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1.1. For which real numbers a does the equation

∂u

∂t
(x, t) = (x2 + t2)a

have a solution in each of the following three domains:

Ω1 = {(x, t) ∈ R
2; t > 0 or x 6= 0},

Ω2 = {(x, t) ∈ R
2; x > 0 or t 6= 0},

Ω3 = {(x, t) ∈ R
2; (x, t) 6= (0, 0)}.

1.2. Study the solvability of the equation

∂u

∂t
(x, t) =

x

x2 + t2

in the domain
Ω2 = {(x, t) ∈ R

2; x > 0 or t 6= 0},
as well as in

Ω3 = {(x, t) ∈ R
2; (x, t) 6= (0, 0)}.

1.3. Find an integral curve to the system

dx

yz
=

dy

z
=

dz

2x − y2

which passes through the point (1, 1, 1).

1.4. Find an integral curve to the system

dx

y − z
=

dy

z − x
=

dz

x − y

which passes through the point (1, 1,−2).

1.5. Find an integral curve to the equation

zx + 2zy = 0

which passes through the curve

t 7→ (t + t2, 2t2, t2)

in (x, y, z)-space, i.e., find a function u of (x, y) such that

∂u

∂x
+ 2

∂u

∂y
= 0

and such that u(t + t2, 2t2) = t2 for t real.
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2.1. Find all solutions to the following equations:

(a) y
∂u

∂x
− x

∂u

∂y
= 0;

(b) x
∂u

∂x
− y

∂u

∂y
= 0;

(c) y
∂u

∂x
+

∂u

∂y
= 0;

(d) y
∂u

∂x
+

∂u

∂y
= u;

(e) y
∂u

∂x
+ x

∂u

∂y
= 0;

(f) y
∂u

∂x
+ x

∂u

∂y
= x;

(g) y
∂u

∂x
+ x

∂u

∂y
= x + y.

2.2. Solve the Cauchy problem

∂u

∂x
+ (x + y)

∂u

∂y
= 1,

u(x,−x) = 0.

2.3. Solve the Cauchy problem

(1 + x2)
∂u

∂x
+ 2xy

∂u

∂y
= 0,

u(x, x + x3) = h(x).

2.4. Find a function u defined in some open neighborhood of the x-axis in R
2 such

that

x2 ∂u

∂x
+ (y + 1)

∂u

∂y
= 0,

u(x, 0) = x.

Prove that if u is a solution to the differential equation in the whole plane, then
u(x, 0) is constant for x > 0. By way of contrast, u(x, 0) need not to be constant
for x < 0, but the limit limx→−∞ u(x, 0) exists.

2.5 A velocity field (u, v):R2 → R
2 is given by u(x, y) = 2xy, v(x, y) = 1 + x2 − y2.

Determine the streamlines.
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ÖVNINGAR, Blad 3
Partiella differentialekvationer (D)
2005-08-31 pde2005ovningar

3.1. Prove that the only solutions in all of R
2 to the equation

u3 ∂u

∂x
+

∂u

∂y
= 0

are the constants.

3.2. Solve the Cauchy1 problem

(y + 1)
∂u

∂x
+ (x + 1)

∂u

∂y
= u2,

with a solution surface containing the curve (s,−s, 1/ log s), s > 0.

3.3. Find a solution u to the equation

x
∂u

∂x
+ y

∂u

∂y
= 0

which is defined for x > 2 and which satisfies u(2, y) = y2 + 1.

3.4. Find a solution u to the equation

x2 ∂u

∂x
− y2 ∂u

∂y
+ 2(x − y)u = 0

which satisfies u(x, x) = x.

3.5. Prove that the initial-value problem






x
∂u

∂x
+ t

∂u

∂t
= u3,

u(x, 0) = x,

has no solution.

3.6. Solve the Cauchy problem

u
∂u

∂x
+ u

∂u

∂y
= 1 + u2,

so that the solution surface contains the curve (s,−s, tans) for small values of
|s|.

3.7. Solve the initial-value problem






u2 ∂u

∂x
+

∂u

∂t
= u,

u(x, 0) = x.

1Augustin Louis Cauchy (1789–1857).
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4.1. Solve the initial-value problem

∂u

∂x
=

(

∂u

∂y

)2

, u(0, y) = y2/2,

using the method of envelopes as well as the method of characteristic strips.
Compare the two methods of computing.

4.2. Solve the Cauchy problem

∂u

∂x

∂u

∂y
= 1, u(x,−x) = 1.

How many solutions are there?

4.3. Solve the initial-value problem

(

∂u

∂x

)3

+
∂u

∂y
= u, u(s, 0) = s.

4.4. Solve the initial-value problem

x
∂u

∂x
+ y

∂u

∂y
+

∂u

∂x

∂u

∂y
= u, u(s, 0) = s2.

Try both characteristic strips and envelopes of affine solutions. Which method
is the easiest in this case?

4.5. Solve the Cauchy problem

(

∂u

∂x

)2

+ 4y

(

∂u

∂y

)2

= 2, u(s, 1) = s + 1.

How many solutions are there?

4.6. Find the solution to the equation

x

(

∂u

∂x

)2

+ y
∂u

∂y
= 0

which satisfies u(s, 1) = −s.

4.7. Solve the Cauchy problem

x

(

∂u

∂x

)2

+

(

∂u

∂y

)3

= 1, u(s, 0) =
√

s, s > 0.
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5.1. Determine all characteristic curves to the equation

∂2u

∂x2
− y2 ∂2u

∂y2
= 0.

Transform the equation to normal form in the open set y 6= 0.

5.2. Determine the characteristic curves to the equation

∂2u

∂x2
− 9x4 ∂2u

∂y2
− 6xu = 0.

Transform the equation to normal form in the domain x > 0.

5.3. Determine the characteristic curves to the equation

x2 ∂2u

∂x2
− 2x

∂2u

∂x∂y
+

3

4

∂2u

∂y2
+

1

2

∂u

∂y
= 0.

Transform the equation to normal form in all of R
2. Find the general solution.

5.4. Solve the differential equation

∂2u

∂t2
=

∂2u

∂x2
+

∂u

∂x
+

∂u

∂t

with the initial-value conditions u(x, 0) = x, ut(x, 0) = 0. Hint: Experiment with
exponential functions multiplied by solutions to the ordinary wave equation.

5.5. Solve the equation
∂2u

∂x2
− ∂2u

∂t2
= 0

in the domain t > 0, x > 0 with the boundary conditions

u(x, 0) = x2,
∂u

∂t
(x, 0) = 0, u(0, t) = 0.

Hint: Think about even and odd functions.

5.6. Solve the initial-value problem

∂2u

∂t2
= c2

(

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

)

with the conditions

u(x, 0) = 0,

∂u

∂t
(x, 0) =

{

1, |x| 6 a

0, |x| > a.

Discuss the behavior of the solution at the point (0, a/c); it is not continuous
there, a fact which depends on the discontinuities in the initial conditions on
the sphere t = 0, |x| = a. The phenomenon is called the focusing effect. Hint:

Show first that u is a function of (|x|, t) = (r, t) and that v = ru solves the wave
equation in the variables (r, t). (This is special for three space variables.)
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6.1. Solve the Cauchy problem

∂2u

∂t2
− c2 ∂2u

∂x2
= 0 when t > ax; u(x, t) = 0 and

∂u

∂t
(x, t) = x when t = ax,

where a is a constant 6= ±1/c. Hint: Introduce new coordinates with the help
of the Lorentz2 transformation

x′ =
x − vt

√

1 − v2/c2
, t′ =

t − vx/c2

√

1 − v2/c2
,

for a suitable v, or, even simpler,

x′ = x − vt, t′ = t − vx/c2.

6.2. Solve the Dirichlet3 problem

∂2u

∂x2
+

∂2u

∂y2
= 0 in the square 0 6 x 6 π, 0 6 y 6 π,

with the boundary values u(x, 0) = u(0, y) = u(π, y) = 0 and u(x, π) = sin mx.

6.3. Let g be a function which is continuous on R and satisfies g(x) 6 C/(1 + x2).
Define a function u on R

2 as

u(x) =
1

2π

∫

R

log((x1 − y1)
2 + x2

2)g(y1)dy1.

Prove that ∆u = 0 when x2 > 0 and that ux2
(x1, x2) → g(x1) as x2 → 0.

6.4. Decide whether the following statements are true or false.
a) If u is a harmonic function in the plane, then eu is subharmonic.
b) If u is a harmonic function in the plane, then log(1 + u2) is subharmonic.

6.5. The potential of a mass distribution with constant surface density on a sphere
is defined by

u(x) = γ

∫

‖y‖=r

1

‖x − y‖dS(y), x ∈ R
3,

where γ is a positive constant. Determine u.

6.6. Prove that if u is a bounded solution to ∆u = u in all of R
n, then u must be

zero. Hint: Use the translation invariance and the rotation invariance of the
operator and then compare it with the solution of, e.g., v(x) = a + b‖x‖2, where
the constants a and b are chosen so that 0 6 ∆v 6 v.

2Hendrik Antoon Lorentz (1853–1928) 6= Edward Norton Lorenz (b. 1917-05-23).
The transformations named after the former are used in relativity theory; the latter
is known for his attractor and the butterfly effect.
3Peter Gustav Lejeune Dirichlet (1805–1859).
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From McOwen, page 90:

7.1 Find the solution to the intitial-value problem utt = uxx+uyy+uzz , u(x, y, z, 0) =
x2 + y2, ut(x, y, z, 0) = 0 using Kirchhoff’s formula. Then notice that the initial
values do not depend on z, the third space coordinate, and solve the problem
using the formula obtained in two space variables by Hadamard’s method of
descent from Kirchhoff’s formula in three variables.

7.2 Use Duhamel’s principle to find the solution to the nonhomogeneous wave equa-
tion in three space dimensions utt − c2∆u = f(x, t) with initial conditions
u(x, 0) = 0, ut(x, 0) = 0. What regularity in f is required for the solution
to be in C2?

From McOwen, page 99:

7.3. Find dispersive wave solutions of the n-dimensional linear Klein–Gordon equa-
tion utt − c2∆u + m2u = 0.

7.4. Show that each of the following linear equations has dispersive wave solutions
u(x, t) = exp

(

i(kx − ωt)
)

, (x, t) ∈ R
2:

(a) The flexible beam equation utt + γ2uxxxx = 0;
(b) The linearized Korteweg–de Vries equation ut + cux + uxxx = 0;
(c) The Boussinesq equation utt − c2uxx = γ2uttxx;
(d) The Schrödinger equation ut = i∆u.

7.5. Show that the heat equation ut = uxx admits uniform wave solutions of the
form U(kx − ωt) = ei(kx−ωt) in which ω is a complex number and the wave is
exponentially decaying in t. (Such uniform waves are called diffusive.) Prove
that there are no waves without attenuation which are bounded when t = 0.

7.6. Find two uniform wave solutions of the equation utt − uxx + λu = 0 with λ > 0
satisfying the initial condition u(x, 0) = 3 cos 2x.

7.7. Find a condition on u0 and u1 that is necessary for the existence of a uniform
wave solution of utt−uxx+λu = 0 satisfying the initial conditions u(x, 0) = u0(x)
and ut(x, 0) = u1(x).

7.8. Find the solution of the telegrapher’s equation utt−uxx+ut+m2u = 0 satisfying
the initial conditions u(x, 0) = u0(x) and ut(x, 0) = 0, where u0 is an arbitrary
C2 function on the real axis.
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ÖVNINGAR, Blad 8
Teori för differentialekvationer
2005-10-04

8.1. Rewrite the initial-value problem

utt = c2uxx; u(x, 0) = f(x), ut(x, 0) = g(x) when x ∈ R,

as an initial-value problem for the vector-valued function (v1, v2)
T = (ut, ux)T.

Reduce it to the canonical form vt + Bvx = Cv + D with a diagonal matrix B.

8.2. Use the canonical form obtained in 8.1 to solve the mixed problem

utt = c2uxx, when x > 0, t > 0; u(x, 0) = f(x) and ut(x, 0) = g(x) when x > 0,

ut(0, t) + aux(0, t) = h(t) when t > 0,

where a denotes a constant.

8.3. Consider the system
ut + Bux = Cu + D,

where

u =

(

u1

u2

)

and B =

(

sin2 x sin t − sin x cosx cos x sinx sin t + sin2 x
cos x sinx sin t − cos2 x cos2 x sin t + cos x sin x

)

,

and where C and D are matrices whose entries are smooth functions of x and t.
Determine the eigenvalues for the system at every point (x, t) ∈ R

2. Determine
for which points (x, t) ∈ R

2 the system is hyperbolic.

8.4. Rewrite the equation
utt = (1 + ux)2uxx

as a first-order system for v = (ux, ut)
T. At which points (x, t, z1, z2) ∈ R

4 is it
hyperbolic?

8.5. Determine for which points (x, t) ∈ R
2 the system

ut + vx = v + w

vt + ux = w

wt + wx sinx = u

is hyperbolic.
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9.1. Let b be a continuous function on the real axis such that b(s)s > 0 for all s, and
consider solutions that are defined and continuous for 0 6 x 6 π, 0 6 t to the
problem

utt = c2uxx − b(ut), 0 < x < π, 0 < t;

u(x, 0) = f(x), ut(x, 0) = g(x), u(0, t) = u(π, t) = 0.

Let E(t) be the energy integral

E(t) = 1
2

∫ π

0

(

u2
t + c2u2

x

)

dx.

Prove that E is decreasing. What does the term b(ut) signify in the equation?
Solve the problem in the special case b(s) = as, where a is a constant satisfying
0 6 a < 2c and with f(x) = 0, g(x) = sin mx, m ∈ N, m > 0.

9.2. Let ϕ be a real-valued test function on R
n. Prove (using, e.g., the Fourier

transformation) the following statements concerning the Laplacian ∆.

a)
∫

ϕ∆ϕdx 6 0.

b) There is a constant C1 such that
∫

∣

∣

∣

∣

∂2ϕ

∂x1∂x2

∣

∣

∣

∣

2

dx 6 C1

∫

(∆ϕ)2dx.

c) If n 6 3, then there is a constant C2 such that

ϕ(0)2 6 C2

∫

(ϕ2 + (∆ϕ)2)dx.

d) Determine a possible value for the constant C2 when n = 3.

9.3. Determine a radial fundamental solution to the operator ∆2 in R
n when n > 3.

9.4. Let (r, θ) be polar coordinates in the plane. Solve the Dirichlet problem

∆u = r for r < 1; u = sin θ + cos2 θ for r = 1.

Try different methods if you like.

9.5. Solve the Cauchy problem

∂2u

∂x2
= 0; u(x, x) = 1,

∂u

∂y
(x, x) = x2.

9.6. A rod of infinite length has a temperature at time t = 0 which is given by the
function e−x2

. Heat conduction is assumed to occur according to the equation
uxx = ut. Calculate the temperature of the rod at an arbitrary time t > 0. Show
that the temperature at the point x = 1 on the rod first increases to a maximum
value and then decreases.
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10.1. Let f ∈ C2(Rn) have the properties: f(x) > 0 when ‖x‖ < 1 and f(x) = 0
when ‖x‖ > 1. Determine in each of the three cases a, b, and c below the set
At = {x ∈ R

n; u(x, t) 6= 0} for all t > 0.

a) Let n = 1 and let u ∈ C2(R × [0, +∞[) be the solution to

ut − uxx = 0, x ∈ R, t > 0; u(x, 0) = f(x), x ∈ R.

b) Let n = 2 and let u ∈ C2(R2 × [0, +∞[) be the solution to

utt − ∆xu = 0, x ∈ R
2, t > 0; u(x, 0) = 0 and ut(x, 0) = f(x), x ∈ R

2.

c) Let n = 3 and let u ∈ C2(R3 × [0, +∞[) be the solution to

utt − ∆xu = 0, x ∈ R
3, t > 0; u(x, 0) = 0 and ut(x, 0) = f(x), x ∈ R

3.

10.2. Let P (ζ) be a polynomial of n complex variables (ζ1, ..., ζn) of degree m > n + 1
and with the properties that |P (iξ)| > (1 + ‖ξ‖)m when ξ is real. Then

E(x) = (2π)−n

∫

Rn

eix·ξ

P (iξ)
dξ

is a well-defined function, for the integral converges. Prove that E is a fundamen-
tal solution to the differential operator P (D) which is obtained by substituting
∂/∂xj for the variables ζj. Prove the formula

E(x) = (−1)k‖x‖−2k(2π)−n

∫

Rn

e−ix·ξ∆k

(

1

P (iξ)

)

dξ

for every k = 1, 2, ... . From this formula we can deduce that E is a C∞ function
outside the origin, for ‖x‖2kE can be differentiated quite a few times, depending
on the fact that ∆k(1/P (iξ)) decreases rather rapidly.

10.3. Let b:R → R be an increasing continuous function with b(0) = 0 and let f :R →
R be continuous, bounded and > 0. The initial-value problem

ut − ∆xu + b(u) = 0, u(x, 0) = f(x),

then has exactly one bounded solution and it is > 0. Moreover, if we let u and
v be the solutions that belong to the initial values f and g, respectively, then
0 6 f 6 g implies that 0 6 u 6 v. Prove that if the integral

(⊗)

∫ 1

0

ds

b(s)

converges, then u(x, t) will be zero for every bounded function f when t is
sufficiently large. Prove that, conversely, if the integral (⊗) diverges, there exist
functions f > 0 such that u(x, t) never becomes zero for large t. Hint: As a
starter, study solutions which depend on t only.


