of A. We
know that A is continuous if and only if supj |aj| is finite. Prove that A is compact if
and only if aj → 0 as j → +∞.

(c) With A defined as in (b) and assumed to be continuous and injective, let us define
another mapping Sα : l2 → l2 by Sα(x) =

∑
sα,jxjej, where α is a positive parameter.

We know that Sα is continuous if and only if

(3.1) sup
j
|sα,j| < +∞.

Prove that Sα(A(x)) tends to x for all x as α → 0 (in other words, the family (Sα)α is
a regularization for A) if (3.1) holds for all α > 0 and also

(3.2) for all j ∈ N, ajsα,j → 1 as α → 0.

(d) Verify that the following choices of sα,j are good for (c):

(3.3) sα,j = 1/aj, j = 0, 1, 2, ..., b1/αc; sα,j = 0, j > b1/αc.
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(3.4) sα,j = 1/(α + aj), assuming all aj to be positive.

(3.5) sα,j = min(1/α, 1/aj), j ∈ N, assuming again all aj to be positive.

How can we modify (3.4) and (3.5) if we only know that the aj are nonzero?

(e) Prove that ‖Sα‖ is
∣∣ab1/αc

∣∣−1
in case (3.3), assuming the sequence (aj) to be de-

creasing; equal to (α + inf aj)
−1 in case (3.4); and equal to (max(α, inf aj))

−1 in case
(3.5).

(f) Define now Rn =
∑n

0 (I − A)k. Investigate under which conditions on the aj we
have, for all x ∈ l2, Rn(A(x)) → x as n → +∞.

4. Consider a Volterra integral equation of the second kind:

u(x)−
∫ x

0

K(x, y)u(y)dy = f(x), x ∈ I = [0, 1].

We define an operator A by

A(u)(x) =

∫ x

0

K(x, y)u(y)dy, x ∈ I,

so that the equation can be written (I − A)u = f . Find suitable spaces for f and u
and suitable hypotheses on K under which a solution is given by the Neumann series

u =
∞∑
0

Akf.

5. Let G be (a model of) the Greenland ice, defined as G = {(t, z) ∈ R2; t 6 0, z > 0},
where t is the time and z is the depth, defined to be positive below the ice surface. (In
a more refined model, we would have restricted the depth to 0 6 z 6 3028.6m and
would also have considered the terrestrial heat flow from the underlying earth, but in
this first study we simplify and consider 0 6 z < +∞.) We consider temperatures, i.e.,
complex-valued continuous functions u on G which are of class C2 and satisfy the heat
equation ut = κuzz in the interior of G (for ice at −4◦C the constant κ has the value
1.04 · 10−6 m2s−1). For each temperature there is a function h(t) = u(t, 0), t 6 0,
describing the temperature on the surface of the ice up to the present (t = 0), and a
function v(z) = u(0, z), z > 0, describing the present temperature in a hole in the ice.1

We are interested in the possible operators h 7→ v (determining the present temperature
at all depths from the surface temperature in the past, called the direct problem) and
v 7→ h (determining the temperature in the past from the present temperature in the
hole, called the inverse problem).

(a) Show by examples that it is not possible to determine uniquely the present tem-
perature v from the surface temperature h in the past: there are many temperatures
u such that h(t) = u(t, 0) = 0 for all t 6 0.

1Mnemonic trick: h for horizontal, v for vertical.
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(b) Prove that if we assume in addition that u is bounded in G, then v is uniquely
determined by h. Determine under which hypotheses the direct problem h 7→ v is well
posed.

(c) Can you weaken the hypothesis in (b) that u be bounded and still conclude as in
(b)?

(d) Consider simple functions u(t, z) = eAt+Bz, (t, z) ∈ G, A, B ∈ C. Determine the
exact conditions under which such a function is a temperature.

(e) Consider now u(t, z) = eiαte−βz+iγz, α ∈ R, β > 0, γ ∈ R, yielding h(t) = eiαt and
v(z) = e(−β+iγ)z. Determine the necessary and sufficient relations between α, β, and γ
for u to be a temperature.

(f) Perform a synthesis of the simple waves considered in (e): let h be a finite sum of
the simple solutions we have found, say

h(t) =
∑

Ake
iαkt, t ∈ R,

where the αk are real numbers such that αj 6= αk for j 6= k. Or, a little more generally,
consider

h(t) =

∫
R

eiαtdµ(α), t 6 0,

and a corresponding representation of v. Which are the conclusions for the well-
posedness or ill-posedness of the problems h 7→ v and v 7→ h? (To answer the question
properly, you will have to introduce topologies on suitable spaces of functions.)

6. Consider the functional (energy) defined by David Mumford and Jayant Shah
(1989),

E(u, K) = λ

∫
ΩrK

(grad u)2dx + µHn−1(K) + ν

∫
Ω

|u− g|2dx,

where λ, µ and ν are positive constants, Ω an open set in Rn, Hn−1 denotes Hausdorff
measure in dimension n− 1, and g is a given function. The variables are u and K: K
a closed set in Ω and u ∈ C1(Ω r K).

Let us study the appearance of discontinuities, i.e., the necessity to allow for a non-
empty K in the formula to get close to the infimum.

Let us choose n = 1 and Ω = ]−1, 1[, λ = ν = 1, and g(x) = arctan ax, x ∈ Ω. Thus
Hn−1(K) = H0(K) = card(K). Let µ and a still be parameters to be fixed later.

Prove that there exists a constant C > 0 such that E(u, Ø) > C for all u, all µ > 0,
and all a > 1.

Prove that

inf
u

E(u, {0}) 6 E(v, {0}) = µ +

∫
Ω

|v − g|2dx = µ + γa,
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where γa tends to zero as a → ∞. Here v is chosen as a suitable constant in ]−1, 0[
and as another constant in ]0, 1[.

Thus if we now choose µ < C, we will have E(u, Ø) > C for all u while infu E(u, {0}) 6
E(v, {0}) 6 µ + γa < C for large a. This shows that competing functions yielding a
value close to the infimum must have a discontinuity when a is large—although perhaps
not at the origin.

Continue the investigation in showing that some discontinuity of the competing func-
tions u must converge to {0} when E(u, K) tends to its infimum. Hence any minimiz-
ing function must have a discontinuity at the origin when a is large, although g is C∞

smooth.

7. Let us now consider a discrete variant of the Mumford–Shah functional; cf. Geman
and Geman (1984). We define a norm in Rn, a modified l2 norm, by

‖u‖2 =
1

n

n∑
1

u2
j , u ∈ Rn,

and a mean value

M(u) =
1

n

n∑
1

uj, u ∈ Rn.

Given g, the energy is

E(u) =
1

n− 1

n−1∑
1

W (uj+1 − uj) + ‖u− g‖2, u ∈ Rn,

where W is the function

W (t) = min(αt2, β), t ∈ R,

α and β being positive constants. The role of the ceiling β is to allow for jumps: large
jumps are counted, but not more than by a certain amount even if they are very large;
this is exactly the role of the term H0(K) in the previous problem.

We note that, taking u as the constant M(g),

inf
u

E(u) 6 E(M(g)) = ‖g‖2 −M(g)2,

and that, taking u = g,

inf
u

E(u) 6 E(g) =
1

n− 1

n−1∑
1

W (gj+1 − gj).

Thus the infimum can be estimated from above by the minimum of three numbers,

inf
u

E(u) 6 min

(
‖g‖2 −M(g)2, β,

α

n− 1

n−1∑
1

(gj+1 − gj)
2

)
.
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To illustrate the discontinuity of the minimizing function as a function of g, take now
n = 2 and g a function with M(g) = 0.

(a) Show that it is enough to consider u with M(u) = 0 to get close to the infimum.

(b) Find the minimizing function u depending on g and show that it does not depend
continuously on g.

In fact, when g2
1 > β(1 + 1/4α), then the infimum is attained when u1 = g1, wheras

when g2
1 < β(1+1/4α), then the infimum is attained when u1 = g1/(1+4α) 6= g1. The

value of the infimum is infu E(u) = min (β, g2
1/(1 + 1/4α)) .

This shows that when g varies a lot, i.e., max gj −min gj = |g1 − g2| = 2|g1| is large, it
pays to let u = g and let the whole energy occur in the first term of E (analogous to
the jump discontinuity in problem 6), whereas when g does not vary so much, u can
differ from g and yield some energy as measured by the second term.
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