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Abstract Mikael Passare (1959–2011) was a brilliant mathematician. His PhD thesis from
1984 was a breakthrough in the theory of residues in several complex variables. Some time
before 1998 he started to work on amoebas and coamoebas. In discussions with him during
the last 30 years many questions have emerged—not all of them were resolved at the time
of his premature death. The purpose of the paper is to save from oblivion some of the
mathematical ideas of Mikael Passare. In the article some of these unanswered questions are
presented, always preceded by a discussion leading up to the question. Some of the questions
might present challenges to his nine former PhD students, to his many collaborators around
the globe—and to anybody interested. Is there an associative algebra of residue currents and
principal-value distributions? Is there an interesting non-associative algebra of such currents?
Meromorphic extension using two parameters often leads to points of indeterminacy—what
is the natural choice at such points? Several questions have bearing on tropical mathematics.
Is it possible to build an axiomatic theory for tropical geometry? There are also questions
on tropical polynomials as limits of classical polynomials. Can the absolute values of the
coefficients of a polynomial be retrieved from its growth function? Some questions are
concerned with digital convexity. Finally, there is a question on the constant term in powers
of a Laurent polynomial.

Mathematics Subject Classification (2010) 32C30 · 32A60 · 14T05 · 14P25 · 14H45 ·
32U05 · 90C10 · 90C15

1 Introduction

Mikael Passare (1959–2011) was a brilliant mathematician. He started his studies at Uppsala
University in the fall of 1976 while still a high-school student, merely seventeen and a half.
He finished high school in June 1978, gave his first seminar talk in November 1978, got his
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Bachelor Degree in 1979, and presented his PhD thesis at Uppsala University on December
15, 1984. He was appointed a professor at Stockholm University in 1994, on the chair which
was created for Sonja Kovalevsky (1850–1891) and held during 7 years, 1957–1964, by his
mathematical grandfather Lars Hörmander.

Mikael was deeply involved in the development of mathematics in Africa: he was a
member of the Board of the International Science Programme (ISP), Uppsala, and a member
of the Board of the Pan-African Centre for Mathematics (PACM) in Dar es-Salaam, Tanzania.
He was a driving force in the creation of this Pan-African Centre, which is a collaborative
project between Stockholm University and the University of Dar es-Salaam, and was actively
searching for a director of PACM.

Mikael Passare died from a sudden cardiac arrest in Oman on September 15, 2011. He is
buried not far from Sonja’s grave.

I was Mikael’s advisor when he was a PhD student. During the last 30 years we discussed
mathematics. The purpose of the present paper is to present some of the questions I have
raised during that period.

In some cases the questions just reflect my ignorance. In other cases they might represent
a challenge. I address them now to Mikael’s nine PhD students and his collaborators around
the globe—and to anybody interested—in the hope of starting a dialogue. I will be grateful
to receive any corrections, comments—or answers!

The next two sections are devoted to questions in complex analysis: the non-associativity
of multiplication of principal-value distributions and residue currents, followed by a sec-
tion on constructions using meromorphic extension (questions from the early 1980s and up
to 1988). The last six sections are related to Mikael’s more recent interest: amoebas and
tropical geometry (questions from the period 2003–2010). Tropical geometry has intrigu-
ing connections to digital geometry, mathematical morphology, discrete optimization, and
crystallography, including the theory of quasicrystals. I believe these connections could be
further developed—I hope they will.

Section 8 was written by Timur Sadykov and contains a conjecture formulated by Mikael
in December 2010. I am grateful to Timur for permitting me to include this text. Mounir
Nisse and Jens Forsgård provided the most recent information on this conjecture.

Section 9 about the constant term in powers of a Laurent polynomial was added by Alain
Yger, to whom I am grateful for this contribution.

2 Multiplication of residue currents and principal-value distributions

Let f and g be holomorphic functions of n complex variables. The principal value PV( f/g)

of the meromorphic function f/g is a distribution defined by the formula〈
PV

(
f

g

)
, ϕ

〉
= lim

ε→0

∫
|g|>ε

f ϕ

g
= lim

ε→0

∫
χ f ϕ

g
, ϕ ∈ D(Cn),

where χ = χ(|g|/ε) and χ is a smooth function on the real axis satisfying 0 ≤ χ ≤ 1 and
χ(t) = 0 for t ≤ 1, χ(t) = 1 for t ≥ 2 (in [22, p. 727] when f = 1 and in [24, p. 39] in
general).

The residue current is ∂̄ PV( f/g). Can the products

(PV( f1/g1))(PV( f2/g2)),
(
∂̄(PV( f1/g1))

)
(PV( f2/g2))

and other similar products be defined?
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Schwartz [31] proved that it is in general impossible to multiply two distributions
while keeping the associative law. He indicated three distributions u, v, w ∈ D ′(R) where
uv, vw, (uv)w and u(vw) all have a good meaning but where (uv)w �= u(vw). He
took u = PV(1/x), the principal value of 1/x; v as the identity, i.e., the smooth function
v(x) = x, which can be multiplied to any distribution; and w = δ, the Dirac measure placed
at the origin. Then we have uv = 1, (uv)w = δ, while vw = 0, u(vw) = 0. Hence there
is no associative multiplication in D ′(R). An easy modification proves the same result for
E ′(R), the distributions of compact support.

Remark 2.1 There is no need to know distribution theory to encounter a similar non-
associativity. Let us consider the convolution product of functions defined on the integers:

( f ∗ g)(x) =
∑
y∈Z

f (x − y)g(y), x ∈ Z,

which is well defined if f or g is nonzero only in a finite set.
Take now f (x) = sgn(x), the sign function, which takes the value −1 for x ≤ −1, 0 for

x = 0, and 1 for x ≥ 1; g = δ0 − δ1 (a difference operator); and h(x) = 1 for all x ∈ Z.

Then f ∗ g = δ0 + δ1, ( f ∗ g) ∗ h = 2, while (g ∗ h) = 0, f ∗ (g ∗ h) = 0.

We see that f corresponds to PV(1/x); g to the identity R 	 x 
→ x ∈ R; and h to the
Dirac measure on R. The two examples are actually the same—via the Fourier transformation.

��
Mikael’s construction of residue currents and principal-value distributions goes as fol-

lows. Take f = ( f1, . . . , f p+q), g = (g1, . . . , gp+q), two (p + q)-tuples of holomorphic
functions, and consider the limit

lim
ε j →0

f1

g1
· · · f p+q

gp+q
∂̄χ1 ∧ · · · ∧ ∂̄χp · χp+1 · · · χp+q , (2.1)

where χ j = χ(|g j |/ε j ) and the ε j tend to zero in some way.
Coleff and Herrera [5, p. 35–36] took q = 0 or 1 and assumed that ε j tends to zero

much faster than ε j+1, which in this context means that ε j/ε
m
j+1 → 0 for all m ∈ N and

j = 1, . . . , p+q −1; thus it is almost an iterated limit. This gives rise to the strange situation
that the limit depends in general on the order of the functions (and is not just an alternating
product). However, in the case of complete intersection, the construction is satisfactory, and
Mikael’s construction then gives the same results as that of Coleff and Herrera, but Mikael’s
construction [24] is valid also when we do not have a complete intersection.

Mikael took ε j = εs j for fixed s1, . . . , sp+q . The limit, which will be written as
R p Pq [ f/g](s), where we now write [. . . ] for the principal value, does not exist for arbi-
trary s j . But he proved (in [22, p. 728] when the f j = 1 and in [24, p. 40] in general) that,
if we remove finitely many hyperplanes, then R p Pq [ f/g](s) is locally constant in a finite
subdivision of the simplex

� = {
s ∈ R p+q ; s j > 0,

∑
s j = 1

}
,

so that the mean value

R p Pq
[

f

g

]
=

∫
−
�

R p Pq
[

f

g

]
(s)= ∂̄

[
f1

g1

]
∧ · · · ∧ ∂̄

[
f p

gp

]
·
[

f p+1

gp+1

]
· · ·

[
f p+q

gp+q

]
(2.2)

exists (Definition A in [23, p. 159]). This defines the product of p residue currents and q
principal-value distributions.
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In the little paper [25], based on his talk when accepting the Lilly and Sven Thuréus Prize
in 1991, he discusses the possibility of defining the product PV(1/x)δ on the real axis, and
finds that it should be − 1

2 δ′, which is the mean value of −δ′ and zero. This is an analogue in
real analysis to the mean value over � which he considered in the complex case.

Leibniz’ rule for the derivative of a product and some other rules of calculus hold; for
example we have [24, p. 43]: [

1

z1

] [
z1

z2

]
=

[
1

z2

]
,

which yields (
∂̄

[
1

z1

]) {[
1

z1

] [
z1

z2

]}
=

(
∂̄

[
1

z1

]) [
1

z2

]
�= 0,

while {(
∂̄

[
1

z1

]) [
1

z1

]} [
z1

z2

]
= 1

2
z1

(
∂̄

[
1

z2
1

]) [
1

z2

]
= 1

2

(
∂̄

[
1

z1

]) [
1

z2

]
.

Thus the associative law does not hold. It is natural to ask whether these currents are just
as bad as the general distributions when it comes to multiplication, or whether there is a
subclass of them with nicer properties.

Question 2.2 We saw in Schwartz’ example that an associative multiplication is impossible
in general; the last example shown here makes us wonder whether it is possible to define
an associative multiplication for some residue currents and principal-value distributions. Is
there an associative algebra of residue currents and principal-value distributions? Is there an
interesting non-associative algebra of such currents?

3 Constructions using meromorphic extension

3.1 Extending a given meromorphic function

The Riemann ζ -function is a classical example of meromorphic extension: the series

ζ(s) =
∞∑
1

1

ns
,

which converges for s ∈ C, Re s > 1, is extended to a meromorphic function in the whole
plane.

The well-known formula
∞∑
0

α j = 1

1 − α
, |α| < 1,

can be used to define more or less funny results like

∞∑
0

(−1) j = 1

2
;

∞∑
0

2 j = −1;
∞∑
0

(−2) j = 1

3
;

∞∑
0

3 j = −1

2
;

∞∑
0

(−3) j = 1

4
.

This is based on the observation that 1/(1 − α) is a meromorphic function with a single pole
at α = 1 but otherwise regular. But why should

∑
α j be meromorphic?
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The construction of homogeneous distributions in Hörmander [10, Section 3.2], in partic-
ular of the distributions xa+ on the real axis, is done by meromorphic extension.

In the three examples mentioned, we have a given meromorphic function in a nonempty
open set of the complex plane, and we know that, if it has a meromorphic extension to the
whole plane, then the extension is unique. The situation is different when we want to construct
an object and have to choose a meromorphic function.

3.2 Finding a meromorphic function

Atiyah [1] proved that if F is a nonnegative real-analytic function, then λ 
→ Fλ can be
extended to a meromorphic function in all of Bernšteı̆n and Gel′fand [2] proved a similar
result for polynomials. Using Atiyah’s result, Yger [36] defined residue currents as mero-
morphic extensions of ( f f )λ for a holomorphic f, and Mikael compared them (Definition
B in [23, p. 159]) with his own construction (Definition A already mentioned in Sect. 2,
Eq. (2.2)).

In this case the authors want to obtain ( f f )λ for just one value of λ, viz. λ = −1, which
means that they have to choose a parametrized family; the choice is not obvious.

Another kind of limit of a meromorphic function is

lim
ε j →0

∂̄
f̄1

| f1|2 + ε1
∧ · · · ∧ ∂̄

f̄ p

| f p|2 + εp
,

which is obtained by taking χ j (t) = t/(t + 1) in (2.1) (the case q = 0). It yields the same
current as the former construction for complete intersections ([3, p. 35]; cf. earlier results by
Samuelsson [30, Corollary 26], who may have been inspired to consider averaging from a
paper on defining residues of a complete intersection by Passare and Tsikh [26]).

If we want to evaluate a divergent integral, for instance

1∫
0

x−2 dx, (3.1)

one method is to embed the integrand into a family of functions depending on a parameter and
define the integral as the value of an extension in the parameter space. In the case mentioned,
we can define f (x, α) = xα, and since

�(α) =
1∫

0

f (x, α) dx =
1∫

0

xα dx = 1

α + 1

is well-defined for Re α > −1 and has a meromorphic extension to the whole complex plane,
we can define the integral of x−2 as �(−2) = −1. The question is now: will we get a different
answer if we use a different meromorphic function?

It can be remarked that �(−2) is also the finite part of the integral (3.1) in view of the
formula

1∫
ε

x−2 dx = 1

ε
− 1, 0 < ε < 1,

where 1/ε is the infinite part (to be thrown away) and −1 is the finite part (to be kept).
We may conclude that meromorphic extension is an often used method to construct math-

ematical objects.
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3.3 Two-parameter families

While meromorphic functions of one variable can be assigned the value ∞ at a pole, and
therefore can be defined as good mappings with values in the Riemann sphere C ∪ {∞},
meromorphic functions of two variables may have points of indeterminacy: the function
f (z1, z2) = z2/z1 can be assigned the value ∞ at a point (0, z2) �= (0, 0), but at the origin
we cannot do so. This explains the trouble we are in for.

I will consider a divergent integral where we can get different values for different choices
of parametrized families.

We denote by D(c, r) the open disk with center at c and with radius r :
D(c, r) = {z ∈ C; |z − c| < r}.

Let us consider the divergent integral∫
D(1,1)

z−2 dλ(z). (3.2)

A simple idea is to vary the disk. We have∫
D(c,r)

z−2 dλ(z) = πr2/c2 when r < |c|,

i.e., when the origin is not in the closure of D(c, r). Hence the limit of these values is π as
(c, r) ∈ C × R tends to (1, 1) under the restriction r < |c|. So this is one possible method.

Another idea is to remove a small disk around the origin, like in the definition of the
principal value:

PV
∫

D(1,1)

z−2 dλ(z) = lim
ε→0

∫
z∈D(1,1), |z|>ε

z−2 dλ(z) = 2

π/2∫
0

cos 2θ log cos θ dθ = 1
2π.

The last integral is evaluated in Gradšteı̆n and Ryžik [8, 598:4.384.7].
Are there other ways to approach the divergent integral? Let us look at a two-parameter

family.

Lemma 3.1 For (α, β) ∈ C2 with Re (α + β) > −2 we have

F(α, β) =
∫

D(1,1)

zαzβ dλ(z) = π�(α + β + 2)

�(α + 2)�(β + 2)
. (3.3)

Proof This follows from Gradšteı̆n and Ryžik [8, 490:3.892.2]. ��
So the extended values of the integral (3.3) define a meromorphic function F in all of C2,

with singularities, e.g., on the hyperplane α + β = −2. But restrictions of F may be free
from singularities: the function β 
→ F(m, β) is entire (in fact a polynomial of degreee m)
for every m ∈ N. At the point (α, β) = (−1,−1) we can assign the value ∞ to F if we like,
but the point (α, β) = (−2, 0) is a point of indeterminacy.

We take (α, β) = (−2 + ε, θ − ε) and consider

F(α, β) = F(−2 + ε, θ − ε) = πε

θ

�(1 + θ)

�(1 + ε)�(2 + θ − ε)
= πε

θ
(1 + o(1))
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as (θ, ε) → (0, 0) under the restriction Re θ > 0. The quantity πε/θ has no limit as
(ε, θ) → (0, 0), but we may introduce a relation between ε and θ to create a one-parameter
family of functions which has a limit, e.g., ε = θ or ε = 0.

If we take ε = θ, we obtain

G(θ) = F(−2 + θ, 0) =
∫

D(1,1)

z−2+θ dλ = π, Re θ > 0.

If we take ε = 0, we get

H(θ) = F(−2, θ) =
∫

D(1,1)

z−2|z|θ dλ = 0, Re θ > 0.

More generally, we may take ε = cθ and get the limit cπ for certain values of c, or θ = ε2

and get infinity.
Inspired by the work of Mikael and others I asked a question:

Question 3.2 Meromorphic extension using two parameters easily leads to points of inde-
terminacy, and so gives rise to infinitely many one-parameter families. Sometimes we will
have to accept all limits that can appear as solutions to a certain problem; sometimes, as we
have seen, mathematicians do make a choice. And which are then the criteria for a choice?

The text in this section was essentially written on 1988-10-17 and sent out to some people,
among them Mikael Passare and Bo Berndtsson. Bo expressed surprise.

4 The axioms of tropical geometry

4.1 Tropicalization

Roughly speaking, tropical mathematics is the mathematics of a structure with addition
and maximum as binary operations. The simplest example is the semiring of real numbers
(R,+,∨), where + denotes usual addition and ∨ is the maximum operation, x ∨ y =
max(x, y). Note the distributive law a + (b ∨ c) = (a + b)∨ (a + c) : addition is distributive
over maximum. Sometimes R is augmented by adding an element −∞, the neutral element
for the maximum operation: x ∨ (−∞) = x . Another name is idempotent mathematics, used
because of the idempotency of the maximum operation: x ∨ x = x .

Tropicalization means that in a semiring with multiplication and addition we replace multi-
plication by addition, and addition by the maximum operation. This is somewhat reminiscent
of taking the logarithm. Start with the semiring (R+,×,+), where R+ = {x ∈ R; x > 0} is
the set of positive real numbers, and take the logarithm. Then

log(x × y) = log x + log y, and

(log x) ∨ (log y) ≤ log(x + y) ≤ log 2 + ((log x) ∨ (log y)),

so that multiplication gives addition of the logarithms, and addition comes close to the
maximum of the logarithms—a good approximation if x � 1 or y � 1.

If we introduce s = log x and t = log y, and make a change of scale, we see that

log(es × et ) = s + t.
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In the limit,

h log(es/h × et/h) = s + t → s + t and h log(es/h + et/h) → s ∨ t as h → 0+.

Thus we may say that tropicalization is a limiting case of logarithmization. Here h > 0 is an
analogue of Planck’s constant—hence the name dequantization [18; 33, Section 2.1].

For basic concepts of tropical geometry, see also Viro [34,35]. The book by Itenberg et al.
[11] presents fundamental ideas and key results in tropical algebraic geometry.

4.2 Tropical straight lines

A polynomial function of degree one has the form

(x, y) 
→ f (x, y) = ax + by + c.

If we tropicalize it, we get

ftrop(x, y) = (a + x) ∨ (b + y) ∨ c.

Thus ftrop is a convex function with a simple structure. It is piecewise affine outside the three
lines x + a = c, y + b = c, and x + a = y + b, which meet at the point p = (p1, p2) =
(c − a, c − b). More precisely, it is affine outside the three rays emanating from that point in
the directions (−1, 0), (0,−1) and (1, 1). We shall call this the tropical straight line TSL(p)

with vertex p.

A real line is the set of zeros of such a function f, but if we replace the coefficients (a, b, c)
by (λa, λb, λc) we get the same line for all real λ �= 0. This implies by analogy that if we
replace the coefficients (a, b, c) in ftrop by (a +λ, b +λ, c +λ), we should also get the same
line, in other words, the functions (x, y) 
→ (a + λ + x) ∨ (b + λ + y) ∨ (c + λ) should
define the same line as ftrop for all real λ.

So what is independent of λ? It is the three rays going out from the point (c − a, c − b),

which is also the support of the distribution � ftrop, the Laplacian of ftrop. It is often called
the corner locus, e.g., by Izhakian [13, p. 1447], or tropical zero locus, e.g., by Grigg and
Manwaring [9, p. 7]. So it is justified to say that a tropical straight line is these three rays,
which are parametrized by the point p = (c − a, c − b). Given any point p = (p1, p2), we
define ftrop(x, y) = (x − p1 + λ) ∨ (y − p2 + λ) ∨ λ for any constant λ, which is affine
outside the union of the three rays constituting TSL(p).

We see that in general two different tropical lines intersect in a single point. An exception
occurs when the lines have their vertices at points p = (p1, p2) and q = (q1, q2) with
p1 = q1 or p2 = q2 or p2 − p1 = q2 − q1, i.e., when q ∈ TSL(p) or p ∈ TSL(q). Then
there are infinitely many points in the intersection, but Mikael explained that we should require
stability under small perturbations, which means that we should define the intersection as the
limit of the unique intersection of the lines TSL(p) and TSL(q + (δ, ε)) as (δ, ε) → (0, 0)

while avoiding the exceptional values (cf. [29, Theorem 4.3; 32, Definition 4]).
In this way two distinct tropical straight lines always have a unique intersection, just like

in spherical geometry. And, similarly, two distinct points always define a tropical straight
line, except in certain cases, where again we use stability to impose uniqueness.

Question 4.1 So we may ask about all of Euclid’s axioms! Is it possible to build up an
axiomatic theory for tropical geometry? What are the similarities with spherical geometry?

I asked Mikael these questions a few years ago.
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5 Tropical functions

5.1 Largest tropical minorants

A tropical power series function of one real variable is of the form

f (x) = sup
j∈Z

(a j + j x), x ∈ R.

It is typically a piecewise affine function, where each piece has integer slope.
To any function G : R → R we associate its largest tropical minorant f. The example

G(x) = 0 ∨ (a + 1
2 x) ∨ x, x ∈ R,

shows that the difference G − f can be arbitrarily large even if G is convex: in this case we
have f (x) = 0 ∨ x, so that G(0) − f (0) = 0 ∨ a.

On the other hand, if

G(x) = sup
|z|=ex

log |h(z)|, x ∈ R, (5.1)

for some holomorphic function h, I proved [15, p. 168] that

f ≤ G ≤ f + log 3.

Question 5.1 Which is the smallest constant c such that f ≤ G ≤ f + c if G is of the form
(5.1) for some polynomial h?

We know that c ≤ log 3 ≈ 1.09861. The example h(z) = 1 + z shows that c ≥ log 2 ≈
0.69315 : in this case G(0) = log 2 and f (0) = 0.

I sent this question to Mikael Passare, Jan Boman, David Jacquet, Hans Rullgård, Erik
Melin, and Markku Ekonen in a letter of 2003-10-21.

5.2 Approximation of the exponential function

The Fenchel transformation is a tropical analogue of the Fourier transformation or the Laplace
transformation.

The Fenchel transform f̃ of a function f : R → [−∞,+∞] is defined by

f̃ (ξ) = sup
x∈R

(
ξ x − f (x)

)
, ξ ∈ R.

We have ˜̃f ≤ f with equality if and only if f is convex, lower semicontinuous, and takes the

value −∞ only if it is identically −∞. The equality f = ˜̃f means that f is represented as a
supremum of affine functions—a tropical integral of the simplest convex functions—just as
the Fourier inversion formula f = F−1(F ( f )) represents f as an integral of the simplest
oscillations.

Now take f (x) = ex , x ∈ R. The Fenchel transform of this function is

f̃ (ξ) =
⎧⎨
⎩

+∞, ξ < 0,

0, ξ = 0,

ξ log ξ − ξ, ξ > 0.
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Then, for ξ > 0,

e f̃ (ξ) = ξξ e−ξ = sup
x∈R

eξ x−ex = sup
y>0

yξ e−y ≈
∞∫

0

yξ e−y dy = �(ξ + 1),

for the integral defining the Gamma function is approximately equal to a tropical integral,
i.e., to a supremum. This is a crude form of Stirling’s formula.

Furthermore, since ˜̃f = f,

eex = e
˜̃f (x) = sup

ξ>0
eξ x− f̃ (ξ) = sup

ξ>0

eξ x

e f̃ (ξ)
≈ sup

ξ>0

eξ x

�(ξ + 1)
≈

∑
k∈N

ekx

k! = eex
,

where we have used the former approximation that e f̃ (ξ) ≈ �(ξ + 1) and a new tropical
approximation: the sum defining the exponential function is approximately equal to a tropical
sum, i.e., to a supremum.

Question 5.2 We have thus showed that eex
is approximatively equal to eex

. This is not so
remarkable. But the surprising fact is that it is an exact equality. After two approximations
we return to the exact value. Is there an explanation? To be precise: is there a more direct
explanation why

sup
ξ>0

eξ x

e f̃ (ξ)
=

∞∑
k=0

ekx

k! , x ∈ R?

Are there other, similar examples?

I sent this question to Mikael Passare, Jan Boman, David Jacquet, Hans Rullgård, Erik Melin,
and Markku Ekonen on 2003-10-21.

5.3 Representation of tropical functions by tropical power series

Lemma 5.3 A tropical function of the form

f (x) = sup
α∈Zn

(x · α + aα), x ∈ Rn, (5.2)

with coefficients aα ∈ [−∞,+∞] can sometimes be represented in more than one way by
tropical power series, i.e., by using different choices for the coefficients aα (see Sect. 6). The
representation

f (x) = sup
α∈Zn

(x · α + bα), x ∈ Rn,

with bα = − f̃ (α), α ∈ Zn, is the one with the largest coefficients.

Proof Let (5.2) be any representation of f and define ϕ(α) = −aα for α ∈ Zn; ϕ(ξ) = +∞
for ξ ∈ Rn

� Zn . Then f = ϕ̃. This implies

f̃ = ˜̃ϕ and ˜̃f = ˜̃̃
ϕ = ϕ̃ = f.

(The third Fenchel transform is always equal to the first.) Moreover, it is clear that, in the
definition of the second Fenchel transform of f, it is enough to take ξ ∈ Zn :

f (x) = ˜̃f (x) = sup
ξ∈Rn

(
x · ξ − f̃ (ξ)

)
= sup

α∈Zn

(
x · α − f̃ (α)

)
, x ∈ Rn .
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Now define bα = − f̃ (α), α ∈ Zn . Then bα = − f̃ (α) = − ˜̃ϕ(α) ≥ −ϕ(α) = aα (cf. Grigg
and Manwaring [9, Lemma 3.3]). ��
5.4 The exponential of a tropical polynomial function

Let ϕ : Zn → [−∞,+∞] be a function on the integer points which is < +∞ only at finitely
many of them. (This can be expressed by saying that exp(−ϕ) has finite support.) We may
also take ϕ defined on Rn and with the value +∞ at all points in Rn

� Zn .

We define f = ϕ̃, the Fenchel transform of ϕ,

f (x) = ϕ̃(x) = sup
α∈Zn

(
x · α − ϕ(α)

)
, x ∈ Rn .

It is a tropical polynomial function.
Passing to the exponential, we see that

e f (x) = eϕ̃(x) = sup
α∈Zn

ex ·αe−ϕ(α) ≤
∑
α∈Zn

ex ·αe−ϕ(α) = g(y),

where y j = ex j and

g(y) =
∑
α∈Zn

e−ϕ(α)yα

is a classical Laurent polynomial majorizing e f (x) = eϕ̃(x), but actually often rather close to
it.

Summing up, we see that ϕ contains all information, from which f = ϕ̃ and g can be
constructed. Also g determines its coefficients exp(−ϕ(α)), thus also ϕ and f. On the other
hand, f = ϕ̃ contains less information, from which ϕ cannot in general be retrieved.

Question 5.4 Is it possible to pass from e f = eϕ̃ to g using some other structure? (cf.
Sect. 6.)

Question 5.5 Is it possible to pass to the limit in some way so that the classical polynomials
tend to the tropical one?

6 Ghosts in tropical mathematics

In a polynomial function f (z) = ∑
a j z j all coefficients can be retrieved from the values of

f, both in the real case and in the complex case: if
∑

a j z j = ∑
b j z j for sufficiently many

z, then a j = b j for all j.
But in a tropical Laurent polynomial function f (x) = sup j∈Z(a j + j x), a coefficient

ak cannot be retrieved from the values of f if ak ≤ 1
2 (ak−1 + ak+1) : if this is so, we can

replace ak by a smaller value without changing the values of f at any point. In fact, under
this hypothesis,

ak + kx ≤ (
ak−1 + (k − 1)x

) ∨ (
ak+1 + (k + 1)x

)
for all x ∈ R. (6.1)

Thus such a coefficient is invisible. We see that many tropical Laurent polynomials
P(X) = ∨

j∈Z(a j + j X) have the same evaluation on the real axis.
On the other hand, if the function Z 	 j 
→ a j is strictly concave in the sense that

a j > 1
2 a j−1 + 1

2 a j+1 for all j ∈ Z, then the coefficients can be retrieved from the values of
the function; in fact, under this hypothesis, a j = − f̃ ( j), j ∈ Z.
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I found this slightly disturbing, and asked Mikael the following question in a letter of
2010-03-26.

Question 6.1 Is there some structure which will allow us to retrieve all coefficients of a
tropical polynomial from its point evaluations?

It is clear that we need more information than just the values on the real axis.
In his answer of 2010-03-29, Mikael directed me to the preprint by Izhakian and Rowen

[13], published as [14]. (Perhaps the paper by Izhakian [12] is easier to start with.) It seemed
to me that Mikael hinted at a solution in that the ghost elements could be used to retrieve the
coefficients.

A first lesson is that, just as for classical polynomials, we must distinguish between a
polynomial and the function given by a polynomial. A polynomial P(X) = ∑

a j X j is
a formal expression containing an indeterminate X. If we give X a value as a variable in
some ring, we get a polynomial function. For instance, if P(X) = X3 − 3X2 + 2X, and we
replace X by a variable in the finite field Z3 = Z/3Z, then the value is everywhere zero.
The situation is similar for tropical polynomials: a tropical polynomial is a formal expression
P(X) = ∨

j∈N(a j + j X), where information about all the coefficients a j is preserved. That
the coefficients are not retrievable from an evaluation in R is no more upsetting than the
example with evaluation in Z3.

In the quoted papers by Izhakian and Rowen, the authors construct a space T =
(R × {0, 1}) ∪ {−∞}, where we have two copies of R; the first copy consists of the usual
real numbers, represented as (x, 0), the second of the ghost elements, represented as (x, 1).

We can evaluate a tropical polynomial at the points of T.

However, Zur Izhakian explains:

In the tropical framework there is no injection of the polynomial semiring into the
function semiring. Namely, a function could have several polynomial descriptions.
In particular there are monomials (called inessential) which can be omitted without
changing the function determined by the polynomial.
This phenomena is obtained due to convexity considerations involved in this setting,
which cause a loss of information. Accordingly, a full recovery of the exact coefficients
of a polynomial from the corresponding function is not always possible. (Zur Izhakian,
personal communication 2011-10-26)

So this is just the observation I made concerning evaluation at real numbers in the beginning
of this section [see formula (6.1)], but now extended to the larger space T.

This means that my original Question 6.1 remains unanswered.

Question 6.2 It is well known that the coefficients of a holomorphic function can be retrieved
from its values:

if h(z) =
∑
j∈N

a j z
j , z ∈ C, then ak = 1

2π i

∫
|z|=r

h(z)

zk+1 dz, k ∈ N.

What can be said if we know only the values of the growth function

g(r) = sup
|z|=r

|h(z)|, r ≥ 0? (6.2)

If we have two entire functions h1 and h2 with growth functions g1 and g2, does it follow that
g1(r) = g2(r) for all r only if the coefficients of h1 and h2 have the same absolute values?
Is there even a formula that yields the |a j | from g?
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We can at least retrieve the absolute values of the first and second nonzero coefficients
from the growth function:

Proposition 6.3 Let h be an entire function with Taylor series

h(z) =
∞∑
q

a j z
j , z ∈ C,

and let g be its growth function defined in (6.2). Then

g(r)r−q → |aq | and
g(r)r−q − |aq |

r
→ |aq+1| as r → 0+.

Corollary 6.4 If h is a polynomial of the form

h(z) =
q+3∑

q

a j z
j ,

then the absolute values of all four coefficients aq , aq+1, aq+2, aq+3 can be determined from
the growth function.

Proof To determine |aq+2| and |aq+3| we look at zq+3h(1/z). ��
When the coefficients are real, Jean-Pierre Kahane could give an affirmative answer:

Proposition 6.5 (Jean-Pierre Kahane, 2011-11-11.) If h(z) = ∑
a j z j is an entire function

with real coefficients a j and if a0 and a1 are positive, then all coefficients can be determined
from the Taylor expansion at the origin of the square of the growth function.

Proof From the following lemma we have that h(r)h(r) = g(r)2 for small r. It is easy to see
that the coefficients a j of h can be read off from the Taylor expansion of hh at the origin. ��
Lemma 6.6 (Jean-Pierre Kahane, 2011-11-11.) If h(z) = ∑

a j z j is an entire function with
real coefficients a j and if a0 and a1 are positive, then g(r) = |h(r)| for sufficiently small
r ≥ 0.

Proof We have, writing z = reit ,

|h(z)|2 =
∑
j,k∈N

a j ak z j zk =
∞∑

m=0

rm
m∑

j=0

a j am− j e
i(2 j−m)t .

Taking the real part, we get

|h(z)|2 = Re |h(z)|2 =
∞∑

m=0

rm
m∑

j=0

a j am− j cos(2 j − m)t.

The partial derivative with respect to t is

∂

∂t
|h(reit )|2 = −2ra0a1 sin t +

∞∑
m=2

rm
m∑

j=0

a j am− j (m − 2 j) sin(2 j − m)t.

Here the first term −2ra0a1 sin t, where a0a1 > 0, dominates all the others when r is small.
This follows from the inequality | sin(m − 2 j)t | ≤ |(m − 2 j) sin t |, −π ≤ t ≤ π. Since the
coefficients are bounded, the sum can be estimated by a constant times

∞∑
m=2

m2rm | sin t | ≤ Cr2| sin t |, 0 ≤ r ≤ 1
2 ,
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which is strictly less than 2ra0a1| sin t | when r < 2a0a1/C. Hence the partial derivative of
|h(reit )|2 with respect to t has the same sign as − sin t, which shows that [−π, π] 	 t 
→
|h(reit )|2 attains its maximum for t = 0, i.e., for real z = reit . ��

7 The discrete Prékopa problem

If F : R2 → [−∞,+∞] is a function of two real variables, its marginal function H : R →
[−∞,+∞] is defined by

H(x) = inf
y∈R

F(x, y), x ∈ R.

It is well known and easy to prove that H is convex if F is convex.
There is a more general marginal function Hp, called the p-marginal function, of

F : R2 → [−∞,+∞]. It is defined by

e−pHp(x) =
∫
R

e−pF(x,y) dy, x ∈ R,

for any positive real number p. Prékopa’s theorem, first presented by András Prékopa in
Budapest in 1972 (Christer Borell, personal communication 2011-10-24) and published by
Prékopa [28, Theorem 6], says that Hp is convex if F is convex. For an elegant proof of a
more general theorem, see Ledoux [17, Theorem 2.13].

In the discrete case, with f : Z2 → [−∞,+∞], we define the marginal function h by

h(x) = inf
y∈Z

f (x, y), x ∈ Z,

and the p-marginal function h p by

e−ph p(x) =
∑
y∈Z

e−p f (x,y), x ∈ Z. (7.1)

The classical marginal function h = h∞ is a limiting case when p → +∞ and may be
defined by

e−h∞(x) = sup
y∈Z

e− f (x,y), x ∈ Z. (7.2)

So we may say that (7.2) is a dequantization of the sums of the exponential functions in (7.1):
replacing the sum by the sup. We have h p ≤ h∞.

Question 7.1 Is it possible to go from
∑

y∈Z e− f (x,y) to supy∈Z e− f (x,y) under some rea-
sonable hypotheses on f ? (cf. Question 5.5.)

In the digital case, it is not enough to assume that f has a convex extension to all of R2 to
conclude that h has a convex extension to R. But a stronger convexity property, now called
rhomboidal convexity, implies that h has a convex extension to R [16]. I call f : Z2 → R
rhomboidally convex if its second differences satisfy six conditions:

Db Da f ≥ 0 for all (a, b) ∈ {((1, 0), (1, b2)); b2 = −1, 0, 1},
as well as

Db Da f ≥ 0 for all (a, b) ∈ {((0, 1), (b1, 1)); b1 = −1, 0, 1}.

123



Questions inspired by Mikael Passare’s mathematics

Here Da is the difference operator (Da f )(x) = f (x + a) − f (x). It is not known whether
the result holds for the p-marginal function. This is the discrete Prékopa problem:

Question 7.2 Is it true that the p-marginal function h p, defined by (7.1), has a convex
extension to R if f is rhomboidally convex?

I asked Mikael Passare and Bo Berndtsson this question in the spring of 2008.
It is enough here to take p = 1. Examples show that it is not enough that f admits a

convex extension to all of R2, and that rhomboidal convexity is sufficient in some special
classes.

8 A conjecture on coamoebas and Newton polytopes

This section was written by Timur Sadykov and is included here with his permission. It also
contains recent information from Mounir Nisse and Jens Forsgård.

Definition 8.1 A Laurent polynomial is a polynomial in z j and z−1
j , j = 1, . . . , n. It thus

has the form

f (z) =
∑
α∈A

aαzα

for some finite subset A of Zn . The Newton polytope of a Laurent polynomial is defined to
be the convex hull in Rn of the set {α ∈ A; aα �= 0}. We will denote this polytope by � f .

A Laurent polynomial is said to be maximally sparse if the number of its nonzero terms is
equal to the number of vertices of its Newton polytope. ��
Definition 8.2 The amoeba of a function f defined in (C � {0})n is a set in Rn defined as
follows. We define a mapping

Log : (C � {0})n → Rn by Log(z) = (log |z1|, log |z2|, . . . , log |zn |).
Then the amoeba A f of f is the image under Log of its set of zeros. The coamoeba A ′

f is
defined analogously but with the mapping Log replaced by the mapping

Arg(z) = (arg z1, arg z2, . . . , arg zn).

The amoeba of a Laurent polynomial f is said to be solid if the number of components of
its complement is as small as it can possibly be, that is, if it equals the number of vertices of
the Newton polytope � f . ��

Mikael wanted to establish formally the duality between amoebas and coamoebas, and
he started to write a paper with Nisse [21], which Mounir has now finished (Mounir Nisse,
personal communication 2011-11-13, 2012-06-24).

Maximally sparse polynomials enjoy certain minimality properties. For instance, it has
been proved by Mounir Nisse that the amoeba of a maximally sparse polynomial is necessarily
solid; see Nisse [19; 20, p. 33]. This was earlier conjectured by Mikael and others.

The solidness of the amoeba is also one of the characteristic properties of discriminants
according to Passare et al. [27].

Conjecture 8.3 (Mikael Passare, 2010-12.) Let f be a maximally sparse Laurent polynomial
in n variables. Then the number of components in the complement of the closed coamoeba
A ′

f is equal to n! Vol(� f ).
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The conjecture was formulated by Mikael in Stockholm in December 2010 and written
down on a napkin. Timur kept this napkin and reconstructed the conversation.

However, the conjecture is false: Jens Forsgård and Petter Johansson found counterexam-
ples in dimensions 2 and 3. In two dimensions their polynomial is of the form

f (z, w) = 1 + z2 + w3 + azw3 + bz2w2,

where a and b are constants. The normalized area of the Newton polytope is 11, while the
maximal number of components in the complement of the closed coamoeba is 10. In three
dimensions, the Newton polytope is the cube with side length 1. The normalized volume is
then 6, while the maximal number of components in the complement is 4. Part of the results
is described in Broms [4]. (Jens Forsgård, personal communication 2012-06-24.)

Also Mounir Nisse and Frank Sottile found a counterexample in dimension two. More
precisely, they proved that there exists a 2-dimensional polygon � such that, for any complex
plane curve with � as Newton polygon, the number of components in the complement of
its coamoeba is strictly less than 2Area(�) (in particular when it is defined by a maximally
sparse polynomial). (Mounir Nisse, personal communication 2012-06-24.)

Recently however, Forsgård and Johansson [7] could prove that the conjecture is true if
the Newton polytope has n + 2 vertices.

9 The constant term in powers of a Laurent polynomial

Let P(X) = ∑
α∈A aα Xα, A a finite subset of Zn, be a Laurent polynomial and assume

that its Newton polytope, defined in Definition 8.1, contains the origin in its interior. We
consider powers P(X)k, k ∈ N, of P(X) and denote by ck(P) the constant term in P(X)k .

The question is whether there are infinitely many k such that ck(P) is nonzero. This seems
plausible, and for n = 1 it has an elementary proof. Mikael lectured on this problem in the
Pluricomplex Seminar on 2000-03-14.

Alain Yger points out that Hans Duistermaat and Wilberd van der Kallen [6] proved that
the answer is in the affirmative as well as a more precise result: the radius of convergence
of the formal power series

∑∞
k=1 ck(P)tk is finite (Alain Yger, personal communication

2011-12-01). However, the proof relies on a very heavy machinery when n ≥ 2.

Alain writes that Mikael was “deeply concerned” about finding a simpler proof of this
result. So we may list a new question:

Question 9.1 Is there a more elementary proof of the result of Duistermaat and van der
Kallen [6] that the constant term ck(P) in the k-th power of a Laurent polynomial is different
from zero for infinitely many values of k?
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