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Foreword

As often happens, it is in response to a particular request that the fol-
lowing text was written. Prof. Christer Kiselman, who organised the first
French-Nordic Summer School in Mathematics, requested that I write these
lecture notes in the framework of his course, to be given at the University of
Uppsala in June 2001.

Exactly twelve years ago, also in the northern countries, but this time at
the University of Tampere, I gave a similar summer course, in co-operation
with L. Vincent. The comparison between the first lecture notes [[66]] and
the current one is instructive: the previous material represents only twenty
five per cent of the new one! In the field of image processing, matters evolve
rapidly.

However, some methodological bases, some a-priori points of view to un-
derstand the physical world remain unchanged. And regarding Mathematical
Morphology, this behaviour consists in privileging ordering relations between
regions rather than their metric characteristics. In particular, it leads directly
to set descriptors. Therefore, a certain epistemology is chosen which appears
all along the text, as soon as one looks beyond the mathematical layer. For
instance, the notion of a granulometry summarises the essentials of all size
measurement techniques, and even of what the human language intends to
mean by the word ”size”.

The above choice requires some comments. If one wanted to explain
the difference between the natural sciences and physics, the main point of
departure would probably be that for the natural sciences, morphological
description precedes the determination of laws, whereas for physics it fol-
lows. The main interest of law comes classically from the elimination of the
morphological characteristics (volume, etc. ).

However, in the great majority of areas where mathematical morphology
can be used, both the structural description and the determination of laws
co-exist, and we must try to bring them together. It is not always an easy
task, and if we take only one of these two points of view, our ship is in dan-
ger of sinking. For example, a pure physicist might consider that the flow in
a porous medium is completely described as soon as the partial differential
equation is written down, i.e. when he knows the Navier-Stokes law, plus
the initial and boundary conditions. But in practice, the boundary condi-
tions may be so complex and locally unpredictable, that finally the physicist



changes his approach (and the observation scale) and uses the Darcy law (flow
is proportional to pressure with the coefficient of proportionality being the
permeability). At this scale the Navier-Stokes law is virtually meaningless.

Now, from a natural scientist’s point of view, porous media can be classi-
fied according to their petrographic family : sandstone with or without clay,
quartzites, etc Their permeabilities depend partially on this classification,
but the relationships are too fuzzy to become operational tools in the hands
of the hydro-geologist. Thus, two opposite points of view arise : the descrip-
tive point of view of the naturalist, and the functional point of view of the
physicist.

In order to try and bridge the gap between the two approaches, Mathe-
matical Morphology has conceived a series of descriptors, and has developed
its theory in three ways. Firstly, it proposes a gamut of operators, that
express some characteristics of the medium of the image under study (gran-
ulometry, morphological filters, connections, etc ). In parallel, Mathematical
Morphology has elaborated a comprehensive range of random models, and
thirdly has reached a synthesis between textures and physical properties at
least in some fields of physics, such as hydrodynamics. The lecture notes
that follow are exclusively devoted to the first of these three branches, i.e.
the operators.

Although these operators were initially set oriented and designed for
physics, they evolved by themselves, and also according to the questions
that arose: a tool exists independently of its initial finality. Indeed, the
boom of multi-media applications during the last decade has oriented some
developments of the method, and notions such as connection, levelling or
multiscale processing were suggested by multimedia problems.

Pedagogically speaking, the course comprises the text that follows, plus
two other elements. There is on the one hand the series of transparencies for
the verbal presentation, but also a collection of 80 case studies. They cover all
the current fields of application, and all the modalities of concatenation of the
various operators. They can run in real time by means of the ” Micromorph”
software. A last point. For size reasons I have removed sixty pages of the
manuscript, in order to adapt the text to a course which is finally rather
short. The complete version is available at the Ecole des Mines de Paris.

Jean SERRA
June 2001



Chapter 1

Complete lattices

1.1 Introduction

This chapter reminds several notions from the theory of complete lattices.
Some of them are classical (e.g. boolean lattices), other are less (e.g. Math-
eron’s characterization of P(E) type lattices, ...). Here a rapid historical
survey is probably useful. Lattice theory was born at the beginning of the
twentieth century. To give an example, the cruxial notion of an algebraic
closing and its characterization from its invariants sets goes back to E.H.
Moore[50], in 1910. Number of famous names, such as that of J. von Neu-
mann, participated in the development of the theory (in this case in par-
ticular, by trying to bend the very algebraic structure of lattice towards
topological modalities). The ”bible” book of G. Birkhoff [8], whose first edi-
tion dates from 1940, provides an excellent perspective view of this historical
phase.

However, during this period, few attention was paid to complete lattices
(i.e. the non finite case), which are the basic ones in Mathematical Morphol-
ogy, and even in the other theories for image processing. In Birkhoff’s book,
(3rd edition, 1983), 22 pages, over 418, are devoted to the subject. Indeed,
this re-orientation results from the apparition of new domains of application.
Before the 2nd world war, and till the sixties, emphasis was put on logical
descriptors (e.g. in electronics), that can afford to be finite, and for which
the boolean lattices were invented. Emphasis was also put on taxonomy, or
classification techniques, in domains such as statistics or semantics, which
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again are intrinsically finite.

At the beginning of the seventies, the development of lattice theory turned
out to have a break. The classical applications had been exhaustively mod-
elled, and the new one, namely image analysis, still in its infancy, used to
borrow its concepts from vector spaces and convolution. It is at the beginning
of the eighties only, that G. Matheron and J. Serra resorted to complete lat-
tices as a common framework for the four situations met in practice : binary
and grey tone images, graphs and partitions|[62]. This gave the lattice theory
a fresh boost.

Today, apart from the pioneer book [62], the three reference books about
the recent developments are that of H.J.A.M. Heijmans on morphologi-
cal operators[24], G. Matheron’s monography on compact lattices ([41], in
french) and G. Giers and Al. compendium [17], the latter being relatively
independent of image analysis background. But the theory extends above all
by means of papers, in particular in the two directions of partial derivative
equations and of connectivity. This last, but not exhaused, topic for example,
yielded the algrebraic notion of a connection on lattices (J. Serra [71], [72], C.
Ronse [56]), connected operators (J. Crespo and Al [12], H. Heijmans [25]),
including the important class of the levelings (F. Meyer [49]), and geodesical
operators (Ronse and Serra [57]).

1.2 Symbols

In this course, the term ”lattice” always means ”complete lattice”, excepted
in some specific cases of the present chapter, where the contrary is explicitely
mentionned. The generic symbol for a lattice is £, with some curvilinear
variants for other commonly used lattices : P(E) ( for the family of the
subsets of set £, 7 for a totally ordered set, D(F) for all partitions of space
E. F for function lattices, for example. The curvilinear letters designate also
families of elements, such as the class B of the invariant sets of an opening,
or such as a connection C on P(E).

The elements of a lattice may be given small letter (e.g. a numerical
function f) or capital letters, according to the context. The choice becomes
imperative in the set oriented case, where the elements x of E should be
distinguished from thoses, X say, of P(FE). Also, in this case, when point
x € E is considered as an element of P(E), one writes {z}.



CHAPTER 1. COMPLETE LATTICES 5

The operators acting on a given lattice are often given small greek letters;
in particular 6,¢,v and ¢ stand for dilation, erosion, opening and closing
respectively.

1.3 Partially ordered sets

Definition 1.1 Given a nonempty set L, a binary relation < on L is called
a partial ordering if the following properties hold :

r < (reflexitivity)

r < yandy < zimpliesz =y (anti-symmetry)

r < yandy < zimplies x < z (transitivity)
for every x, y, z € L. A set L which carries a partial ordering < is called a
partially ordered set, or briefly poset, and is denoted by (L£,<). We say that

the poset (L£,<) is totally ordered if

x <y ory<ux, for every pair x,y € L.
A totally ordered poset is also called a chain.

Examples

(a) Let X be the set of all numbers of the open interval ]01[, and let x <
y have its usual meaning; then X is a chain. The set R? with the relation
"(x1, X2, -y Xa) < (V1, Y2, -y Va) if x; < y; for all 17 is a poset. It is a chain
if and only if d = 1.

(b) Given a set E, the power set P (E)comprising all subsets of £ becomes
a poset under the inclusion relation, that is, "x < y if and only if x C y”.
The empty set is denoted by 0.

Duality Principle. If (£,<) is a poset, then (£,<') is a poset too, called

the dual poset. To every definition, property, statement, etc., referring to
(L£,<) there corresponds a dual one referring to (£,<’), interchanging the
role of < and <'.
Note that the second dual partial ordering (<) coincides with <. The
Duality Principle, seemingly a trivial and rather useless observation, plays
a prominent role in this course. Its major implication is that every notion
and statement concerning posets has a dual counterpart (e.g. opening versus
closing).
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Given a poset £ and a subset of I of £, and element a € K is called
a least element of L if a < z for all z € K. An element b € K is called a
greatest element of IC if b > x for all x € K. An element a € L is called a
lower bound of K if a < x for every x € K; note that a need not lie in .
If the set of lower bounds of I, which is a subset of £, contains a greatest
element ag, then this is called the greatest lower bound, or infimum, of K.
Note that aq satisfies

(1) ap <z for x € K(agis a lower bound of );
(17) a < ag for every other lower bound a of K.

The notions upper bound and least upper bound, also called supremum,
are defined analogously. In fact, infimum and supremum are dual notions
in the sense of the Duality Principle. The infimum (resp. supremum) of a
subset K, if it exists, is unique, and is denoted by inf IC or A KC (resp. sup
K. or \/K). If ; € L for all i in some possibly infinite family of indexes i,
then we write A ;e;x; or A{z;|i€ I}, and \/;esx; or \/{z; |1 € I}.

1.4 Lattices

Definition 1.2 A poset L is called a lattice if every finite subset of L has
an infimum and a supremum. A lattice is called complete if every subset of
L has an infimum and a supremum.

Every totally ordered poset is a lattice, for every finite set of elements
of a chain can be arranged in increasing order, but this lattice may not be
complete (e.g. the open interval |01]).

By definition, every complete lattice £ contains a least element o and a
greatest element m, called the extreme, or universal bounds of L.

A poset £ on which every subset admits an infimum only is called a
complete inf semi-lattice. According to proposition 1.5 below, a complete inf
semi-lattice with a maximum element is a complete lattice.

A subset M of a complete lattice £ is a complete sub lattice of £ when
finite or infinite infima and suprema of families in M lie in M and when M
contains the two extreme elements of L.

Definition 1.3 (Anamorphoses) Let £, M be complete lattices. The map-
ping a : L — M is called an anamorphosis, or a lattice isomorphism, if
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« is a bijection (one-one and onto), and if « as well as its inverse a™ ! are

order-preserving, that is,
x <y if and only if a(z) < a(y) (1.1)
forxz,y € L.

The definition is slightly redundant. Indeed, if mapping « is onto, then
according to rel.1.1 a(x) = a(y) implies x < y and y < x hence x =y, and
« is one-one. An equivalent formulation of ananamorphosis is the following

Proposition 1.4 The mapping o : L — M is an anamorphosis if and
only if a is a bijection that preserves infima and suprema, that is,

a(A{z: [iel}) = Adalz)|i€l},
alV iz [iel}) = Via(w)|iel},

for any family {x; |i € I} in L.
proof:  We prove the first relation. Since « is order preserving, it follows
from Az; < x; that a(Az;) < Aafx;). Assume now that z < A a(z;). Since

a1 is order preserving, we have a~1(z) < ; for all i € I, hence a1(2) < Ax;

i.e. z < a(A x;), which results in the first equality of the proposition.Conversely,
rel.1.1 is obviously necessary, it suffices to take the family {z1,z2} with z; < 2s.
O

The word anamorphosis was introduced in painting, during the Renais-
sance, to designate geometrical distortions of the space. Indeed such distor-
tions on space E induce an anamorphosis (in the above sense) on P(E). But
there are many other ones, suh as  — logx, for x > 0 : it is an anamor-
phosis R, — R, that extends to the numerical functions on E. Incidently,
the proposition introduces two types of operations, that preverve \/ or A.
They are called dilation and erosion respectively, and play a central role in
the theory of Mathematical Morphology.

Proposition 1.5 Given a poset L, the following three statements are equiv-
alent :
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(1) L is a complete lattice;
(1) L has a least element o and every subset of L has a supremum;
(1ii) L has a greatest element mand every subset of Lhas an infimum.

proof: It is obvious that (i) implies (ii) and (iii). We show that (ii) implies (i).

The other implication follows from the Duality Principle. Assume that (ii) holds,
and let L C L. Denote the set of lower bounds of K by 7. Then,7 # () since O
€ T. Let a = sup T; we show that a is the infimum of K. Note first that every x
€ K is an upper bound of T since a is the least upper bound, a < z. Let a’ be a
lower bound of K; then @’ € T, and so @’ < a. This proves that a = inf K. d

In other words, a complete inf semi-lattice with a gratest element is a
complete lattice. The next result lists some basic properties of the infimum
and supremum.

Proposition 1.6 Let L be a poset and x,y,z € L. We have

(a) xANy=axVx=z (idempotence)
(b) xANy=yAz,xVy=yVax; (commutativity)
() zNAN(yAz)=(xAy)Az; (associativity)
(d zAN(xVy) =xV(xAy) ==z (absorption)

1.5 Remarkable Elements

Definition 1.7 (atoms, co-primes) A non zero element a of complete lattice
L is an atom if x < a implies x = 0 or x = a. For example, when L is of
the type P(E), the points of E are atoms in P(E).

An element a € L, a # 01is said to be co-prime when a < x \/y implies
a<xora<y,in anon exclusive manner.

We will complete these two classical definitions (see Heijmans [24], or
Gierz et al. [17]) with a third one, from Matheron [41], according to which
a € L is strongly co-prime when for any family B in £ (finite or not), a <
\/ {b: b € B} implies the existence of a b € B with a < b.

Definition 1.8 (Sup-generators) Let L be a lattice and X C L a family in
L. The class X is a sup generator when every element a € L is the supremum
of the elements of X that it majorates :

a:\/{IEX,xSa}
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Lattice L is said to be atomic (resp. co-prime, strongly co-prime) when it is
generated by a class of atoms (res. co-prime, strong co-primes).

Clearly, every atom and every strong co-prime belong to every sup-
generating family.

Definition 1.9 (Complements) Let £ be a lattice with extreme elements o
and m. If x,y € L are such that

xAy=20 and rVy=m

then y is called a complement of x (and vice versa). The lattice L is said to
be complemented when all its elements have a complement

1.5.1 Matheron characterization

Here, one result is worth mentioning. Due to G. Matheron ([[41], p. 179), it
combines the notions we have just introduced.

Theorem 1.10 For a complete lattice L, the three following statements are
equivalent :

a/ L is co-prime and complemented

b/ L is atomic and strongly co-prime

¢/ If Q, Q. and Qs denote the classes of co-primes, atoms and strong
co-primes respectively, then

Q = Qa = Qf
and L is isomorphic to lattice P(Q).

This theorem shows how demanding are the assumptions of atomicity and
of strong co-primarity, which in fact restricts the approach to the set-oriented
case.

In this reminder, and in the course which follows, the emphasis is put
on the supremum. But it is clear that each of the above notions admits a
dual form. It suffices to consider the dual lattice £* of £ (where inequalities,
and sup and inf are inverted). Atoms, co-prime, strong co-prime and sup-
generators on L£* define, on £, dual atoms (also called anti-atoms), prime,
strong prime and inf-generators respectively.
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1.5.2 De Morgan’s law

A major property of the complemented lattices is the classical De Morgan’s
law, which plays a central role in logic and whose statement is the following.

Proposition 1.11 Consider a possibly non complete lattice L with a com-
plement x — x*. For every finite family x; in L, we have

(el N\w) = iel\/z
(i€ 1\[z)* = ieIa].

If L is complete, then these laws are also valid for infinite families.

1.6 Distributivity

Several useful properties involve distributivity, or rather, distributivities. Re-
member that a lattice L is distributive if

TAWV2) = AV (A2)
VA2 = VARV

for all z, y, z € L. The two equalities are equivalent. When the collection of
elements between parentheses is allowed to extend to infinity, i.e. when

:1:/\ <\/ v i€ I> _ \/{(x/\yz) i€ ]} <inﬁnite \/—distributiv(i’i}'fg)

2\ (Awiel) = A{(=\Vw) it}  (finite )\ -distributivétlyg)

for any collection {y;} € £ and for = € L, then lattice L is infinite distribu-
tive. Unlike the finite case, the two equalities1.2 and1.3 are not equivalent.
There exists a more severe distributivity, called complete distributivity by
G. Birkhoff [8], and which has been discussed by G. Matheron [[41], p.77]
under the name of total distributivity. If Astands for a family of subsets of
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an arbitrary set £, we denote h(A) the class of those parts H of E which
are obtained by taking one point in each A € A. Then a lattice L is totally
distributive when

AVB=\V ANH (BeP((L)

BeB Heh(B)

or equivalently

VAB= A VH (BeP(L)

BeB Heh(B)

Total distributivity implies the two other ones, and can be identified with
the very strong property of mono-separation ([[41], th. 8-11). In particular,
every class of functions which is closed under numerical sup and inf forms a
totally distributive lattice.

Coprimarity and distributivity in lattices are related to each other. Half
of Matheron’s monography [41] is devoted to this matter. More modestly, we
shall restrict ourselves to the three following results.

Proposition 1.12 a/ Any co-prime lattice is infinite )\ -distributive ([41],
th. 8-11)

b/ In a distributive lattice, every atom is co-prime([41], p. 101) ([24],
prop. 2-37).

¢/ In an infinite \/-distributive lattice, every atom is strong co-prime.

1.7 Boolean lattices

A very popular class of lattices are the so-called Boolean lattices, which are
defined as follows.

Definition 1.13 A (not necessarily complete) lattice L is called Boolean
when 1t 1s complemented and distributive.

Proposition 1.14 If L is a distributive lattice, then every element of L has
at most one complement.
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proof: Let x € £ and assume that y, z are both complements of . Then
y=yAm=yA(zvVe)=yAz)V(yAz)=yA-z.

Analogously z =y A z, and we conclude that y = 2. d

It derives directly from this proposition that in a Boolean lattice every
element x possesses a unique complement, denoted by x*. Clearly, we have

(z*)" = .

In complete Boolean lattices, finite distributivity and infinite one are
equivalent (but not the total one). Indeed, we have

Proposition 1.15 In every complete Boolean lattice the infinite distributive
laws 1.2 and 1.3 hold.

Let £ be a complete Boolean lattice. We show that 1.2 holds : thenl.3
follows by duality. We must show that

a/\iE[\/ZL‘iZiGI/\(a/\xi)

if a, x; € L. Since aA \/Z»e ;T > a/Az;, the inequality > follows immediately.To
prove < put y = \/,.;(a A z;). Then, a A z; < y for every 4; hence

xi=(aNz;)V(a*"Nz;) <yVa,

so that
aANV(z,iel)<aAN(yVa")=aAy<y

Here is now a stonger result, from [41], p.175, that provides a necessary
condition for a complete lattice to be Boolean.

Proposition 1.16 Let L be a complete lattice. If there exists a one-to-one
or onto mapping C from into itself that satisfies the relation

y<Clx)eyrzs=0, (1.4)

then C is a complement over L, and L s infinite distributive and com-
plemented.
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The major reason for introducing Boolean lattices comes from that, in
the finite case, they are identical to the P(FE) type lattices. Unfortunately,
this cruxial property does not extend to all infinite situations, as shown by
example 3 below, that we borrow from [41] and [24].

This counter example suggests that the characterization of P(E) type
lattices requires a stronger notion than infinite distributivity. Here,we meet
again the total distributivity, that yields the following representation theorem

([21], p 70).

Theorem 1.17 In a Boolean lattice L, the following three statements are
equivalent :

(i) L is complete and atomic ;

(17) L is complete and totally distributive

(13i) L is isomorphic to the class P(E) for some set E.

The comparison of the two theorems 1.10 and 1.17 is instructive. Math-
eron’s result is more precise (the set E is identified by several sup-generators),
and more adapted to complete lattices. But above all, his characterization
which requires two axioms only (co-prime and complemented) is logically
more economic that the three ones of the above theorem (distributive, com-
plemented and atomic). Finally, Matheron’s approach does not need the
distinction between finite and various infinite cases.

1.8 Topology and CCO lattices

Topological spaces may also be complete lattices, such as the open sets, or the
upper semi continous functions presented below. But conversely, given lattice
L , how can we equip it with nice topologies? The convenient notion here is
that of a compact and Hausdorff complete lattice with closed ordering [41]
(in brief : a CCO lattice). But before presenting it, we would like to recall
the purely algebraic notions of monotonous convergence, and monotonous
continuity.

Definition 1.18 A family {x;,i € I} in the complete lattice L is said to
be increasing (resp. decreasing) filtering if the set I of labels is a poset that
satisfies the two properties

a) i>j=x; >z, (resp.r; < x;)
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b) for alli,j € I, there exists k larger than i and j.
Then the element x of L defined by

r=V{z,i€l} (resp. x = N{a;,i€I})
is called monotonous limit of the filering family {z;}.

One usually writes x; T = (resp.x; | « ). This definition yields the non
topological notion of monotonous continuity. Let f : £ — M be an increasing
mapping between lattices £ and M .We say that f is T —continuous (resp.|
—continuous) if

x; T xin L implies f(z;) T f(x)in M
(resp. x; | © in L implies f(x;) | f(x)in M)

The monotonous continuity, as introduced here, is a stronger notion
than the usual sequential monotonous continuity, where the set of labels
1 = 7Z,.We now continue with actual topological concepts.

Definition 1.19 A topological complete lattice L is said to have a closed
ordering when for all x,y € L, the set {(x,y) : x < y} is closed in the product
space L ® L.

A simple criterion is the following: if two families x; and y; ¢ € I are
filtered by a same base B and satisfiy z; < y;,x; — x,y; — y in L , then
x < y. Since the whole set of morphological operators rests on \/and A |,
we can wonder under which conditions both sup and inf mappings, from the
closed sets F(L) into £ are continuous. The following theorem [41], p.60,
provides a criterion to answer this question

Theorem 1.20 An L an algebraic complete lattice. There exists on L a
separated topology for which monotonous and topological limits are identical
if and only if, for all (x,y) € L , one can find two elements ' and y' in L
such that

r¢ My, y¢ M* M UM, =L (1.5)

where M® stands for the set of the elements smaller than x' and M,
for that of the elements larger than y'. This separated topology, necessar-
ily unique, makes L a CCO lattice, where both sup and inf operations are
continous.
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Remarkably, the theorem does not involve any a priori topological status
for lattice £. Criterion 1.5 of the theorem provides at once existence and
unicity for the topology, and continuity for both sup and inf.

1.9 Examples

There are numerous lattices associated with image processing. We list here
the most common ones, plus a few other ones, instructive because they illus-
trate differently atoms, co-primes and distributivity. They will be completed,
further on, by lattices modelling morphological operators,and no longer ob-
jects under study.

1.9.1 P(FE) type lattice

Start from an arbitrary set E. Obviously, the set P(FE) of the subsets of E,
which is ordered for the inclusion relationship, is a complete lattice for the
operations U (union) and N (intersection). Moreover, with each X € P(FE),
there exists a unique X¢ € P(E), called the complement of X, such that:

XNnX9=9 and XUXY=E. (1.6)

The points of E are atoms, strong co-primes and sup-generators of P(FE) ;
P(FE)is also complemented, hence strongly co-prime, and totally distributive,
i.e. for all Y € P(FE) and any family (X;) of elements of P(E), we have:

(Jx)ny = [Jxiny),
(N X)uY = [(XuY); (1.7)

it accumulates all nice features.

1.9.2 Open sets

When F is a topological space, its open sets generate a complete lattice for
the inclusion, where the sup coincides with the union and where inf(X;) is the
interior of (] X;. This lattice is not complemented; it does not admit atoms,
but the complements of the points are dual atoms. They are not co-prime,
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but form a inf-generating family, and indeed this lattice is not infinite A-
distributive (contraposed form of property (a) of proposition 1.12 ). Similar
structures are derived for the closed sets and the compact sets.

1.9.3 Open/closed sets

Let E be a topological space, where F and G stand for the classes of the
closed sets and the open sets of E respectively. Denote by A C F the class
of the closed sets A such that

A=A
Class A turns out to be a complete lattice for the inclusion ordering, and
for the following supremum and infimum :

\/AZ' = UAZ ) /\Ai = ﬂAi

In addition, the operator C defined by

is a bijection on A such that
y<C@)ezry=0

Then, according tol.16 operator C is a complement on A, and A is infinite
distributive and complemented ... but not of P(E) type, since obviously, it
has no atom.

1.9.4 Minkowski dilates
Lattice of the Minkowski dilates by a disc B, in R?, i.e.
L= {X@B,X € P(RQ)}

Here, the sup coincides with the usual union, but the inf is the opening
by B of the intersection (Fig.1.1). The discs B,, * € R?, are sup-generating
atoms, but not co-primes. Again, property (b) of proposition 1.12 appears
(in a contraposed form) since this lattice does not satisfy any distributivity.
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al »

Figure 1.1: a) Two large particles and two atoms in the lattice of the dilates
by a disc, b) In light grey, the corresponding intersections, and in dark grey,
the inf in the dilates lattice sense. Since the two small discs have an empty
inf, they are seen as disjoint particles in the dilate lattice, whereas they
intersect with each other.

1.9.5 Convex sets

A set X C R? is conver if for every two points z,y € X the entire straight
line segment between x and y is contained in X. Note that this definition
includes the points and the empty set. Denote the convex subsets of R? by
C(R?). With the inclusion as partial ordering this set becomes a complete
lattice. The infimum is the ordinary set intersection, but this is no longer true
for the union. Define the conver hull co(X) of a set X C R? as the smallest
convex set that contains X. It is evident that co(X) is the intersection of all
convex sets which contain X. Clearly, the supremum of a family X; € C (R?
) is given by
\/{XZ,Z S [} = CO(U XZ,Z € I)

This lattice is atomic, but not sup-generated, neither complemented nor
distributive.
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Figure 1.2: Supremum of two partitions

1.9.6 Partitions lattices

A number of attractive properties of the connected classes come from their
ability to partition each element of L into its components. In order to describe
them, we will first define the notion of a partition D (D as ”division”).

Definition 1.21 (Partition) Let E be an arbitrary set. A partition D of E
is a mapping x — D(x) from E into P(E) such that
(i) for allz € E: x € D(x)
(11) for all z,y € E : D(x) = D(y) or D,(z) N D,(y) = @
D(x) is called the class of the partition of origin .

In the set of the partitions of an arbitrary set E, we can introduce the
following ordering: a partition A is smaller than a partition B when each class
of A is included in a class of B. This leads to a lattice which is complete,
the greatest element has one class only, namely set E itself, and the finest
partition has all the points of E as classes.

Given a family {D;,7 € I} of partitions, the mapping D of E into P(F)
defined via its classes

D(x) =n{D;(x),i € I}
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generates obviously a partition where for all x € E, D(z) is the largest
element of P(E) that is contained in each D;(x). Therefore, D is the inf of
the D;, in the sense of the partition lattice. The expression of the supremum
is more complex, and D = VD, means that for all x and any i, class D;(x)
is the smallest set that is a union of classes D;(y),y € E (see fig.1.2). The
lattice of the partitions of FE is neither distributive, nor atomic, nor co-prime,
nor complemented...but sup-generated.

1.9.7 Complete chains 7

The set of real numbers R is a lattice; even more, it is a chain. It is not
complete for it does not contain a least and greatest element. To make
it complete one has to add -oo (as the least element), and +oo (as the
greatest element). Henceforth, the set R U{—o00, +00} will be denoted by
R. Analogously, Z = Z U {—o0, +00} is a complete chain.The sets R, and
7., comprising, respectively, the positive real numbers and positive integers
including oo, are complete chains, too. Clearly, the three totally ordered
lattices R, R, and [0, 1] are isomorphic, as well as the two lattices 7 and Z...

However, a chain complete lattice is not always isomorphic to R or to Z.
Structures such as a lexicographic ordering in R? generate complete lattice
which are totally ordererd but not reducible to the completed straight line.

One easily derives from theorem1.20 that for the order topology on R,
both \/and /\ are continuous.

1.9.8 Numerical functions 7%

Let E be an arbitrary space. The class 7% of the real valued functions
f+ E — T , where 7 is a complete chain, is obviously ordered by the
relation: f < g if for each z € E, f(z) < g(x) and constitutes a complete
lattice. The sup and the inf are given by the relationships:

=V — f(il?) = sup fz(x)a V€ E, (1 8)
f=nfi <<= fl(z)=inf fi(x), Vo e E. '
Class T is a topological space for the product topology induced by the
CCO topology on 7. One derives from theorem 1.20 that, just as in lattice
T, the two operations of sup and inf from F(7¥) into 7% are continuous.
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The pulse functions :

ipi(y) =t if y==x
{%szo if T#y (1.9)

associated with each z € E and t € 7T are sup-generating co-primes but
not atoms (except when 7 = {0,1}) and generally not strong co-primes.
However, when 7 is discrete (7 finite, or 7 = 7Z,etc.), then the pulses are
strong co-primes. This lattice is totally distributive but not complemented.
Rel. (1.8) implies that f(x) may equal +o0.

Note that, by anamorphosis, the previous comments apply equivalently
to non negative functions, with 7 = [0, +o0] or to bounded ones, with 7 =
0, 1].

1.9.9 p-continous functions

We now suppose that 7 is either finite, or isomorphic to R or to Z (e.g.
[0,1], [0, +0oc], etc.). Concerning the starting space E, we assume that it is
metric, with distance d. We are often more interested in some sublattices of
T¥, rather than in 7% itself, which includes number of ”exotic” functions
and rather irrealistic to model physical phenomena. A sublattice £' C 77 is
a class of functions which is closed under \/ and A of 7% and which admits
the same extrema as 7 itself. For example, the Lipschitz functions £ of
module k are defined by

f €Ly & |f@)-fl<kd(z,y) VazyekE

form a complete sublattice of 7% ([10], p.136). More generally, if we
replace kd(x,y) by ¢(d(z,y)) in the above inequality, were ¢ : Ry — R, is
continuous at the origin, we delineate the class of the so-called ” ¢-continuous
functions” [10]. For each ¢, the associated @-continuous functions form a
complete sub-lattice of 7%, i.e. a lattice where \/ and )\ are provided by
the numerical supremum and infimum at each point[68]. All theses lattices
are sup-generated. It has been proved that under broad conditions, usual
operators, such as dilations, openings, morphological filters, etc. map every
¢-continuous lattice into another one [68], and that \/ and A are continuous
operators( [41], p.64). Moreover, every function lattice where \/ and A are

identical to the numerical ones is totally distributive [41].
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Figure 1.3: Umbra U(X) of a set X C R x IR.

In contrast, in the same context, the class F of the upper semi-continuous
functions, that we introduce just below, forms a complete lattice, where
ordering and infinum are the same as for £¥, but where the supremum of
{f:}is the closure of \/ f;. Therefore, F is not a sublattice of L.

Finally, note that the situation of the continuous functions is worse, since
they do not even form a complete lattice. For example, the infimum of all
functions {z%, 0 <z <1, a € Z,} is not a continuous function.

1.9.10 10-Upper semi-continuous functions
Comments on functions and umbrae:

Is it possible to identify the function lattice F with the set class of the
associated subgraphs, or umbrae? Remember that to every function f :
E — TR (and more generally to every set in E x IR, see Fig.1.3), corresponds
the set U(f) of E x IR defined by the relations:

U(f) ={(z,2) € Ex TR, f(z) < 2} UE_.
Although we have
f<g <= U{f)cUlg) ,

the correspondence ”function - umbra” is not an anamorphosis, for it is not a
bijection (an umbra and its topological closure can yield the same function).
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Figure 1.4: The threshold mapping ).

We will illustrate this point by considering the threshold mapping defined as
follows:

f(x) when f(z) =1,

—00 otherwise.

W(F))(a) = { (1.10)

This operation is shown on Fig. 1.4.
In set terms, the transformation v consists in intersecting the umbra U( f)
by the closed half space

Ey ={(z,y),x € E,z > 1},
and in taking the umbra of the result:

U((f)) = U[EA NU(f)] U E—oo. (1.11)

If functions and umbrae were equivalent, then the two algorithms (1.10)
and (1.11) should give the same result. Let’s try and apply the two algorithms
to the sup of the following family (see Fig. 1.5):

filx) = 1—=1/i when |z| <1,
filz) = —o0 otherwise.

If the sup f of this family is understood in the sense of the function lattice,
it is equal to:
flz) =1 when |z| <1,
{ f(z) = —oo otherwise,
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Figure 1.5: The family of functions (f;).

and according to the rel. (1.10), ¢»f = f. But if the sup is understood in the
sense of the umbrae lattice, i.e.

u(s) =Juis),

then from rel. (1.11), we derive U[¢(f)] = E_w, i.6. Yz € E ¢ f(z) = —00.
In other words, in the Euclidean case, the function lattice and the set oriented
lattice of umbrae are not equivalent at all. Nevertheless, in the discrete case
of functions f : Z" — Z, the two approaches coincide and one can transpose
the way of reasoning from sets to functions.

1.9.10.1 Lattices of semi-continuous functions

Given a topological space E, a numerical function f : E — IR is upper semi-
continuous (u.s.c.) when its umbra U(f) is a closed set in E' x IR. The use
of semi-continuity appears as soon as extrema are involved in the analysis
under study, at least in continuous cases. For example, could we extract the
maxima of the following function in R (see Fig. 1.6):

@) = 1—2? when 0 < |z| <1,
10 when |z| > 1orz =0 ?



CHAPTER 1. COMPLETE LATTICES 24

Figure 1.6: A function without a maximum (it is not u.s.c.).

Actually, the maximum of such a function, although it is bounded, does not
exist. Conversely, as soon as we refer to the “maximum” of a function over
a continuous space, we implicitely introduce the requirement that it is u.s.c.
(or lower semi-continuous when looking for minima).

The classF, of the upper semi-continuous functions f : £ — TR forms a
complete lattice. In this lattice, the inf of a family { f;} is the function which
admits, at each point z € R?, the numerical inf of the f;(x)’s, but the sup
is the function whose umbra is the topological closure of the union of the
umbrae of the f;'s.We have

inf f; = {f€F.U(f)= ﬂU(f»},
slz}pfz' = {feF,U(f)= UU(fi)}7

a notation which shows that the lattice F, and that of the closed upper
umbrae are anamorphic (in this case, the identification between sets and
functions works).

The cross sections

Xe(f)={z: f(x) >t} —oo<t<+x
are closed and monotonically decreasing sets of E, i.e.

t,<t:>Xt/2Xt and t/Tt:Xt’lXt-
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Conversely, any stack {X;} of closed sets satisfying these two conditions
generates a unique u.s.c. function f with

f(z) =sup{t:z e X;} L ASED

(see [60], p.426). In other words, F, lattice turns out to be the most direct
transposition of the closed sets to numerical functions. The pulses, which be-
long to lattice JF,, , are sup-generating co-primes, but not strong ones. Lattice
F. is distributive, and infinite A\-distributive, but not infinite \/-distributive.
For the classical Choquet toplolgy on closed sets, lattice F, is CCO, but
the nice symmetry between \/ and A of the ¢-continuous functions is now
lost, since the \/ only is continuous. This means that the only models for
situations where both maxima and minima are involved are the (-continuous
lattices.

1.9.11 Multi-spectral images

Given the complete lattices (L1, <1), (L2, <2), ..., (L4, <q4), define M = L, X
Lox ... x Lg; that is, M contains all d-tuples (z1, za, ..., £4) where x;, € Ly,
k =1,2,...,d. Furthermore, define the relation < on M by (z1, 22, ..., x4) <
(Y1,Y2, -y Ya), if T < yp for every k = 1,2,....d.

Hereafter, we refer to this ordering as the product ordering. (M,<) is
a complete lattice. Product lattices are involved in color spaces for exam-
ple.Clearly, multi-spectral images generate a lattice where the ordering, the
sup and the inf are taken separately channel by channel.

1.9.12 Comparisons

The comparison of the five models is instructive. Some of them admit co-
prime but not atoms (n® 8-10) or vice-versa (n° 4). Sup-generating families
exist, which do not consist of atoms or co-primes (n° 2).Some of them are
Boolean , but not of P(E) type (n° 3). Distributivity is also a deep distinc-
tion between lattices.
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Chapter 2

Erosion, dilation

In the same way that linear image processing puts the emphasis on the trans-
formations that commute with addition, morphology naturally stresses the
transformations that commute with the sup or, by duality, with the inf. This
results in the following definition:

Definition 2.1 Let £L,M be two complete lattices. The mappings from L
into M which commute with the sup (resp. the inf) are called dilations 6
(resp. erosions €):

(V) = Vé(xy), e(Ax;) = Ne(xy), v €L
(2.1)

with in particular 6(0z) = Op and 6(mg) = mpy.
The following theorem characterizes these two operations and their links:

Theorem 2.2 Let L,M be two complete lattices. The dilations 6 : L — M
and of the erosions € : M — L correspond to one another through the duality
relation of adjunction:

O(z) <y<= 1z <e(y), z,y€e L, (2.2)

which occurs if and only if 6 is a dilation and € an erosion. To each dilation
O corresponds then the unique erosion &:

e(x) =v{be L ,6(b) <z} (2.3)

27
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and to each erosion € corresponds the unique dilation :
6(x) =N{be L e(b) >z} (2.4)

proof: We first show that rel(2.2)=rel(2.3). Denote by e*(x) the right member
of rel(2.3). We see from rel(2.2) that every element b < e*(x) is smaller than e(z),
hence e*(z) < e(x); conversely, the same adjunction, when applied to inequality
e(x) < e(x) shows that de(x) < xhence e(x) < e*(x). This results in rel(2.3), and
proves also the uniqueness, since if € exists, it must be of the form (2.3).

We now look at implication (2.2)=(2.1) (first equality). Let {z;,i € I} be a
family in lattice £ . Applying adjunction (2.2) by taking x; for x and Vé(x;) for y
, we have for all ¢ €

§(x;) < Vb(x;) & x; < e[V (;)]

hence

But we have also the reverse inequality, by increasingness of 6, so that the first
equality of rel.(2.1) follows.

It remains to prove implication (2.1)=-(2.2). With any dilation one can always
associate the operation ¢*(x) defined by the right member of rel(2.3). The form
of this relation shows that §(b) < & = b < £*(z). Conversely, since § commutes
under V, we have

b < e*(x) = 8(b) < e*(x) = V{6(b),b € L ,8(b) <z} < 2.

Finally, the increasingness of £, and the fact that it commutes under A derive easily
from rel(2.3), and rel(2.4) is a consequence of the general duality principle. O

The notion of an adjunction is well known in algebra. According to G.
Birkhoff ([8], p.124), it goes back to E.Galois (see also[17]). The concept of
dilation was introduced by H. Minkowki (1901) for the Eclidean translation
invariant case, and developped in lenght, in association with erosion and
adjunction opening and closing, by G.Matheron in his two books of 1968 and
1975. The extension of these four operators to complete lattices appears in
T.S. Blyth and M.F. Janowitz’s book [9]. The above theorem was proved
by J. Serra in the framework of complete lattices, for £ = M (the proof is
the same as for £ # M )([62, page 24|, p.17), and enlarged to £ # M by
H.J.A.M. Heijmans and Ch. Ronse ( [23] and [24],p.51), among other results.
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Corollary 2.1 The classes of dilations 6 : L — M and of the erosions ¢ :
M — L are two complete anamorphic lattices.

Not only dilations and erosions are themselves increasing mappings, but
they generate two comprehensive classes of increasing mappings. Indeed, we
have the following theorem ([62, page 20]:, p.20):

Theorem 2.3 Any mapping 1 : L — L such that Y(E) = E is increasing
if and only if it can be written as

w = V{&b,be L },
with the erosions ep given by

m if x=m
ep(z) =< Y(Ob) if x>bandx#m (2.5)

0 otherwise.

(dual result for the dilation.)

proof: Tt is easy to verify that Eq (2.5) defines an erosion on £. Now, given
element x and taking the supremum of all images ¢;(z) as b spans lattice, we find,
by increasingness of 1

V{en(x),b € L} = V{p(b) : b < 2} = (x)

Conversely, since erosion is increasing, the upper bound of an arbitrary family of

erosions is also inreasing d

2.1 P(E) type lattice

In this section and in the following, we would like to compare the two lattices
which model the binary and the grey-tone images.

The first one is the boolean lattice P(E), where E is IR" or Z" for exam-
ple. We can look at mappings from P(F) into itself as extensions of mappings
from E into P(E). In the following, lower-case letters such as z, y, a, b de-
note elements of E, or points, and capital letters denote elements of P(E). A
point x € E, when considered as an element of P(F), is written as {z}. The
letter 6 denotes the mapping £ — P(F), which generates a dilation, as well
as the dilation from P(F) into itself. We define a structuring function on
P(FE) as any mapping 6 : E — P(FE). Then, we have [62, page 41]:
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Theorem 2.4 Let E be an arbitrary set. The datum of any mapping 6 :
E — P(FE) is equivalent to that of a dilation from P(E) into itself, again
symbolized by 6, and defined by the relation

8(X) = 6(), X € P(E). (2.6)

Conversely, any dilation of P(E) into itself determines a unique structuring
function 6 : E — P(E).

2.1.1 The three dualities

In any boolean algebra P(FE), the duality w.r. to the complementation as-
sociates with each mapping 1/ the operation ¥* = O9¥0, where © designates
the complement operator, as expressed by

U (X) = [p(X9))°.
In the case of the dilation ¢, we find
5(X) =1 6@)°= [ [6(=)°. (2.7)

6*, which obviously commutes with the inf, is an erosion. 6*(X) consists of
the points that are not descendant from any point in the complement of X
(that are not included in any §(z) when z € X©), i.e:

1. those whose ancestors are all included in X,

2. those that do not have ancestors (a fixed part S, which remains the
same for any set X).

We form another duality notion by operating on the structuring function
with the transposition 6 — ¢, i.e:

S(z) ={y € B,z € 5(y)}.

The transpose &(x) of 6(z) is made of the set of points from which z descends,

hence 6 = 8. The structuring function § generates the dilation é:

5(X)={y e E,bé(y)nX +#0}. (2.8)
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;From the two relations (2.7) and (2.8), we derive the links between these
two dualities, and the basic one, namely § < ¢ (see rel. (2.2)):

e= (8" g=10" £* =6. (2.9)

2.1.2 Translation invariance

We now assume that E is equipped with a translation (e.g. F = Z" or
E =1R"), and that the dilation ¢ is translation invariant, i.e. is a t-dilation.
In other words, the structuring function §(h) at point h is deduced from that
of the origin (denoted 6(o) = B) by translation: 6(h) = B, = {B+h,b € B}.
The set B is called structuring element. We see from relation (2.6) that

6(X) = XeB=Bao X

:UBw

zeX

= {b+uz,z€ X,be B}

= Ux.

beB

The t-dilation ¢ is classically known as Minkowski addition between
sets X and B. By duality under complementation, it gives

F(X)=eX)=(1X=XoB

beB

and by lattice duality:

e(X) =X, with B = {—b,b € B}.

Both operations are Minkowski subtractions of X by B and B respectively.
According to a classical result, any increasing t-mapping is a union of t-
erosions, and also an intersection of t-dilations [38, page 221]. More precisely,

Theorem 2.5 Let 1) be a translation invariant increasing mapping. Then,
for any X € P(E),

Y(X) = | {XeB,BeP(E),0€¢(B)} = {X®B,B € P(E),0 € *(B)}.
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Figure 2.2: Erosion of a set X by a segment S.

2.1.3 Examples

We will now present some examples of dilations and erosions in the lattice
of sets P(IR?). Fig. 2.1 shows the dilation of a set X by a bipoint B, i.e.
the set X @ B. Similarly, Fig. 2.2 illustrates the effect of an erosion of X by
a segment S. On Fig. 2.3, the same set is dilated and eroded by a disc D
(Euclidean dilation and erosion). The dilation by a disc is then compared,
on Fig. 2.4, to that by an hexagon H of similar size. One can remark that
many parts on the boundary of X @ H are parallel to the vertices of H.

Lastly, Fig. 2.5 illustrates the algorithm which is used for performing a
geodesic dilation of a set Y inside a set X (see Chapter 7).
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Figure 2.3: Dilation and erosion of X by a disc D = D.

Figure 2.4: Comparison between the dilations of X by a disc and by an
hexagon. Note that these structuring elements are symmetrical: D = D and
H=H.
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Figure 2.5: Successive geodesic dilations of set Y inside set X.

2.2 Lattices of functions

The lattice F(E,IR) of the functions f : E — IR shares several properties
with the previous one, but it differs from P(E) by two major aspects:

1. it is not complemented,

2. when additions or subtractions are involved, they may lead to indeter-
mination, of the type 400 — oo, since the range of variation is IR.

We will now study F(£,IR) by following the same plan as for P(E).

2.2.1 Generation of dilations from structuring func-
tions

Call impulse uy ., a function whose value is z at point h € E, and —oo
elsewhere [23]:

z when x = h,
—oo otherwise.

Ve e B, up.(x) = {
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The class Z(F) of the impulses is equivalent to that of the points (h, z) € E x
IR. Clearly, any function f € F(E,IR) is the sup of upper bounded impulses
smaller than itself (just as a set is the union of the points it contains):

f=sup{up.,h € E,z < f(h)}.

Introduce now a structuring function on F(F ,ﬁ) as any upper bounded
mapping ¢ : Z(E) — F(F,IR). We then have [62, page 185]:

Theorem 2.6 any structuring function is equivalent to a dilation from
F(E,R) into itself, defined by the relation

6(f) = sup{6(unz:),h € E,z < f(h)}. (2.10)

Conversely, any dilation § : F(E,R) — F(E,R) induces a unique struc-
turing function obtained by restricting 6 to Z(E).

2.2.2 Dualities

The transposition duality extends immediately to functions, by replacing
points by impulses. The duality with respect to the complementation is
replaced by all those given by the relation

VH(f) =m—=¢(m—f), (2.11)

as m spans the class of the real numbers. In practice, ¥ often commutes
with vertical shifts, i.e. ¢(f +m) = ¢(f) +m. Then, all the relations (2.11)
are equal to ¥*(f) = —(—f), and the three expressions (2.9) extend to
functions.

2.2.3 Translation invariances

We can consider either a translation operation ¢, by vector h € E, or a
translation operation ¢ ., by a vector (h,z) € E x IR. The two corresponding
formulas are:

(tn:f)(x) = flz—h)+z
(tnf) (@) = flz—h).
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We shall focus on the t-invariant mappings, which are the most useful in
practice. Saying that dilation ¢ is invariant with respect to translations is
equivalent to saying that the structuring function ¢ is the same everywhere,
i.e. if g = dug is the transform of the origin-impulse, then Vo € E, duy, ,(x) =
g(x —h)+ z. Then, the expression (2.10) of the dilation § takes the following
simpler form:

(6f)(x) =sup{g(x —h)+ 2,2 < f(h),he E}, fcF(E,R).

Note that the operand g(z — h) + z cannot take the undetermined form
+00 — oo since, for all h, x and z, each of the two numbers g(z — h) and z
is < +00. Hence, we have finally

(6f)(x) =sup{g(x — h) + f(h),h € B}, f € F(E,R).
(2.12)

The two dual erosions € and € of § are given by the following formulae:

(ef)(x) = nf{f(h) —g(h—=2),he E}
Ef)(x) = nf{f(h) —g(z—h),he E}.

Similarly to theorem 2.5, any increasing mapping ¢ : £ — IR which is
t-invariant may be decomposed into a sup of erosions as well as into an inf
of dilations (same proof as for theorem 2.5).

2.2.4 Planar increasing mappings

An increasing mapping ¢ : F(E,R) — F(E,R) is said to be planar, or
flat, or again to be a stack mapping [79] when for any z € IR, the class C, of
the half cylinders of top level z is closed under :

G,€C, < Ve E G,(z)=2zorG,(r)=—0o.
Y is planar <= Vz € R,¢(C,) =C, <= Vz € R,VG, € C.,¥(G.) € C..

With any function f € F(E,IR), we can associate its maximum cylinders

Oz(f):
C.(f) =sup{G, €C,,G, < f}.
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Figure 2.6: An example of a planar increasing mapping.

Then, the sup of the family (C,( f))zeﬁ generates f:

f= SuECZ(f).
zelR

If v is increasing, we have, by growth

WO, (f) > sup{vG.,,G, €C,,G, < f}.

Furthermore, if ¢ is planar, then )G, € C, and the inequality becomes

YO (f) 2 sup{G, G, € C., G, < 9f}.

Now, by construction, ¥C,(f) is itself one of the G, so that the above
relation turns out to be an equality. In this equality, the right member is
nothing but C,¢(f). Finally:

quz(f) = Cqu(f)a

hence:

Y(f) = sup C.o(f) = sup YC.(f). (2.13)
zelR zelR

This relation is illustrated by Fig. 2.6.

In other words, the planarity of the mapping 1 allows us to process f
threshold by threshold. A series of results derive directly from the key relation
(2.13), namely:
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Theorem 2.7 Let ¢ be a planar increasing mapping from F(E,R) into it-
self. Then:

1. the class of step functions with k levels (k arbitrary) is closed under 1,

2. ¢ commutes with anamorphosis.

An anamorphosis is a strictly increasing and continuous point mapping
s : IR — IR. For example, if s = exp, then for any planar increasing
mapping v, we have:

Pexp(f) = exp¥(f), feF(ER),

i.e. “vertical” and “horizontal” dimensions are treated independently.

A basic example of a planar increasing mapping consists in the dilation of
f by a function b which is equal to 0 on its support B and to —oo everywhere
else. Then, the relation (2.12) becomes:

(6f)(z) = sup{f(z — h),h € B} = (f & B)(x). (2.14)
By duality w.r. to lattice, relation (2.13) yields:
(ef)(x) = inf{f(z + h),h € B} = (f © B)(). (2.15)

Fig. 2.7 shows an example of a planar dilation and of a planar erosion of a
function f.

2.3 Digital implementations

In this section, we concentrate upon implementations of t-dilations (and t-
erosions), which are the basic stones for building up more sophisticated al-
gorithms.

When the dilation is planar, it is produced for functions in the same way
as for sets. One has merely to replace union by sup and intersection by inf
(e.g. refer to relation (2.14)). When the dilation is not planar, one can scan
the successive levels of the structuring function, or use Steiner decomposition.
In both cases, we shall use the following notation:

[f & (10)](x) =sup{f(z+1) + 1, f(z)}.
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Figure 2.7: Dilation (a) and erosion (b) of a function f by a planar structuring
element B.

The number associated with each point denotes the altitude of the corre-
sponding structuring function (here a function whose support is reduced to
an horizontal doublet). When needed, a bold character is used for indicat-
ing the location of the origin. The elementary “spherical”’—and centered—
structuring functions are:

e the cube: 9 pixels, on two successive levels
e the octahedron: 5 pixels, on two successive levels
e the rhombododecahedron: 9 pixels, on two successive levels

e the cuboctahedron: 9 pixels, on two successive levels.

They are represented on Fig. 2.8.

The elementary rhombododecahedron R can be represented (as in Fig. 2.9)
by taking the spacing of the horizontal square grid to be v/2.

The Steiner rhomb kR of size k is obtained by taking k dilations of R:

kR=R®R&...5 R =R,
k ti?nes
As k increases, the difference between the Steiner rhomb and the ball becomes

more apparent, but it is a simple matter to combine R with other Steiner
polyhedra, such as the cuboctahedron, or simply with another Steiner rhomb,
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e ) Sy

Figure 2.8: Basic spherical shapes in Z*. The plane z = 0 corresponds to
the median horizontal section of the cube. The structuring functions derive
from these sets by taking their umbrae.
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121 . = (10)e(0ne \ 0 ) & -1)
LT

Figure 2.9: The elementary rhombododecahedron R (i.e. Steiner rhomb
of Z*) and its decomposition in four dilations by segments. The complex
shape of the polyhedron has been decomposed into four simple structuring
functions, whose implementation is very simple and extremely efficient.

010
0 12221
010 T 0233320
121 ®0.2.0=12342321
010 1.1 0233320
T T 0 123221
e 010
Rg R

Figure 2.10: Dilation of the Steiner rhomb R by R* (R* is obtained in the
same way as R, by four dilations by doublets).
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Figure 2.11: The elementary cuboctahedron C' and its decomposition into
two successive horizontal planes.

R*, that is constructed at 45° to the first one (exactly as we construct oc-
tagons in Z?*). This possibility is illustrated in Fig. 2.10.

The elementary cuboctahedron C' does not lead to a sequence of segments.
It has the decomposition shown in Fig. 2.11 (with the horizontal spacing
being again equal to v/2).

To dilate a function f by C| it suffices to perform

0.0 .0 .
h=faf| . . -], fo=f@® 000
0.0 .0 .

and then to compute the sup between f; and f, + 1:

f&C=sup{fi, f2+1}.



Chapter 3

Openings and closings

This chapter is a go-between from dilations to morphological filtering. Here,
the two basic references are [62, chapters 7 & 17] and [38, chapters 1 &
5]. We shall see how, by looking for an inverse to the dilation—i.e. for
an impossibility—we find a new operation, the morphological closing, whose
three basic properties are extremely useful. We shall then try and keep
these properties as axioms for the general concept of an (algebraic) closing.
The notion of an opening is introduced by duality. It satisfies two of the
three basic properties of the closing, that will become the two axioms of the
morphological filtering in the next chapter.

3.1 Adjunction opening and closing

Generally, in a complete lattice £ , the dilation X — 6(X) and the erosion
X — ¢(X) do not admit inverses and there is no way for determining one
element X from the images 6(X) or ¢(X). However, starting from a dilation
and then performing the dual erosion (or the contrary), we always have either
an upper, or a lower bound according to the situation at hand.

Indeed, if we take 6(X) for the set Y in relation (2.2), the left inclusion
is satisfied, so X < e6(X), and by duality:

doe(X) <X <eo0d(X),

or in terms of operators:
e < I < é&6.

43



CHAPTER 3. OPENINGS AND CLOSINGS 44

Figure 3.1: Examples of a morphological opening and of a morphological
closing of a set X by a disc D.

We say that €0 is extensive (larger than the identity mapping) and that
b¢ is anti-extensive. Both operations are also increasing as the product
of increasing mappings. Now, €0 > I implies, by growth, that écée > d¢,
whereas ¢ < [ implies the inverse inequality. Hence 6e = dede, i.e. is idem-
potent (as well as €6, by duality). The three properties of €6 characterize
what is called a closing, in algebra, and those of dc an opening. We shall
call these two operators adjunction, or sometimes morphological, to indicate
that they are generated from a dilation and its dual erosion, and we denote:

Ym = 0 Om = €6 (3.1)

Fig. 3.1 shows an example of a adjunction opening and of a adjunction
closing of a set X in the plane. In this 2-D case, a adjunction opening may
remove three types of features: capes, isthma and islands. By duality, a
adjunction closing may fill gulfs, channels and lakes.
Let Z = 6(X) be the dilation image of an arbitrary element X € £ . We
have: §(X) by extensivity of <5
y extensivity of e
Ym(Z) = 8e6(X) 6(X) by anti-extensivity of de

Hence v,,(Z) = Z, i.e. Z belongs to the class B of the invariant elements of
L under 7,,. Conversely if Z € B, then Z = §(¢(Z)) i.e. is the dilate of an
element of £ . To summarize, we have the following theorem:

>
<

Theorem 3.1 Given a dilation 6 on lattice L and its dual erosion e, the
composition products v,, = 0 and p,, = €0 are respectively an opening and a
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_E8(X)==(Y)

Figure 3.2: 7,,(X) is the smallest element Y C 7 such that (YY) = ¢(X).

closing on L , called adjunction opening and closing. The invariance domain
of the former is the image of L  under 6 and that of the latter forms the
image of L under €.

Corollary 3.1 Given X € L, v,(X) is the smallest inverse image of X
under €, and p,(X) is the largest one under 6.

This corollary is illustrated by Fig. 3.2.

proof:  Suppose that Y € £ is such that e(Y) = ¢(X). Then, a fortiori,
Z =e(X) <e(Y) and thus, applying rel. (2.2), §(Z) <Y, or:

m(X) <Y
By duality, we have also
VY e L§Y)=06X)=Y <9Yn(X),
which completes the proof.

|

Corollary 3.2 If B and B’ stand for the invariance domains of v, and op,
respectively, then

Ym(X) = V{B,B€B,B<X}

omX) = NB,BcB,B>X} (3.2)
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proof: >From relation (2.3), we have

Tm(X) = 6((X))=6(V{B€L,iB)<X})
V{§(B),B €L ,8(B) <X},

but according to the theorem, B = {6(B),B € L }. Hence, we get relation (3.2).
As concerns relation (3.2), it has a dual proof. O

Example:

We have seen in § 2.2.4 that planar increasing mappings preserve vertical
walls. Fig. 3.3 typically illustrates this point by showing the morphological
opening of a 1-D function by an horizontal segment. Unlike this kind of open-
ing, circular openings (i.e. openings with discs) do not preserve the vertical
parts of the 1-D functions on which they act. In this case, Fig. 3.3 clearly
indicates changes of slope. The same remarks apply in the 2-D case and the
experimenter must choose between one approach or the other acording to his
purpose. It should be noticed that “planar” structuring elements are most
of the time preferred, since the computation the corresponding openings and
closings can be done more efficiently than with 3-D structuring elements.

3.2 Algebraic openings and closings

The important corollary 3.2 directly associates an opening 7, with its in-
variant elements, without referring to the intermediary erosion and dilation.
Should it be also true for any algebraic opening 7, i.e. for any operation on £
which is increasing, anti-extensive and idempotent? Let B be the invariance
domain of such a «, and B be an invariant element, B < X. Then (by in-
creasingness) B = v(B) < y(X), hence v(X) > V{B,B € B,B < X}. But
~v(X) € B (by idempotence) and v(X) < X (by anti-extensivity), therefore
~v(X) is one of the B of the right member. Thus, relation (3.2) is valid for
any opening.

Conversely, start from an arbitrary part By of lattice £ and let B be the
class closed under union generated by By. The operation defined by

WX)=V{B,B € By, B< X}
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OPENINE by § = m——

Figure 3.3: Comparison between the openings of a 1-D function by an hori-
zontal segment S and by a disc D.

is increasing and anti-extensive. Moreover, v(X) = X iff X € B. The
product 7 o v is smaller than ~ (growth and anti-extensivity), but also:

(X)) > V{v(B),B € By, B < X}

= V{B,B€ By, B< X}
= (X).

We may therefore state the following:

Theorem 3.2 An operation v (resp. ) on L is an opening (resp. a clos-
ing) if and only if there exists a class B C L , closed under union (resp.
intersection) such that

v(X) = V{B,B€B,B< X}
o(X) = A{B,BeB,B>X}.

B is the invariance domain of vy (resp. ¢).

In other words, we can approach openings and closings either directly or
via their invariance domains. Now, what about the composition, the sup or
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the inf of openings. Are they still operations of the same type? As far as
sups are concerned, the anwer is yes. Indeed:

Theorem 3.3 The sup of a family (v;) of openings is again an opening,
whose domain of invariance is the class closed under union generated by the
union of the B; (invariance domains of the 7;’s).

proof: Clearly, V+; is increasing and anti-extensive. Furthermore, for all ¢, we
have y;0(Vy;) > 7. Therefore, (Vy;)o(Vvi) > (V7i), and also the inverse inclusion,
since (V7;) < I. This gives us the idempotence. The domain of invariance is

determined as was done before. O

Unfortunately, the class of the openings is neither closed under A, nor
under composition. Consider for instance in Z the following set:

X = ..1111. . 111111, 1111, ..
and the two structuring elements
=.1..... 1. and B= .11111.

Denoting 7y, and 7,, the associated morphological openings, we have:

7,(X)=X and ~,(X)= .111111.

and
Y 0 Va(X) =75 (X) # 74 07,(X) = 0.
Hence:
(YY) (VYa) # (V)
and

(Ve AY) (Vs AY)(X) =0 # (75 Ay )(X) =7, (X).
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3.3 Algebraic openings and adjunction open-
ings

This last theorem shows in particular that any upper bound of adjunction
openings -;, with corresponding domains of invariance B;, is still an opening,
but which no longer results from an adjunction. It has as for domain of
invariance the class closed under the sup (in £) generated by the union of
the B; (in the space P (L) of all subsets of £).

Consider now the inverse problem. Starting with an arbitrary opening
v : L — L, we can consider it as a supremum of adjunction openings?
Since any algebraic opening v on £, with invariant domain B, is the smallest
extension to £ of the identity on B, we can write

v(X)=Vv{B:BeB,B<X} VX e L. (3.3)

Therefore class B is closed under supremum. Conversely, the class closed
under supremum generated by an arbitrary class, By € P (L), defines, with
the aid of rel.3.3, a mapping that is opening. Now, associate with each B € B
the dilation

6p(A) =18 if A £ B; op(A) =90 if A<B.
Its corresponding adjunctionl opening is

W=t wensn-{ 8 EEX

so that rel. 3.3 becomes
v=V{ys, B € B}.
In other words, we have the following theorem ([62], p.22).

Theorem 3.4 If a mapping v : L — L is an opening then it has a represen-
tation of the form

’7:\/{737B€B}7

where vp is the adjunction opening associated with the dilation ép = O if
A < B and 65 (A) = B otherwise, and where B is the domain of invariance
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of v. Conversely, if B denotes the class closed under union generated by
By, an arbitrary class of elements of L, then the mapping defined by v is an
opening.

In the Euclidean case, if Xp designates the adjunction opening (X © B)®
B,we obtain the following more precise result ([38], p.190).

Proposition 3.5 A mapping v : P (R™) — P (R™) is an opening invari-
ant under translation if and only if it admits the representation v (X) =
U{Xg, B € By} for a an arbitrary class By C P (R"). The domain of in-
variance of v is the class closed under translation and union generated by
Bo.

3.3.1 Closings and duality

The criteria of extensivity and anti-extensivity are duals of one another in
the sense of Chapter 1. Consequently, to each property of openings there
corresponds a symmetrical property of closings, which is obtained by chang-
ing the direction of the inequalities, or by replacing union by intersection,
etc. Thus, Propositions 13.1, 13.2, etc. may be transposed, and the first, for
example, becomes as follows.

Proposition 3.6 The closing ¢, with domain of invariance B, is the largest
extension to L of the identity on B, i.e.

$(X)=A{B:BeB,B>X}.

3.4 (Non exhaustive) catalog of openings and

closings
Although theorem 3.4 is heuristically deep, we may have difficulties in apply-
ing it directly, as the number of terms ~; necessary for generating a given -~y

becomes prohibitive. Actually, there are various starting points for creating
openings, namely:

e the adjunction openings,
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e the trivial openings,

e the envelope openings.
e the sandwich openings
e the annular openings

lus any derivation obtained by cross-union of these types, plus all
the openings associated with connections (chapter 7). The first mode has
already been developed. We will now present the other four.

3.4.1 Trivial openings
A criterion T is said to be increasing when, for all X € L :

X satisfies T'and Y > X — Y satisfies T,
X does not satisfy T'and Y < X = Y does not satisfy 7.

For example, in IR", for X to hit a given set A, as well as to have a Lebesgue
measure larger than a given value \g are both increasing criteria.

Proposition 3.7 Given an increasing criterion T over lattice L, the opera-
tion 5

X when X satisfies T,
n(X) = { () otherwise.

(with v (0) = 0) is an opening called the trivial opening associated with
criterion T'.

3.4.2 Envelope openings

Consider a finite lattice £ and an increasing mapping ¢ : L — L. Then,
for any X € L, the sequence [ X N (X)]™ decreases with n, and finally stops
for a certain nyg, since L is finite. The operator

b= (INY)™ (3-4)

is therefore an opening. Moreover, if £ is an opening smaller than 4, then
h < I A%. Hence h = h™ < (I A )" for every n and thus h < 9. In other
words:
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Theorem 3.8 Let L be a finite lattice. Then, for every increasing mapping
WV L — L | there exists an upper envelope 1 of the openings which minorate
W. It is itself an opening and is given by the relation

=N for a finite ng.
(dual result with ¥ = (I V )™.)
N.B: (i) The iterations may well stop at the first step. In § 7?7, the
example of the rank-operators illustrates this point.

(#i) Under conditions which are always fulfilled in practice, theorem 3.8
extends to the lattice of the functions f : Z" — Z [64].

3.4.3 Sandwich openings

Given arbitrary opening + and dilation ¢, of adjoint erosion &, the composi-
tion product
v = dve
is still an opening. Idempotence results from that we have 67 (£6) ve >
0ve, but also the inverse inequality, by extensivity of v and of 6. An example
is provided by taking for v the removal of all particles smaller than a certain
size during te processing of a adjunction opening.

3.4.4 Annular opening

Consider the pair of points B = {o,b}, made of the origin o and a point b
in direction « in IR? or in Z*. Clearly, the morphological opening 7, with
respect to B is equivalent to

’beI/\(SBI

where 0p is the t-dilation by the bi-point B’ = {—b; +b}. Now, make vary b in
a certain domain D which does not contain the origin (e.g. three consecutive
vertices of an hexagon centered on o, half a circle, ... ) and take the sup 7:

Y= \/{’}/b,b € B} =1IA {\/53/,() S D}
i.e. since the dilation commutes with V:

v=1Nbpup (3.5)
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where &y, p is the dilation by DU D = |J,.p{—b;+b}. The effect of this
annular opening v is shown on Fig. 3.4. v eliminates the components of a
given set X as a function of their environment more than of their size or
shape. On the example presented here, D U D is taken to be a circle and v
eliminates the central particle without touching the others.

To illustrate the specific action of v, we can compare it with the mor-
phological opening 4’ by a disc and with the union 7" of the morphological
openings by segments in various directions (see Fig. 3.4).

3.5 Granulometries

3.5.1 Matheron’s axiomatics

The Granulometries, which are size distributions based on an appropriate
axiomatics, deal with families of openings or closings that are parametrized
by a positive number (the size) [37]. More precisely, we have the following

Definition 3.9 Definition 3.10 A family {y,\} of mappings L — L, de-
pending on a positive parameter X\ is a granulometry when

(i) v is an opening Y\ > 0,

(i 3.6
(i) A p = 0 = Y% = Y Wn = Ysup(an)- (30

These conditions are called Matheron’s axioms for granulometry ([38],
p.192). It is easy to verify that these conditions are satisfied by every process
that common sense would qualify as a size distribution (see for example [60]
ch. X). System 3.6 is equivalent to

1) YAls an opening Vv,
(3.7)
W) AN> 0 >0= v >y, '
“w

This second version of Matheron’s axioms emphasizes the two monotonic-
ities with respect to X (opening axiom), and with respect to A\. The first
presentation, 3.6, shows how openings are composed and highlights their
semi-group structure. A third representation involves the invariant sets as
follows. Let By = v, (L) denote the domain of invariance of vy, i.e. the
family of B’s such that B = v, (B) then Matheron’s system is equivalent to



CHAPTER 3. OPENINGS AND CLOSINGS 54

Annulgim:emng

Union %Epenings

| \N——/

Figure 3.4: Annular opening v versus a classical opening by a disc and a
union of openings by segments.
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(1) vais an opening Y\ > 0,
(w) X>p>0= By CB,.

By duality, we introduce anti-granulometry as the families of closings ¢y,
A > 0, such that one of the following three equivalent properties is satisfied:

(11,) A, w=>0= ¢)\¢u = ¢u¢/\ = ¢sup(>‘n“);
(i) A > pu>0= ¢\ > ¢
(V) A>pu>0= By C B,

3.5.2 Euclidean granulometries

When dealing with Euclidean spaces, we are particularly interested in granu-
lometries that are translationally invariant and compatible with homothetics.
These are Fuclidean granulometries. A family of mappings v, from a com-
plete sublattice of P(R™) into itself is a Euclidean granulometry if and only
if there exists a class By C P(R™) such that

MmW(X)=W{X,5, BeBo, p > A} X CR", (3.8)

where X, denotes the morphological opening of X by pB. Then the
domains of invariance By are equal to AB, where B is the class closed under
union, translation and homothetics > 1, which is generated by By. The
relation 3.8, which involves a double union, is complicated; even if we reduce
the class B to a single element B, the associated size distribution becomes

X)) =U{Xyup, p =2 A} X CRY, (3.9)

which brings into play an infinite union.
As examples, consider the following structuring elements:

€0 €1 €2 €3 €4 €5 €6 €7 €s €9

Then, among the various sequences
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Yo "o "o Yo Yo Yo
NV Ve VsV ayam Vo Y3V Y4 MV 2 V5
Vs e s s Vs Y7
Y7 Y7 Y7 8 Ve 8
Yo Y9 Y9 Yo 8 Yo

the four former ones lead to size distributions, but not the last two ones.

3.5.3 Granulometry and convexity

Remark that the convexity of the structuring elements is not a necessity. For
instance, the sequence

 ERY )
€1 €2 €3 etc ...

induces a size distribution where the union involved in rel.3.9 is reduced
to one element for each A\. However, in the Euclidean space IR", a family
(By)a>o of structuring elements generates a size distribution (,)x>¢ which
is compatible with magnification, i.e.

VA>0,VX CIR", n(X)=n(X/N), (3.10)

if and only of the B,’s are the homotethics of a compact convex set B.
Moreover, if set X is closed (X € F) or compact (X € K) then the mapping
(A, X) = % (X) from RT x F (resp. Rt x K) into F (resp. K) is upper-
semicontinous. The signification of rel.(3.10) is clear: it just means that
va acts on AX just as y; does on X. Such a property, which is always
satisfied for convolution products, may not exist for morphological filters.
However, in the two important cases of the size distributions and of the
alternating sequential filters, we easily obtain it. From an epistomological
point of view, it is instructive to remark that mathematical morphology
exchanges the property of monotonicity of A\ — ~, (X) for a given set X
(which depends on X)) with the convexity of the structuring element, which
is independent of the set under study.



Chapter 4

Morphological filters

4.1 12-1 - Introduction

When dealing with a signal in one- or multidimensional space, the filter is
commonly defined as ant operator that is linear, continuous and invariant
under translation. According to a classical result, any filter, in the above
sense, can be expressed as the convolution product f * ¢ of the signal f by a
convolution distribution ¢. In addition to these three intrinsic properties, it
is common practice to consider these filters as band-pass devices, even if this
is not exactly true. We say that a hi-fi amplifier ”covers up to 30 000 Hz”,
or that coated glass is "monochromatic”, etc. Implicitly, this confers on the
filtering operation the property of not acting by iteration: a signal that has
lost the part of the spectrum above 30 000 Hz will not be modified if processed
by a second identical filter. Algebraically, this is known as idempotence.

Let us examine more closely the physical significance of linearity, which
states that the transformation f + f’ is the sum of the transforms f and
f’. When we listen to a piano and violin duo on the radio, for example,
it is clear that the radio amplifies the individual sounds produced by the
piano and the violin in proportion to their intensities. Likewise, the human
ear sums the intensities, or their logarithms, that are produced by different
sources. In image analysis, when we should like to correct for lack of focusing,
or camera movement in a photograph or in a satellite transmission, we find
that the associated physical phenomena are also linear (camera movement

57
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can be considered as the sum of several photos). This situation justifies the
use of convolutions for the improvement of these types of image defects.

Although acoustic signals are summed, visual signals are not compounded
in this manner. The world around us is not translucent; on the contrary, it is
composed of opaque objects that hide one another. The notion of inclusion
is used to express this fundamental law. For example, ”if the contour of
the nearest object contains the contour of any object further away then the
latter will be completely hidden from sight; if, on the other hand, the nearer
contour is contained by the more distant one then it cannot hide any more
distant objects that are not already hidden by further object”, and so on .

This inclusion relation in the visual universe is as basic as additivity for
acoustic perception. Thus the first prerequisite for any morphological filter
1 should be that it preserves ordering relations, i.e. that 1) be increasing.

Can we conceive of a morphological filter which is also linear? Yes, but
only for those convolutions whose kernel is non negative (such a restriction
rejects almost all deconvolutions met in applied signal, or image, processing).
Indeed, the sup f V g is different from the sum f + ¢ in that it has no
inverse, and (f V g) A g cannot regenerate f as could (f + g) — ¢g. Not only
are both properties exclusive, in practice at least, but there is a conflict in
the very philosophy of the image analysis involved. Linearity often gives a
group structure to convolutions, and thus permits us to deconvolve, i.e. to
produce a clear image from a blurry one, or to find the point of a function
after one-dimensional integration, as in tomography. This implies that there
was no information loss in the convolution that produced the blur or in
the integration. On the contrary, an increasing transformation generally
produces a loss of information. It is for this reason that one cannot find
an equivalent for Fourier space that would replace increasing mappings by
multiplications, or by any other reversible operation. More generally, we are
not seeking to replace reversible operations by others, more or less adapted to
a particular problem, but rather to accept this information loss as inevitable,
and to try to control it.

To attain this, we shall add a second (and final) axiom to the definition
of a morphological filter, namely idempotence([62], Ch.5and 6) . This last
condition stops the simplifying action of increasingness at the first stage,
and thus makes formal the intuition we observed concerning band-pass and
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monochromatic filters?!.

4.2 The lattice of the increasing mappings

This chapter as well as chapter 6 constitute an overview of the theory of
morphological filtering, due to G. Matheron [39, chapter 6]. The lattice
examples introduced in chapter 1 concerned the scenes under study. We will
now consider classes of operations working on these objects. Let ¢ be such
an operator, i.e. be a mapping from a complete lattice £ into itself. We
assume that 1 is increasing, i.e. that it preserves the ordering relation of L:

VA, A e L, A> A = Y(A) > P(A). (4.1)
The set L’ of the increasing mappings on the complete lattice £ satisfies
the following properties:

1. £ is a semi-group for the composition product o, with a unit element,

namely the identity mapping I (VA € £L,1(A) = A).
2. L' is a complete lattice for the ordering relation:

f>g < VAeL, f(A)>g(A),
since the following identities
(Ve fi)(A) = (Vefi)  and (Azfi)(A) = (Az fi)
generate a supremum and an infimum in the set £’

The two basic structures of the semi-group and of the lattice interact with
each other, and we have, for all f, g, h and (f;) in L

(Vfi)og=V(fiog) ; go(Vfi) >V
(Afi)og=N(fiog) ; go (Afi) < N(go fi) (4.2)

and

fzg:{hof > hog

In the following, the two classes of the overfilters (i.e. the mappings f € L'
such that fo f > f) and of the underfilters play a major role. Indeed:

foh > goh

'In literature, the term “filter” may also be associated with growth only [34, 35], and
can even be a synonymous with mapping [80]



CHAPTER 4. MORPHOLOGICAL FILTERS 60

Theorem 4.1 the class of the underfilters (resp. overfilters) is closed under
A (resp. V) and under self-composition.

proof: For example, let (f;);cs be a family of underfilters. From (4.1) and
4.2), we get:
(4.2), we g

(Vjesfj) o (Viesfi) = Vies(fioViesfi) < Vies(fio fi) < Viesfis

so that V;csf; is an underfilter. Moreover, given an underfilter f, ff < f implies,
by growth, that ffo ff < ff, so that the self-composition ff is an underfilter. O

4.3 Morphological filters

We now define the notion of a morphological filter as follows:

Definition 4.2 The elements of L' which are both underfilters and overfilters
are called (morphological) filters.

In other words, the morphological filters are the transformations acting
on the scenes under study (i.e. the lattice £) and which are increasing
and idempotent. We shall denote by V the class of the filters, with V C
L. Remark that the class V is not closed either under V, or A, or under
composition (a counter-example, based on openings, has been exhibited in §
3.2).

This apparent drawback suggests us to investigate more accurately the
possible connections of class V with the composition product and with ex-
trema. Can we find, for example, pairs (f, g) of filters such that fog, go f,
fogo f, etcre surely filters (composition problem)? Can we keep the usual
ordering relation in V and equip V with new sup and inf, such that it turns
out to become a complete lattice (extrema problem)? These two sorts of
questions will build the subject of the next two sections.

However, we can already notice that filters allow to generate the under
and overfilters in the following way.

Theorem 4.3  Any underfilter f € L' is the infimum of the filters ¥ > f.
Any overfilter g € L' is the supremum of the filters ¢ < g.
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proof: Let, for instance, g be an overfilter. For any A € £, we consider the

mapping 14 € L' defined as follows:
A if A > A or A >g(A),

Ya(d) = { L(é( ) otherwise. 7

Clearly, 14 is a filter. If A" > A, we have ¥4 (A) = g(A) < g(4). If
A" > g(A) then we find ¥4 (A’) = g (A) < g(g(A)), because g is an overfilter. But
g(A) < A" implies g (g (A)) < g(A’), and then ¥4 (A") < g(A’). We conclude that
Yy < gforany A€ L. But ¥4 (A) =g(A), for each A € L, and thus g is the
supremum of the filters ¢4, A € L. O

4.4 Composition of morphological filters
With any increasing mapping ¢ : £ — L, associate:
1. the image domain (L), i.e. the set of the transforms by :

(L) ={(A), Ae L},

2. the invariance domain By, i.e. the class of those B € £ which are
left unchanged under

b By ={B € L£,4(B) = B}.

When v is a filter, B, is sometimes called the root of v in literature.We
always have B, C ¢(L), an inclusion which becomes an equality

By = (L)

if and only if 7 is idempotent. This preliminary remark leads to the fol-
lowing three criteria:

Criterion 4.4 For any mappings f, g from L into itself,
fg=9=y9(L)C By
In particular, when g is idempotent:

fg=9+ B, C B;. (4.3)
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Criterion 4.5 Two mappings f and g from L into itself are idempotent and
admit the same invariance domain By = B, if and only if:

fg=g and  gf=f. (4.4)

proof:  Criterion 4.4 is obvious. Now, if rel. (4.4) is satisfied, then ff =
fogf =gf = f, ie. f, and similarly g, are idempotent. Hence, from (4.3),
By C By and B; C By. Conversely, when f and g, idempotent, have the same
invariance domain, rel.(4.3) implies rel.(4.4).Criterion4.5 thus follows

Criterion 4.6 Let ¢ be idempotent on L. Then, for any mapping f from L into
itself such that

fo =1
Y f is idempotent and By = By.
proof: If fi = 1) then we have Y fap = 4 =1 and Y. f = f Thus ¢ f is

idempotent, and, from Criteriond.5 By s = By. d

|

In these three criteria, the ordering < does not intervene. From now on,
we shall only consider the increasing mappings v, i.e. ¢ € L. For any
filter ¢, the class of the filters ¢’ that have the same invariance domain By, as
¥ will be denoted Zd(1)). The following theorem is the key result concerning
the composition of filters:

Theorem 4.7 Let f and g be two filters on L such that f > g. Then:

(i) f>fof >9fVfg>agfNfg>gfg>g,
(i) gf, fg, fgf and gfg are filters, and fgf € Zd(fg), gfg € Zd(gf),

(111) fgf is the smallest filter greater than gf V fg and gfg is the greatest
filter smaller than gf A fg,

(iv) the following equivalences hold:

Bfg:Bgf < Bfg:[)’fﬁ[)’g < Bgf:BfﬁBg
— fof=gf <~ 9fg=fg
< gf > fyg.
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proof: The inequalities (i) are obvious. From the relationships

fo=fffa=>fafg > fggg = fg,

we conclude that fg is a filter. By the dual inequalities, ¢f is also a filter. Now,
we have

fafofg = fo(ffg=fafa=Tfg,
faofgf = Ffafgef=(fgofo)f=raf,
and thus, fgf € Zd(fg), by criterion 4.5. In the same way, we find that fgf €
Zd(gf), so that (ii) is proved.
Now, fgf is afilter (by (ii)) and fgf > gfV fg (by (i)). Let % be a filter such

that v > fg and ¢ > gf. It follows that ¥ = ¥y > fggf = fgf. Thus, fgf is the
smallest filtering upper bound of fg and gf. Hence (iii) is proved.

By criterion 4.5, we have By, = B,y if and only if

fgogf=fgf=9f and gfofg=gfg=fg.

These relations actually imply one another. For instance, fgf = gf implies fgf o
g=gfgf,ie. fg=gfg. By (iii), these relations are equivalent to gf > fg.
The inclusions

Bf N Bg - Bfg - Bf

always hold, so that By, = By N B, if and only if By, C By, i.e, by criterion 4.4, if
and only if ¢fg = fg. This completes the proof. d

Examples:

1. Start from an arbitrary opening v and an arbitrary closing ¢. Since
y<I<y,

by theorem 4.7, yp, ¢y, ¢y and @vyp are filters. The composition
products of ¢ by v, then by ¢, etcgenerates the oscillating sequence

L L S L A L A

Remark that when v > ¢~ (which is generally not the case), we have
v = @yp and the oscillations are stopped after the first step.
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2. There is a more particular example, which illustrates point (iv) of the
theorem. In P(R") (or P(Z"), or F(R",R), or F(Z",Z)), consider
the morphological opening ~; by a segment of length [ in the horizontal
direction. For a given X, ,(X) is made of horizontal segments of length
> [. Moreover, closing this set by the dual closing ¢, i.e. determining
@y (X) may only suppress intervals between two such segments, hence
increase the length of the horizontal intercepts; Therefore, y;¢07(X) =
o (X), and by the theorem, ¢y, < ;.

4.5 Structure of the invariance domain B,.

In general, if B is an arbitrary subset of £ then there exist no filter ¥ having
B as its invariance domain, and Jd(B) = @. Under what condition is Jd(B)
not empty? A sufficient condition is that B be closed under A or under V,
because in this case the closing pp or the opening 75 generated from the
invariant elements B belongs to Jd(B). We shall see that the necessary
and sufficient condition is in a certain sense a generalization of these two
particular cases.

Let 1 be a filter, and B = B, its invariance domain. Denote by ¥ = 7p
(resp.p = pg) the smallest (resp. the greatest) increasing extension on £ of
the identity mapping on B. Explicitely :

F(A)=V{B:BeB,B< A}
G(A)=A{B:Be€B B> A}

The opening 7 and the closing ¢ satisfy the inequalities
7y <y<gop . (4.5)

Moreover, by Criterion 4.4, the inclusions B C By and
B C B imply that

Vo =oh =1 (4.6)

so that, by Criterion 4.6, we also have

vy eJgdB) ., yp e JdB).
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More precisely 1y = 1@ is the greatest element of Jd(B), and ¢, = 17y
is its smallest element. In fact, by rel.4.6, we have for instance

Yy =9o =79

and the inequalities 4.5 imply
T =979 CSYWe =1vu S0P =70

Hence ¥y = 7 ¢, and in the same way ¢,, = ¢ 7. But the filter y¢
depends only on B, and not on the choice of the particular element ¢ €
Jd(B). Hence, we have ¥y, = 1@ D 1 for any ¢ € Jd(B), and 1y, is the
greatest element of Jd(B). In the same way, ¥, = ¥y = ¢ 7 is the smallest
element of Jd(B). Now, by applying theorem 4.7(iv), with f = @ and g =
v, we find

B=BynB; ; 3¢ =¢7¢ ;P =TT

By the same theorem 4.7, these necessary conditions are also sufficient. More
precisely, we may summarize our results in the following structural theorem

Theorem 4.8 Let B be a subset of L. Then Jd(B) is not empty if and
only if the condition

B = Bﬁﬂ B@
and one of the following three equivalent conditions are satisfied:
e =67
WYp =93¢

i) $7 =757 -

If so, then Jd(B) has a greatest element 1y which is a V— filter, and a
smallest element 1, which is a A— filter. Moreover, we have for any other
filter v € Jd(B):

Yn= GT=TFT =V
Y =79 =97 =99
Y<tm <Y<ty <@
The same theorem may be restated in another way. If Jd(B) # @ then

let B; be a family of elements of B. We have V B; € ~B, and thus 7 (V B;) =
VB;. From the first relation above, it follows for any ¢ € Jd(B), that
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V(v B)=¢y(V B) =97V Bi).
But 7 (V B;) =V B, so that
o (VB;)) =v (VB;) € B.
In the same way, we also obtain
Yo (A Bi) =75 (A Bi)) =v¢ (A B) €B.

In other words, B is a complete lattice with respect to the ordering on B
induced by <, i.e. any family B; in B has a smallest upper bound ¢ (V B;) B
and a greatest lower bound ¥ (A B;) € B.

Conversely, let us assume that B is a complete lattice. Thus, for any
A € L | the family {B: B € B,B > A} has in B a greatest lower bound,
which is

Y(AN{B:BeB,B>A})=7¢(A) e€B.

But this implies B,,, € B for the filter 1)y =7 ¢ . Conversely, for any
B € B we have ¥ (B) = ¢ (B) = B, and thus ¢ (B) = B, i.e. B C By,,.We
conclude that By,, = B, and Jd(B) is not empty. In other words, we have
the following.

Theorem 4.9 Let B be a subset of L. Then Jd(B) is not empty if and only
if B is a complete lattice with respect to the ordering on B induced by <, i.e.
o (Vv B;) € B, Y (N B;) € B for any family B; in B.
If so, then we have

oV B) =19 (Vv B), Y(A B;) =¢ (N B;) for any ¢ € Jd(B).

4.6 Complete lattice of the filters on L

We now go back to the complete lattice £’ of the increasing mappings on
L, and we purpose to prove that the class V C L’ of the filters on £ forms
a complete lattice. We shall use the theorem of structure 4.8.Clearly, if (1))
is a family of elements of V), then Vi); is an overfilter,

(Vi) (Vi) = Va(¥i(V205)) = Vi(thi 0 i) = Vi,
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and similarly, Avy; is an underfilter. Therefore, we have to proe that every
overfilter admits a smaller filter that majorates it.

Given ¢ € L', consider the overfilter ¢ = Gv. The class C of the
underpotent of upper bounds g, which is closed under A, admits by definition
f = Fg as its smaller element. Now, C is also closed under self-composition,
since h > g implies hh > gg > g (g is an overfilter). Therefore ff € C, hence
ff > f. But we have also the inverse inequality, for f is an underfilter,
so that f is idempotent. Then, for all ¢ € L', operator f = FG% being
idempotent is also overfilter, which implies, by definition of GG, that

GFGy=FGy Vel

i.e. from theorem4.7, GF > FG. The condition of the theorem of struc-
ture are satisfied, which allows to state the following.

Theorem 4.10  The class V of the filters on a complete lattice L is itself
a complete lattice for the ordering induced by L, and where for any family
{¢i} <V

F (V) is the smaller filter that majorates the 1;’s

G (A;) is the larger filter that minorates the 1;’s

Note that this theorem of existences does not provides by itself a mean
to calculate F' (V);), or Fg, for a given overfilter g. Here is a second, and
more practical characterization.

Corollary 4.1 Letg € L' be an overfilter. Then Fg is nothing but the largest
element of the class closed under V and selfcomposition which is generated

by g.

proof:  Associate with f = Fg the class C; of all overfilters < f. This class
contains g and is closed under V and selfcomposition. Hence it also contains the

class Cy closed under V and selfcomposition which is generated by g. Now Cj
admits a largest element fy, hence fy < f. but fy is idempotent (fofo € Co, by
closure under selfcomposition, i.e. fofo < fo, and fofo > fo as an overfilter).
Therefore fy is an underfilter larger than g, hence larger than f = Fg, which is by
definition the smaller underfilter larger than g. d
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0 Kg M
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t T T
=0 — - .
X
0 Xq /2 M

Figure 4.1: A counterexample showing that when an iterative appraoch works
in Euclidean space, it may fail completely.

In particular , when lattice £ is finite, we always have, for n large enough
F=Fg=4g"

In such a case, filter f (i.e. the filter supremum of the family {¢;} of
filters when g = V1);) is just obtained as the limit iteration of g.However,
such a simple technique fails as soon as lattice £ is no longer finite. Here is
an example

Consider, in R!, a point M that has a positive abscissa, and the set
E =] — 0o, M]. Define the mapping v on the lattice P(F) as follows:

W (X) = %) when zy = sup {z € X} <0,
| MU (Xﬂ}—oo,%xo[) when zg > 0,

where X € P (E). It is easy to verify that ¢ (X) is increasing and idem-
potent. After n iterations of I A 1, we obtain

(I A9)" (X) = X N]—o0,z0/2"|

and
(L AY)=(X) =X N]—00,0];
hence
‘ (I A)*H(X) = (I A9) (X N]—00,0]) = @,



CHAPTER 4. MORPHOLOGICAL FILTERS 69

Examples:

1. Lattice of the openings: take the class V' C V of the openings on L.
We have seen that for every family (v;) in V', V~; is still an opening
(theorem 3.3). Moreover, from theorem 4.10, there exists a largest filter
g which is smaller than all the v;’s. g being obviously anti-extensive,
V' is a complete lattice.

2. Start from an arbitrary increasing mapping . Then, the extensive
mapping [ V1 is an overfilter and the proof of the theorem shows that
there exists a smaller filter @/Az—hence a smaller closing—that majorates
1. In the finite case, we find again theorem 3.8.

4.7 V— and N— Filters

4.7.1 Introduction
We say that a mapping f : L — L is a V-mapping when

f=fo(IV/) (4.7)

and a A-mapping when

f=FfoIN]) (4.8)

Basically, this property is something new and independent from the two
axioms which build the definition of the morphological filters. If now f is
increasing and satisfies rel. (4.7), we shall call it a V-underfilter. Indeed, any
V-underfilter is an underfilter and similarly, any A-overfilter is an overfilter.
If f is, for instance, a V-underfilter, then we have:

f=FfoV)=fVIf=]

Thus, f = fV ff is an underfilter.

A filter which satisfies rel. (4.7) (resp rel. (4.8)) will be called a V-filter
(resp. a A-filter). When it satisfies both rel. (4.7) and (4.8) it will be said
to be a strong filter. The geometrical interpretation of V-filtering and of
A-filtering are very easy. Indeed, 1 is a V-filter if and only if, for any A € L,
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WA=F(B)

()

Figure 4.2: An example of a V-filter (a) and of a strong filter (b).

every B between A and AV 1(A) has the same transform as A itself (see
Fig.4.2), i.e.

Y vV —filter VAe L (A< B<AVY(A) = (B)=19(A)).
Similarly, we have

P AN —filter VAe L, (ANY(A) < B< A= (B)=19(A)).

Examples:

If v is an opening and ¢ a closing, we have v < I < ¢, and then
e v and ¢ are strong filters,
e vp and pyyp are V-filters,

e oy and ypy are A-filters.

Moreover, if v is a A-filter, and thus a strong filter, ¢yp is a strong
filter. In the same way, if 7y is a strong filter, then vy is a strong filter.
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4.7.2 Characterization of the vy type filters

We have associated with each ¢ € £’ the largest opening ¢ that minorates
v and the smallest closing @ which majorates ). These two primitives play
a central role in the V- and A-characterizations, as is shown by the following
theorem:

Theorem 4.11 An increasing mapping ¢ : L — L is a VV-underfilter (resp.
a N-overfilter) if and only if 1 = Y (resp. ¥ = 1)),

proof: If ¢ = (I V1)), then
IVYIVY) =TIV VPIVY) =TIV Vp =TV
The mapping IV +, which is idempotent and which majorates I, is nothing but

P, and (I V) = .

Conversely, start from
b <DV Y) SPUVY) =,
which implies ¢ = (I V ). Now, if ¢ = ¢}, then

¥ = =PI V) = (I V).

s
IA
ass
s
IA
=
IA
as=
s
IA
S

(4.9)

O

We have seen that the product y¢ of any closing followed by any opening
was a V-filter. We will prove now that the converse is true, so that the
V-property characterizes the class of the filters of the type .

Theorem 4.12 A mapping ¢ € L' is a V-filter (resp. a N-filter) if and only
if there exist an opening vy and a closing ¢ such that ¥ = vy (resp. ¥ = ¢y).

proof:  Assume that v is a V-filter and consider its invariance domain B.
Denote by B the class closed for the sup which is generated by B, and by 7 the
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associated opening. Clearly, we have ¥ > 7. Moreover, according to criterion 4.5,
B CBimplies ¥ = 3y and (theorem 4.11) ¢ = Y1). Thus, we may write:

o [ 20 for Y>3,
w_w_ww{ <FP for <o
Hence, ¢ = %ﬂ, i.e. the composition product of a closing by an opening. d

Remark: the above decomposition is not unique. We also have, for a V-filter

Wb, P = .



Chapter 5

Alternating Sequential Filters

5.1 Introduction

The appearance of the alternating sequential filters in the world of mathe-
matical morphology is due to an experimental work of S.R.Sternberg [75].
His study consisted in taking a polyhedric form (namely a cuboctahedron,
see § 2.6), altering it by the addition of a largely varying white noise, and
then trying to clean the resulting image X . To attain this goal, X was
first filtered by a small closing ¢, followed by a small opening ~;, then by
a slightly larger closing ¢- followed by a slightly larger opening ~s, etcThe
final operator produced by this succession of openings and closings was

M = (i) o ... 0 (72p2) © (Y1¢01)-

The family (p;) that was used in this example consisted in morphological
closings by homothetic structuring elements, whereas (y;) was the dual family
of openings. After this experiment, a certain number of questions arose: is
the operator M a filter? To what extend does it depend on the totality of
the sequence of parameters 1, 2, i? Must these parameters be integers? Is it
essential to use a size distribution (;) and its dual (¢;)? Is the product of
these operators an operator of the same type?

The theory which answers these questions is due to J.Serra ([62]Ch. X); it
covers both continuous and discrete cases. Here, for the sake of simplicity, we
firtsly present the basic results of [62] in the general framework of the com-
plete lattices, and then we restrict ourselves to the discrete case (i.e. P(Z"),

73
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F(Z",Z) or planar graphs), for establishing the various derived properties
of these operators (e.g. dual form, symmetrical form, laws of composition,
etc.). The end of the chapter is concerned with more practical problems, such
as computation time and the use of these filters for concrete applications.

5.2 Definition of an A.S.F.

Given a complete lattice £, define a pair of primitives as a granulometry
(A, X) — 7 (X) and an anti-granulometry(A\,X) — ¢a(X) from Rt x £
into £. In other words, for all A > 0, v, is an opening and ¢, is a closing
and such that

AZp=—=n<7 and  @ox =@

These two mappings are chosen independently of one another (which does
not necessarily bring us to self-duality). Moreover, we assume that, for all \,
the two mappings 7, and ¢, are |-continuous. Now set

my = Yx@x

(which is obviously a filter), and for all pairs A, A" € R*t, with A" > ),
construct the sequence of products

M) = my

1
M)\ = mA/gmA

k
M)\ =My 9—k...MM;»\ o—k...TT)

which are obtained by dividing the segment [0, \] into 2* equal parts and
then taking the extremities of these parts as increasing indices for m. It is
easy to see that

A> = mam, <my and mymy > my

(For example, from pyp, = @awe find prv,p, < @x and mym, < my). It
then follows that for all k, M¥FM¥F = M¥ and k' > k = M} < M¥, and the
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MY are decreasing filters w.r.t. k € Z,. Therefore we naturally introduce
the infimum w.r.t. k of the MY :

My =N{MF, ke Z,}

Mapping M, is increasing as an inf of increasing mappings. It is also idem-
potent: since MY decreases as a function of k, we can write

MEW < aEMY < b

This gives us
My < AwMYMY < MY

and because of the |continuity of the primitives v, and ¢,
My < Ap Ay MEMY = NeME[Ae ME] = MyM, < AeME = M,
In summary, we have the following.

Theorem 5.1 Let {y\} be a granulometry and {p\ }be an anti-
granulometry, both defined on a complete lattice L. The indexed sequence
of filters

Mf = My 9—k...M;x 0~k ... 1N\

with A >0, my = 7, px and 0 < i < 2% allows us to define an operation
My = /\{Mfak € Z+}

which is a morphological filter called an alternating sequential filter of prim-
itives {2} and {px } and of size \ .

Corollary 5.1 The ASF M is | continous.
proof: For any sequence {X,} of elements of £ such that X, | X, X € L,

the | continuity of ) and ¢y implies that M¥(X,) | M¥(X). Therefore

My(X) = ApMY(X) = A Ap ME(X,) = Ap Ax ME(X,) = ApMy(X,).
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To obtain stronger properties, we must provide £ with a topological
status in which the infimum operation is upper semi-continuous (e.g. in Eu-
clidean spaces : the lattices of the closed sets, the u.c.s. numerical functions,
the Lipschitz functions). In this framework, we assume both primitives 7,
and ¢, to be upper-semicontinuous.Then we have the following.

Theorem 5.2 Let L be a topological lattice in which the infimum operator
is u.s.c.. If the two primitives (A, X) — v (X) and (A, X) — @i (X) are
u.s.c., then

1/ the ASF M, : (\, X) — M, (X) is also an u.s.c. mapping from RT x L
mto L ;

2/ as waries, the ASF M) satisfy the following law of absoption:

)\ZM>0:>M>\MH:M>\ (51)

(Proof in[62], p.208). Absorption law 5.1 is not commutative in general;
we have only
)\Z,U/>0:>MMM/\2M)\,

equality being reached in the important case of the connected filters (see
chapter 7 below).

5.3 Discrete Sequential Alternating Filters

In the following, £ denotes a discrete lattice such as P(Z") or F(Z",Z).
We also consider two families (7;);>; and (¢;);>1—indexed on Z*/{0}—of
operators on £ , which are a size distribution and an anti-size distribution
respectively, i.e:

Vie Z,i > 1, ;is an opening and ¢; is a closing.

Moreover, we have seen in definition 2.7 that the inequalities (5.2) are equiv-
alent to the following property:

Vi,j € Z, ViY; = ViV = Vmax(ij) and ©i0; = ©0; = Omax(i,j)
(5.3)



CHAPTER 5. ALTERNATING SEQUENTIAL FILTERS 77

Remark that these two families are chosen independently from one another
(although they are often taken as dual of each other in practice).

Now, we know from theorem 3.5 that by composing two filters f and g
such that f < g we get new filters. In particular for all + € Z,i > 1the two
composition products

m; = 7P n; = @i%
defined the so-called alternated filters
Proposition 5.3 Fori,j € Z such that 1 <1 < j, we have:

m;m; S m; S m;ms; (54)

proof: Let us show first that m;m; < m; < m;m;. We know that v; < I,
hence, v;¢0; < ;. Thus, since ¢; < ¢;, the preceding inequality implies

Vi < @ .

Now, ¢; being increasing, ¢;vig; < ¢jp; = ¢; (by idempotence of ¢;). «; is also
increasing, hence we finally obtain v;pv:0: < v5¢5, i.e:

mjm,' S mj,

which is the first inequality. Similarly, I < ¢; yields (v; increasing) v < 7v;p;.
Thus, the family (;) being a size distribution, v; < 7;¢;, which in turn implies
V3% =5 < iy (5 idempotent). Therefore, 705 < 7ipivjpj, ie:

mj S mimj.

A similar proof is used for the first part of relation (5.5). U

Proposition 5.4 Let (ix)1<k<p be p numbers such that
\V/k,lk € Z,l < <1 :ip.
then:

{ mz-pmz-p_l ce oMy My, = mz-p = my,

n;, = N4

S
i
S
b
L
S
S
Il
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proof: Let us prove for instance the first relation. iy < i, hence, by rel. (5.4),
mi,mi, > my, . Then, m;, being increasing, we have m;,(m;,m; ) > m;;m;, , and
applying again rel. (5.4) gives, since i3 < 41: m4g(miy,ms, ) > my, . If we iterate
this process, we finally get

mipmipfl N P LA 2 miq -

Conversely, i, 1 < i, yields, by rel.(5.4), mq,_,m;, < my,. Then, m;,_, being
increasing, we have m;, ,(mi, m;,) < m;, ,m;,, and applying again rel.(5.4), we
obtain (i3 < 41): my,_,(ms,_,m;,) < my,. After iterating this process, we finally
get

mipmip_l ce M M S mip,

which completes the proof of the first relation. Similar proof for the second one.
O

We can now give the definition of the alternating sequential filters and
prove that they are effectively filters:

Definition 5.5 For alli € Z,i > 1, the following operators:
Mi = Mmym;—1...My1M1 Nz = nni—1...M2M
are called alternating sequential filters of order i.

Proposition 5.6 Vi € Z,i > 1, the operators M; and N; are filters.

proof: These operators are increasing as compositions of increasing mappings.
Moreover, we have:

M;M; = (mymi—1...mamy)(mimi—1...mamq)
= (mimi—1...mamim;)(m;—1...mamy)
= m;(mi—1...mamq)
= M;.

The idempotence of M; is thus proved. That of NV; has a similar proof. d

5.4 Discrete ASF Properties

We have already said that there is no need for duality between the v,’s and
the 1;’s. Anyway, an ASF cannot be self dual, since N; # M;. In the present
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section, some properties of the ASF’s with respect to the composition product
and the order relationship between operators are presented. We also deal with
new filters, which are derived from the previous ones and which are called
transposed ASF’s. Lastly, symmetrical alternating filters are introduced, and
some of their properties reviewed.

Proposition 5.7 (Absorption laws) Fori,j € Z such that 1 <i < j, we
have the following relations:

N;N; < N; = N;N;. (5.7)

proof: We shall only proof (5.6), since the two relations (5.7) derive by duality.
The following egality holds: M;M; = mjm;_1 ... m;1M;M;. Therefore, M; being
idempotent, ]\/[]AL = mjmj_l . mi_i_l]%i, l.e. ]\/[]AL = ]\/[j

Let us show now the second part of this equation, i.e. M; < M;M;: we
can write M; = v;M; = (vivie1...71)7;M;. Now, I < ¢ (extensivity), which
implies v1 < 7v1¢1. Thus, 11 < way11, which in turn implies the inequality
Yoy1 < Yopav1¢01. By iterating theis process, we finally obtain

ViYie1 -+ - S ViPiYim1Pi-1 - - - 191 = M.
Therefore, M; < M;y;M;, i.e.
M; < M;M;.
This completes the proof of the first relation. There is a similar proof for the
second part of rel. (5.7). O

Compatibility under magnification

When the two primitive families (;) and (¢;) are compatible under magni-
fication, i.e.

Sﬁk(kX) = k%(X)a
’Yk(kX) = k’Yl(X)a

this property is transmitted to the corresponding ASF’s. The physical in-
terpretation of this is clear: it means that the ASF of order k works on the
k times magnified image exactly as does the ASF of order 1 on the initial
image.

%&Vk>0,{ (5.8)
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5.5 Applications, computation time

These alternating filters are among the most useful filters in mathematical
morphology. They actually provide efficient filtering in many image cleaning
problems, and can be finely adjusted to each case. Indeed, we can operate
on:

e the families (7;) and (¢;) (most of the time, this comes down to choos-
ing families of structuring elements),

e the type of filter (alternating sequential filter, alternating transposed
filter, alternating symmetrical filter,

e the “size” of the filter,

e etc

The only problem with such filters (and with most filters used for im-
age cleaning) is that of the computation time. Although the formulas for
computing these filters can be “compacted”, a certain number of elementary
operations has yet to be performed in each case. Thus, the computation time
of an ASF may well be very long on a non specialized equipment.

As an example, suppose that the computation times of ¢; and ~; are equal
to i x At, for a fixed image size. Then, the computation time of M;, N;, etcis
proportional to 72, as shown by table 5.1 (we suppose that the most efficient
fomulas are used):

| Filter || Computation time | case of 1 =5 |
R;, S;, R, St i1+ 2)At 35 x At
M;, N, 2i(i + 1) At 60 x At
R;, S; (2i% + 20 + 1) At 65 x At

Table 5.1: Computation time of some sequential filters, provided that the
time required for computing 7; or ¢; equals i x At (for a fixed image size).

In order to reduce the above computation times, it is sometimes useful to
introduce the following type of alternating filters [62, page 213]:
Mz(2) = mym;_9...M3M7

Mi(2) = ©ic19iy - - - 7201,
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i being here an odd number. These filters obey to similar absorption laws
as those which were presented above. Moreover, their filtering capabilities
are, in most concrete problems, practically as good as the capabilities of the
alternating filters described in this chapter. However, they can be computed
two times faster than the “regular” alternating sequential filters. This is
extremely interesting in practice.

5.6 Conclusion

In the framework of morphological filtering, the V- and A-properties are
weaker substitutes for extensivity and anti-extensivity (closings and openings
are strong filters, but the converse is false). Such a weaker version allows
us to combine both properties in filters that are not trivial, whereas the
only strong filter to be extensive and anti-extensive at the same time is the
identity mapping I. We will see in chapter 7 how this advantage can be used
to produce self-dual filters.



CHAPTER 5. ALTERNATING SEQUENTIAL FILTERS

82



Chapter 6

Connections and Connected
Filters

6.1 Classical connectivity and image analysis

In mathematics, the concept of connectivity is formalized in the framework
of topological spaces and is introduced in two different ways. First, a set
is said to be connected when one cannot partition it into two non empty
closed (or open) sets. This definition makes precise the intuitive idea that
[0,1] U [2, 3] consists of two pieces, while [0, 1] consists of only one. But this
first approach, extremely general, does not derive any advantage from the
possible regularity of some spaces, such as the Euclidean ones. In such cases,
the notion of arcwise connectivity turns out to be more convenient. According
to it, a set A is connected when, for every a,b € A, there exists a continuous
mapping ¢ from [0,1] into A such that (0) = a and ¥ (1) = b. Arcwise
connectivity is more restrictive than the general one ; however, in R¢, any
open set which is connected in the general sense is also arcwise connected.
A basic result governs the meaning of connectivity ; namely, the union of
connected sets whose intersection is not empty is still connected :

{A; connected} and {NA; # O} = {UA, connected} (6.1)

In discrete geometry, the digital connectivities transpose the arcwise cor-
responding notion of the Euclidean case, by introducing some elementary
arcs between neighboring pixels. This results in the classical 4- and 8-square

83
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connectivities, as well as the hexagonal one, or the cuboctahedric one in 3-D
space. Is such a metric approach to connectivity adapted to image analysis?
We can argue that

a/ Certain arcwise connections seem smowhat shaky, e.g. when they do
not treat equally a set and its complement;

b/ In discrete motion analysis, the trajectories of fast moving objects
often appear as dotted tubes, and arcwise connections are unable to handle
such situations;

¢/ more deeply, one can wonder what is actually needed in image process-
ing. As a matter of fact, when we examine the requirements for connectivity,
we observe that the basic operation they involve consists, given a set A and
a point x € A, in extracting the particle of A at point x. For such a goal, an
arcwise approach is obviously sufficent. But is it necessary?

6.2 The notion of a connection

These criticisms led G. Matheron and J. Serra to propose a new approach,
in 1988 ([62], Chap. 2 and 7) where they take not rel.(6.1) as a consequence,
but as a starting point. However, their definition is rather general and stated
as follows.

Definition 6.1 Let E be an arbitrary space. We call connected class or con-
nection C any family in P(E) such that

(i) @ €C and foralzeE, {x} €C

(i1) for each family {C;} in C, N C; # @ implies UC; € C.

As we can see, the topological background has been deliberately thrown
out. The classical notions (e.g. connectivity based on digital or Euclidean
arcs) are indeed particular cases, but the emphasis is put on another aspect,
that answers the above criticism ¢/ in the following manner ([62], Chap. 2) :

Theorem 6.2 The datum of a connection C on P(E) is equivalent to the
family {~,,x € E} of openings such that

(111) for all © € E, we have v;(x) = {x}

() for all ACE, z,y € E, v,(A) and ~,(A) are equal or disjoint

(v) for all AC E, and all x € E, we have x ¢ A= ,(A) = .
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proof: First we show that the datum of C' brings us to the openings 7,. Axiom
(iii) results from {x} € C. To prove (iv), note that v,(A) N~y (A) # @ implies

C =v(A)Uy(A) eC, with C' C A.
On the other hand, v,(A) being non-empty gives
rE€YA)=2eC=Cel=CC (A = v(A) Cr(A).

We show the reverse inclusion, thus equality, in the same way.
Conversely, suppose that we define the class C as the family of invariant sets

of the v, i.e.
C={1%(4),zr€ A AC L}

For A = @ we find v,(@) = @ € C. For A = {z}axiom (i) implies that v,(x) =
{z} € C, and axiom (i) is satisfied. Now let {C;} be a family with a non-empty
intersection in C and =z € N C;. As C; € C, we can find a point y; for each i such
that C; = v, (C;). But x € C; therefore from (iii), {x} = vz({z}) C v2(C;). Thus
vy; (C3) and 7, (C;) contain point z, and from (iv) we have C; = v, (Ci) = 72(Cj).
So UC; = Uy, (C;) is invariant under y,and belongs to the class C. Thus we have
axiom (1)

We still have to prove that the connected openings associated with this class
C coincide with the 7, themselves; i.e. to identify the following two classes

Cp = {1=(A) : 1(A) # @, AC E},
Co ={w(A):y € E,AC E,v(A) D {z}}.

From axiom(%i) we have {z} € C;. Let 7;(A) be an element of Cy; then = €
Y(A) C A implies that € ,(A), i.e. from axiom (iv), that v, (A) = v.(A).
Hence C, C CJ. Conversely, set v,(A) € C,. Since 1,(A) # & axiom (v) implies
that, © € A ; thus {z} C v, (A)and , ie. C, CCy . O

An alternative, but equivalent, axiomatics has been proposed by Ch.
Ronse [56]; it contains, as a particular case, another one by R.M. Haral-
ick and L.G. Shapiro [22]; however, both approaches are still set-oriented.
The extension from sets to the general framework of complete lattices and in
particular to numerical functions has been performed by J. Serra [71]

At first sight, this theorem just indicates that the operation shown in
Fig.6.1 is an opening called the connected component of A that contains point
x, which is somewhat obvious. But some other connectionx, below, are less
obvious.
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Figure 6.1: The opening called the connected component of A that contains
point z.

Historically speaking, the number of applications or of theoretical devel-
opments which was suggested (and permitted) by this theorem is considerable
(see, among others[36][48][58]). It has opened the way to an object-oriented
approach for segmentation, compression and understanding of still and mov-
ing images.

6.2.1 Examples of connections on P(F)

Several instructive examples of connections on P(E) can be found in [25], in
[56] and in [71]. Here we just recall a few of them.

i/ All arcwise connectivities on digital spaces are connections in the sense
of definition 6.1 (see6.2);

it/ In [62], J. Serra provides E with a first connection C and considers
an extensive dilation § : P(E) — P(E) that preserves C (i.e. 6 (C) C C).
Then the inverse image C' = 6! (C) of C under § defines a new connection on
P(FE), which is richer. The C -components of 6 (A), A € P(E), are exactly
the images 6 (V) of the C’-components of A. If 7, stands for the connected
opening associated with connection C and v, for that associated with C’, we
have

Vp (A) =7, 00 (A)NA  when z€A
v, (A) =2 when x¢ A

(where ¢ is a dilation by a disc) is again a connected opening associated
with the connectivity shown in Fig. 6.2, which is not so obvious [62, page
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Figure 6.2: A less obvious connectivity notion, associated with the opening
Vgp.

55].

In practice, the openings v, characterize the clusters of objects from a
given distance d apart. Fig. 6.3 illustrates this point by ”reconnecting” dot-
ted lines trajectories. But a contrario, such an approach can also provide a
means to extract the objects which are isolated. They will be defined by the
fact that for them v, (A) = v, (A), an equality which yields easy implemen-
tation [72].

i1t/ In [56], Ch. Ronse starts also from a first connection on P(FE), and
proposes, as a new connection, the class generated by the points and the
connected sets opened by a given structuring element B. If z € X o B, then
vz (X) is the initial connected component of X o B containing z, and when
point x € X\ X o B , then 7, (X) = {x}. An example is shown in Fig.6.9 for
such an ”open”connection by a 3x3x square, the set of 6.9a has 16 particles:
the two surrounded squares, plus 14 isolated points. Also, the six points of
the vertical gulf are isolated pores.

6.3 Application to Function Segmenting

In this section, we investigate segmentation of numerical functions f : £ — L
when a connection C is defined on P(E). We shall formulate the question
as follows : ”is there a largest partition of space F into connected classes
such that function f satisfies a given criterion o inside each class? Clearly,
criterion o must be consistent with the axioms of a connection.Therefore, we
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b)

a} CJ

Figure 6.3: a) Sequence of images, b) Space-time display of the ball, c)
In a dilation based connection, the three clusters in grey are considered as
particules (they correspond to slow motions).

assume that, given any arbitrary function f

i/ for all x € E, f(x) fulfils criterion o;

it/ for all A, B,€ C with AN B # @, if f fulfils 0 on A and on B, then
f fulfils 0 on A U B.

Hence, criterion o generates a subclass C, of C which turns out to be a sec-
ond connection on P(E). Therefore class C, partitions set E into the maximal
classes satisfying criterion o. Here are three examples of such segmentations

6.3.1 Flat Zones Connection

The segmentation of f by flat zones is the concern of this first approach.
Given point = € FE, denote by Z, the subclass of those elements of C that
contains point {z}, and over every element of which function f is constant,
ie.

Zy={zeZCCyecZ= f(x)=fy)}.

Class Z, is closed under union, so that its supremum

Z, =U{Z e Z,}
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is the largest connected component containing point x and on which function
f is constant. Consequently, the mapping z — Z(x) is the largest partition
of space E into flat zones of f. Furthermore, the family {Z, U 0} defines the
invariant sets of a connected opening at point x. This means that any set
Y C FE is partitioned into the classes Z(z) NY, as « spans FE. By doing so,
we have generated a new connection C, on E, by combining the initial one
with some features of function f.

6.3.2 Smooth Path Connection

Provide P(R") with the arcwise connection. Consider an arbitrry, but fixed,
function f : R" — L and the class C, made of (a) all singletons plus the
empty set, and (b) all connected sets Y of P(R"™) such that function f is
k-Lipschitz on set Y for the arcwise metric induced on this set (i.e. the
so-called ”geodesic metric” in practice).

The class of such sets Y is obviously closed under union, therefore it
admits a largest element Y (x). As x spans E, the sets Y (x) partition space
E, just as the flat zones Z(x) did previously. And just as before, class
C,defines a second connection on P(R™), where the variation of f, over each
set of class (b) is ”"smooth”in the k-Lipschitz sense.

In Z2, the implementation of this ” smooth path” criterion is particularly
easy. If D(z) stands for the unit disc at a point z ( with five, seven or nine
points), then the partition has, for non-point classes, the arcwises connected
components of all sets X such that

X:U{xEZQ:\/]f(x)—f(y)|,y€D(:1:)§k}

The points of the complement set X¢ correspond to connected components
reduced to individual pixels.

An example of smooth path connection is given in Fig.?7a, which rep-
resents an electron micrograph of concrete made of three phases : a white
one and two grey ones. The histograms of the two grey phases are almost
identical, but one is more continuous than the other. By segmenting Fig.?7a
according to the smooth path connection, with a slope k = 6, we obtain a
correct pre-extraction, which has to be amended by some filtering. For the
same image, the best jump connection is obtained by taking a range h = 15,
and yields the rather poor result depicted in Fig.??c.
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Figure 6.4: a) Original micrograph of beton, b) smooth path connection
for k=6 (in dark: the connected component reduced to points), c¢) jump
connection for h = 12

6.3.3 Jump Connection

Provide P(R"™) with connection C. Consider a given function f : R — L
and the class C, made of (a) the singletons plus the empty set, and (b) all
connected sets around each minimum, and where the value of f is less than
h above the minimum.

Clearly class C, forms a second connection on P(R"™), called jump con-
nection from minima, and induces a maximum partition on E. Let X; stand
for the union of the non-point classes of this partition. By iterating the pro-
cess on the restriction of f on X7, we obtain a second family of non-point
classes, of union Xy, etc... Finally, if function f is regular enough (or in the
digital cases) the series of iterations results in a partition of the space into
connected components (in the sense of C ) where the variation of f is smaller
than h. In a variant of the procedure, one can alternate jump connection
from minima and from the maxima in order to obtain a more self-dual result.
The following example illustrates the use of such a transformation. Fig.6.5a
depicts an optical micrograph of a polished section of alumina grains. The
partition of the space under jump connection is depicted in , whereas Fig.6.5¢c
depicts the superposition of the skeleton by influence zones of the set in (b)
on the original image(a).
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Figure 6.5: (a) original micrograph of alumina, (b) jump connection from
the maxima , with h=15, (c) derived SKIZ.

6.4 Connected Filters

For now on FE is an arbitrary set, and P(FE) is supposed to be equipped with
connection C. For every set A € P(FE), the two families of the connected
components of A (the ”grains”) and of A¢ (the "pores”) partition space E.
Then, an operation ¢ : P(E) — P(E) is said to be connected when the
partition associated with ¢ (A) is coarser that that of A [69]. Clearly, taking
the complement of a set, or removing some grains, or filling pores generate
connected operators. The major class of mappings we have in view is that
of the connected morphological filters.

6.4.1 Set opening by reconstruction and some deriva-
tives

A comprehensive class of connected filters derives from the classical opening
by reconstruction. Its definition appears in [62], chap.7.8. Significant studies
which use this notion may be found in literature, such as [69] (connected
operators),[13],(stable operators) [48],(spanning trees), [25],(grain oprators).

An opening by reconstruction is obtained by starting from an increasing
binary criterion 7 (e.g. ”the area of A is > 10"), to which one associates the
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trivial opening, in the sense of section 3.4.1.above, i. e.

77 (A) = A when A satisfies the criterion
v (A) =0 when not

The corresponding opening by reconstruction -y is then generated by ap-
plying the criterion to all grains of A, independently of one another, and by
taking the union of the results :

v(A) =U{y%(A), z€E}

A series of algorithms are based on this approach. For example, for 2-D
binary images: keep the connected components of X whose circular opening
of size k is not empty and filter out the others.

Reconstruction opening extends to numerical functions via their horizon-
tal sections, but can be directly implemented in terms of numerical operators.
If e and &y stand respectively for the isotropic erosion and dilation of size k
(square, hexagonal, octogonal in Z?* (sets), as well as in F(Z? Z") (func-
tions from ZZ into Z"), we can write:

Y = ep(X) (set case) g =¢ex(f) (function case),
and then:
pY) =6(Y)NX 1D (g) = 61(g) A £ (6.2)

By iterations, we compute p®(Y) = po u(Y), u®(Y) = po p®(Y),etcThe
sequence of the s increases till an idempotent limit, which provides the de-
sired opening (see Fig.6.6).The underlying methods, which are called geodesic
ones, are presented in more details in chapter 11 below.

The closing by reconstruction ¢ (for the same criterion) is the dual of ~y
for the complement, i.e. if C stands for the complement operator, then

o= CC.

For example, in R?, if we take for criterion 7, ” have an area > 10”, then
v(A) is given by the union of grains of A whose areas are > 10, and ¢(A) is
the union of A and all its pores whose areas are < 10. Similarly, if criterion 7
is expressed by "hit a fixed marker M7, then v(A) is the union of the grains
that hit A, wheras ¢(A) is composed of A and of all pores that miss M .

The operators by reconstruction satisfy number of nice properties. The
three following ones are typical examples of them.
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Reconstruction

Figure 6.6: Algebraic opening as a morphological opening by a disc followed
by a reconstruction.

Proposition 6.3 [69/Let v be an opening by reconstruction, and ¢ be a clos-
ing that does not create connected components, i.e. such that

z € p(A) = ANp(A) # 2 (6.3)
Then the associted alternated filters are ordered, and we have yo > ¢y

proof:  Consider ¢y(A), for A C E. Since the (extensive) closing ¢ does
not create new connected components, it can only enlarge those of v(A); now ~
acts grain by grain, hence ypvy = ¢vy. According to theorem4.7 this equality is
equivalent to vy > . O

The most common closings may not satisfy condition (6.3). It is the case
for intersections of closings by segments, for example. However, if starting
from an arbitrary closing ¢, we restrict p(A) to its grains that contain at
least one point z € A, the resulting operation is still a closing. It is the
reason for which condition (6.3) is always assumed implicity in practice.

Corollary 6.1 Let {v;} be a granulometry by reconstruction, and {p;} be a
anti-granulometry that does not create connected components, then the A.S.F.
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Figure 6.7: An example of a pyramid of connected alternated sequential
filters. Each contour is preserved or suppressed, but never deformed : the
initial partition increases under the successive filters, which are strong and
form a semi-group.

M, = my,...m;...mq, with m; = ~;; satisfy the semi-group relation
MM, = MpM, = Msup(mp)

proof: We already know that p > n = m,m, > m, and M,M, = M,. But
we draw from the proposition that m,mp = ¥,@nYYp < Y YpPnp = myp. Hence

p > 1= mymy = my, and M, M, = my,...m;..mimy...m;...mq = M, ]

This corollary explains, partly at least, why the A.S.F. by reconstruction
are so often involved in pyramids, for coding, segmentation, or indexation
purposes. In such pyramids, the additional information to get finer levels is
concentrated in subdivisions the flat zones [48]. An example of such a be-
haviour is presented in Fig.6.7. Each cross section of the gray tone image has
processed by an alternating sequential filter by reconstruction. The underly-
ing binary criterion was here associated with the size of the disc inscribable
in each grain.

Another point of interest is the following. The infimum of openings is
generally not idempotent. But consider a family {v;,7 € I} of openings by
reconstruction associated with criteria {7;}. Clearly, their infimum v = Ny;
is still an opening, where each grain of A must fullfill all criteria 7; to be
retained. On the other hand, Uy; is the opening by reconstruction where
each grain must satisfy one criterion 7; at least. However, the largest opening
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is here the identity mapping, and not the largest increasing operator (i.e.
A — E YA € P(E)). Hence we may state:

Proposition 6.4 In the lattice of the increasing operators from P(E) into
itself, the openings and the closings by reconstruction constitute two complete
quasi sub-lattices.

6.5 Leveling

Levelings have been introduced by F. Meyer, in [49], as gray tone connected
operators on digital spaces, for the usual digital arcwise connections based on
neighbor pixels in square or hexagonal grids. In [42], G. Matheron proposes
a generalization to an arbitrary space (hence, without a priori connection).
In his approach, connection arrives as a final result, and is generated by
an extensive dilation. Now in both cases, levelings turn out to be mainly
flat operators, i.e. that treat each grey level independently of the others.
This circumstance suggests to try and generalize F. Meyer’s approach by
focusing on set levelings, but re-interpreted in the framework of an arbitrary
connection C. J. Serra entered this way of thinking [72], which allowed him
to obtain the key theorem 6.11

Independently of these approaches, H.Heijmans has introduced and stud-
ied the class of ”grain operators” in[25]. Levelings, in the sense of definition
6.9 below, are particular grain operators. However, the ”good” properties of
these grain operators appear when they derive from markers based openings
and closings. So we will restrict ourselves to such criteria (for example, we
will not accept or reject a particle according to its area).

6.5.1 Adjacency

The notion of adjacency [72], which governs the structure of the levelings
below, is defined as follows

Definition 6.5 Let C be a connection on P(E), and let X,Y € C. Sets X
and Y are said to be adjacent when X UY s connected, whereas X and Y
are disjoint.
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Definition 6.6 Given two grains A,M € C , one says that A touches M,
and one writes A || M when either AN M # &, or A and M are adjacent.

By duality, one says that A lies in M when A does not touch M¢; one writes
AC M.

The duality under complement provides the two following equivalences
A M= AL M and A} M <= AS M° (6.4)

Note that relation A || M (A touches M) is less demanding than ANM #
@ (A meets M), since it accepts in addition that A and M be adjacent.
Similarly, A & M (A lies in M), is more severe than A C M , since none of
the grains of A and of M must be adjacent to each other.

When 7, (A) # v,(A) for an arbitrary A € P(E) one cannot have v, (A) ||
vy (A) since v, (A) is the largest element of C included in A. But ~,(A) may
not touch some pores Y; of A and, nevertheless, touch their union UY; For
example, for the "open” connection 4ii/ of section 8.2.1, none of the six point
pores of the central gulf, in fig.6.9a, is adjacent to the set, whereas their
union touches it. The most powerfull connections are those which prevent
this perverse effect, i.e. which fullfill the following condition of adjacency
prevention:

Definition 6.7 A connection is adjacency preventing when for all elements
M € C and all families {B;,i € I} in C, if M is not adjacent to each B;,
then it is not adjacent to their union UB;.

In particular, adjacency prevention governs the strenght of the filters by
reconstruction, as proved in proposition 6.8 and in theorem 6.11.

Proposition 6.8 Let C be an adjacency preventing connection on P(E).
If ~ and ¢ stand for an opening and a closing by reconstruction based on
connection C, then both alternated filters yp and ¢y are strong.

proof:  We shall prove the proposition for ¢v. We proved in sect.6.2 that ¢y
is an A-filter; we have only to show that it is a V-filter, i.e. that for all A € P(FE),
if € E is an arbitrary point, then « ¢ ¢y(A) implies ¢ B = oy[AU ¢y(4)] .

Suppose first that = ¢ A. Opening 7 can only enlarge pore v, (A€), and closing ¢
keep it unchanged (if not, we would not have = ¢ ©v(A)). Hence v;(A°) is equal
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to Yz[AU @y(A)]¢, and finally ¢ B. Suppose now that x € A. The grain v;(A)
touches none of the grains and the pores of A that compose @y(A) (if not, v,(A4)
would belong to ¢y(A), now = ¢ ¢y(A)). Then, according to the assumption of
the proposition, 7, (A) does not touch ¢vy(A), neither [AU ¢y(A)]\ 72(A), hence
Yo (A) = 7[AU py(A)] and finally ¢ B, which achieves the proof. O

Proposition6.8 implies that ¢y admits a decomposition as v'¢’, but for
a v'and a ¢’ priori different from v and ¢. We will now see under which
condition these primitives can be the same.

6.5.2 Set Levelings

From now on, we denote by 7,(A) the union of all grains of set A that touch
an arbitrary set M, called marker:

Mm(A) = U{na(4), z € E, 1(A) | M}

Similarly, the complement of closing ¢y<(A) is the union of those pores of A
that hit marker N¢,

[one(A))" = U{1a(A), = € B, 7(A) | N} (6.5)
hence
AN pne(A) = U{a(A9), 2 € B, 7(A%) & N} (6.6)
is the union of those pores of A lying in marker V.

Definition 6.9 Let E be an arbitrary set, and C be a connection on P(E).
Let vy and pne an opening and a closing, both by marker reconstruction,
from P(E) into itself. The leveling X : P(E) — P(E), of primitives vy and
wne 1S then defined by the relation

A=y U (E N gch) = e N (E U VM) (6.7)
where C stands for the complement operation on P(E).
When applied to set A, leveling A yields the two equalities
ANAA) = Anyy(A)

ATONA) = A Npne(4) (= AUMA) =AUpx-(4)) (5
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so that A(A) acts inside A as opening s, and inside A¢ as closing pye.
System (6.8) also relates to the activity lattice, where a mapping ¢ on P(FE)
is said to be less active than another, ¢, when v/(A) modifies more points
of A than ¢ (A)does, VA € P(E), (ch.8 in [62]). If Id stands for the identity
operator, the activity ordering is as follows

Idn+y D Idney
Idus C Idu

and one notes ¥ < v¢’. A complete lattice is associated with this ordering,
where the supremum and the infimum of a family {«;, i € I'} are given by

Yip = [Cn (Uey)] U [Ne]
by = [Id 0 (Uy)] U [M]

When applying this system to the family {vas, @n<} of the two leveling
primitives, we draw from (6.7) that

YY p=A YyAp=1Id.

Conversly, the relation v Y ¢ = X yields equation (6.7), hence may be
considered as an alternative definition for leveling.

An operation whose definition involves the complement C risks not to be
increasing. But in the present case, we will now see that the condition under
which A is increasing makes it also a strong filter, which means much more.

Lemma 6.10 Let C be an adjacency preventing connection on P(E), let
AN € P(E), and let Y be a pore of A. If Y lies in N, then all grains of
A which are adjacent to' Y meet N. By duality, if a grain X of A does not
touch set N, then none of the pores of A adjacent to X is included in N .

proof: Consider a pore Y of A, with Y € N, and a grain X of A which is
adjacent to Y. Since there exists a point x € X that is adjacent to Y, and since
Y }f N¢ ( Eq (6.4)), = belongs necessarily to N; hence X NN # ().

Take now a grain X of A that does not touch N, i.e. such that X & N¢ We
draw from the first part of the proof that every pore Y of A that is adjacent to X

meets N€, hence is not included in V. d
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Theorem 6.11 Let C be an adjacency preventing connection on P(E).
Giwen M,N C E with N C M, the leveling Ay n : P(E) — P(E) of
primitives vy and pye is a strong connected filter, and admits the double
decomposition

A= YM PNe = PNeVM -

proof: We have to prove that the three following operations are identical:

i/ to take the union of the pores of A lying in N and of the grains of A touching
M;

it/ to take the union A’of the grains of A touching M, and to add it to the
pores of A’ that lie in N;

iti/ to add to A all its pores lying in N, and to extract from the result the
union of all grains touching M.

Indeed, when N C M, the lemma states that all grains of A adjacent to a pore
Y € N hit N, hence hit also M. On the other hand, a grain ;(A) of A which

is not adjacent to various grains X and pores Y of A, with Y € N | are neither

adjacent to the union of these X and Y (assumption of adjacency prevention),
so that the two processings i/ and 4/ are identical. The proof is achieved by
observing that i/ is a self-dual procedure, and that i/ and éii/ are dual of each
other. d

Remark that, when N C M, the supremum of the two logical conditions
A} M and A € N°€ is the certainty. Then, according to proposition 8.5 in
[25], we find again the increasingness of \.For extending levelings from sets

to numerical functions, we need to consider them as functions of their three
arguments A, M and N. Now, is the mapping A(A, M, N) from [P (E)]* into
P (F) increasing ?

Corollary 6.2 The leveling A : [P (E)]> — P (E) is increasing if and only
if the two operands M and N are ordered by N C M

proof: We draw from the theorem that, given M and N, with N C M,
ACA = XNA,M,N) C M4, M,N).

On the other hand, given A’, when M C M’ and N C N’ more grains of A’ are
touched and more pores of A’ are lying, hence

AA', M, N) C MA', M', N")
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M=N= p(d°)

by

Figure 6.8: a)Non increasingness of A when N ¢ M.Take for A’ grain A plus
its pore; then AC A’ whereas A(A") C A(A). b) Take the internal pore of
grain A as M and N, then A(A) equals the pore without the grain (flip-flop
effect)

which achieves the proof (the only if part is given by the counter example of
Fig.6.8a. O

An interesting feature of levelings concerns their possible self-duality.
Firstly, we may consider the behaviour, under complement, of the triple
mapping (A, M, N) — \(A, M, N). We have

A, M, NI = [rage (A9]° N [A N i (A7) = are(4) N [A° Uy (A)],

hence [A(A°, M€ N =yn(A) U[A°N pue(A)] = MA, N, M)

Therefore self-duality of A\(A, M, N) is reached when and only when the two
markers N and M are identical. Since, in addition, condition M = N implies
the inreasingness of A, we may state

Proposition 6.12 The leveling (A, M, M) — XA, M, M) is an increasing
self-dual mapping from P(E) x P(E) into P(E).



CHAPTER 6. CONNECTIONS AND CONNECTED FILTERS 101

In this approach, we implicitely supposed that the data of A and of M
are independent. In practice, it often occurs that marker M derives from
a previous tranformation of A itself, M = u(A), say. Then the proposition
shows that the leveling A : P(E) — P(E) , with A = XA(4, u(A), n(A)) is
self-dual if and only if mapping p itself is already self-dual.

We conclude this section by exhibiting two examples showing how neces-
sary are some assumptions above. Take for A a single grain with an internal
pore, and for M = N the set made by the pore of A in fig.6.8b. Suppose we
replace, in definition 6.9, the condition 7, (A) || M by 7.(A) N M = &, and
v:(A°) € N by 7,(A¢) C N Clearly, we have

SOZV[C(A) =AUM — ")/JWQOJV[c(A) =AUM,
but Ym(A) =@ = poueymu(A) =2

whereas A\(A) = M is neither ~yypre(A) nor wpreyar(A). Moreover, the
example shows that A(AN A(A)) = @ and that A(AU A(A)) = AU M; this
implies that A cannot be decomposed into the product of an opening by a
closing or vice versa (theorem 6-11, corollary 2 in[40]). Notice also, finally,
that in the example of fig.6.8b the border between the grain and its internal
pore is preserved, but not the sense of variation. As a matter of fact, such a
"flip-flop” effect is due to the case when M contains a pore of A, but misses
the surrounding grain(s). It cannot appear in the actual levelings of definition
6.9.

The second counter-example concerns adjacency prevention. Let us adopt
the "open ” connection, and take for A the set 6.9a, and for marker M = N
the six point pores of the central gulf.Figures6.9b and 6.9¢ show the two
transforms ppreyar(A) and v @are(A) which are obviously different : one
cannot drop the adjacency prevention, in theorem 6.11 !

6.5.3 Levelings as function of their markers

For the sake of simplicity, we shall take M = N through this section, although
self-duality is not really required here, and write A4 (M) for A(A, M, M).

Theorem 6.13 Let C be an adjacency preventing connection on P(E).
Given A C E |, the mapping s : P(E) — P(E) is a morphological filter
from P(E) into itself.
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Figure 6.9: a) initial set A. For the "open” connection by the 3x3 square, A
is made of 16 grains, namely the two 3x3 squares plus 14 isolated points ; b)
oneym(A) for M equal to the six pores of the central gulf (surrounded); c)
Yur @are(A) for the same marker. The difference comes from that the ”open”
connection is not adjacency preventing.

proof: For A, M € P(E), A given and M variable, A4 (M) is the union of some
grains and some pores of A, in such a way that each accepted pore arrived in A4 (M)
accompanied by the whole collection of its adjacent grains. So a grains of 7, (A)
that does not participate to A4 (M) does not touch any of the A-connected elements
(grains or pores) involved in Ag(M); hence, by adjacency prevention, v;(A) }
Aa(M). By duality, v-(A°) € M implies v5(A) € Aa(M), so that Aa[Aa(M)] =
A4 (]Vf ) . O

The relevant formalism to go further is that of the activity ordering for
sets (and no longer for set mappings)[42]. As a matter of fact, any fixed set
A generates an ordering denoted by <4, from the two relationships

MiNADMNA
M, My, C E & M 24 My
My N A° C Myn A°

From this ordering derives the so called A-activity lattice, where the supre-
mum and the infimum of a family {M;,i € I} of sets are given by

YaM; = [A°N (UM;)]U[NM,]
AaM; = [AN (UM;)] U [NM;]

with A itself as the minimum element, and A° as the maximum one (a
system very similar to that presented above about the activity lattice for
operators). In this framework, the following theorem holds[42][72]
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Theorem 6.14 Given set A, the leveling M — As(M) from the A-activity
lattice of P(E) into itself is an openings. Moreover, for all A, My, My €
P(E), we have

My <4 My = A A (A) = A Aar, (A) = Ay (A)

This last granulometric type pyramid is specially usefull in practice, for it
allows to grade the activity effects of markers: it means that we can directly
implement a highly active marker, or, equivalently, reach it by intermediary
steps. An example is given in fig.6.10.

6.5.4 Function levelings

Let 7 be a discrete axis; denote by 7% the lattice of all numerical functions
f: E — T. An increasing operator ¥ on 7% is said to be flat (see sect.
2.5.4.) if there exists an increasing set operator v such that

X[W(f),t] = 0 [X(f),1] (6.9)
where stands for the thresholding of function f at level £, i.e. :
X(fit)={z:xek, f[f(z)=t} (6.10)

In the discrete cases of digital imagery, relation (6.9) is sufficient to char-
acterize the function operator U associated with an increasing set operator

b,

Definition 6.15 Let f,g,h, be three functions from E into T ,with g <
h.Then the relation

XAt =A[X(f.1)], X (g, 1), X (h,1)]
defines one and only one leveling A(f) on TF.

When connection C is obtained from the iterations of an elementary dila-
tion 6, of adjoint erosion ¢, then a digital algorithm for A(f)from the data of
f,g and h derives from the decomposition theorem 6.11, by computing suc-
cessively the opening by reconstruction go(f) and then A(f) = hoo[goo(f)]-
The first operation is thus given by the limit of the sequence
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9n = (f Nogn 1)
with g1 = (f A ég)

and the second one by

o = [900(f) V By ]
with  hy = [geo(f) V €h]

All theorems and propositions of the binary case extend directly to nu-
merical one. Concerning self-duality for example, if 0 and m stand for the
two extreme bounds of the gray axis 7, we have

m—A(m—f,m—g,m—g):A(fagag)

which means that the leveling f, g — A(f, g) is always a self-dual map-
ping. In addition, when one takes for marker g a self-dual mapping (e.g.
convolution, median operator, etc..), then the leveling A, considered as a
function of f only, becomes in turn self-dual, and we have

m—g(m—f) =g(f) = m—=Am—f,g(m—f),g(m— f)] = Alf,9(f), 9(f))]

In practice, the role of the marker is crucial. In Fig.6.10, the marker
is obtained by replacing f by zero on the extended maxima and minima
of f, and by leaving f unchanged elsewhere (extended maxima of f : do
the opening by reconstruction 7,..(f) of f from f — k, where k is a positive
constant. Then the maxima of e (f) define the so called extended mazima of
f, and those points z where f(z) — Yec(f)(z) = k define the (non extended)
maxima of f of dynamics > k ; the extended minima are obtained by
duality).The corresponding levelings are shown in Fig.6.10a and Fig.6.10b,
for markers gso and ggop, of dynamics 30 and 60 respectively (over 256 gray
levels).

These two markers are self-dual by construction, and satisfy the condi-
tion of activity increasingness of theorem 6.14. Their progressive leveling
action appears clearly when confronting Fig.6.10a and Fig.6.10b. Notice
the relatively correct preservation of some fine details such as buttons, eyes,
eyebrows, fingers, etc.. These details are preserved because of their high
dynamics.

In Fig.(6.11), the leveling is used for noise reduction, from a marker ob-
tained by Gaussian moving average of size 5, namely Fig.(6.11)b, of the initial
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Figure 6.10: a) Manet’ Joueur de fifre b)and c) levelings of a) by extended
extrema of dynamics 30 (b) and 60 (c).

b)

Figure 6.11: a) noisy version, b) gaussian convolution of a, c) leveling of a)
by marker b)
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noisy image of Fig.(6.11)a. It results in Fig.(6.11)c where the noise reduc-
tion of Fig.(6.11)b is preserved, but where the initial sharpness of the edges
is recovered.

A last word. There are two ways for developing a theory in discrete
geometry. One can start from some Euclidean notions and adapt them to
discrete spaces, or elaborate the whole approach independently of the fact
that it may apply to a continous, or a discrete, or a finite, space E. It is this
second that was chosen here.



Chapter 7

2-D Geodesy and Segmentation

7.1 Introduction

Almost all the morphological transformations presented in the previous chap-
ters were increasing ones. The operations that we shall introduce in this
chapter will not necessarily share this characteristic. Indeed, we are no longer
concerned with morphological filters and would like to show how morphol-
ogy can be successfully applied to segmentation problems. Let us first say a
couple of words on the meaning that we shall attach to the word “segmenta-
tion”: in our sense, segmenting an image consists in extracting its different
objects or regions and contouring them as precisely as possible. As concerns
binary images, a very common segmentation problem is to separate its over-
lapping objects. Similarly, segmenting a grey-tone image comes most of the
time down to dividing it into different regions (generally, one of these regions
stands for the background, whereas the others correspond to the objects). In
this chapter, starting from the concept of marker, we shall derive a general
(and morphological) approach of segmentation problems.

To reach this goal, i.e. to really segment objects from their markers, we
will firstly describe the so-called geodesic operations, which differ from the
Euclidean ones (i.e. the classical operations with hexagons, for instance) in
that the underlying space is no longer the whole space, but a given subset
X of this space. The last section is devoted to the watershed mapping.
Defined for grey-tone images, it constitutes the basic morphological tool for
segmentation.

107
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a) b)

Figure 7.1: a) Geodesic disc ; b) Geodesic distance function in two dimensions

7.2 Geodesic transformations

7.2.1 Choquet’s theorem

When a stone is thrown into a lake and generates a disturbance, a wave string
is being created and spreads out while going around the possible obstacles,
until the most remote points from the middle. The wavefront, circular in the
case of a lack of borders, laps the islands and the lake contours and finally
covers them completly (see fig.(7.1)).

In order to extract connected objects selected by markers, F. Meyer[43]
and J.C. Klein [30] were the first ones to transfer these notions to the math-
ematical morphology, and the very first formalization, named ” geodesic met-
rics” was established by C. Lantuejoul and S. Beucher [33]. Indeed, in figure
3, the zone of the reference set Z, swept between instants 0 et A by the wave-
front born from point x at the original instant is a disk By(x), smaller than
the Euclidean disk with a radius A and completly containd in Z. When the
reference set Z is compact, the induced metrics {By(z),z € Z} satisfy the
following theorem, from G. Choquet ([10],theorem 11-6)

Theorem 7.1 Let E be a metric compact space and let A et B be two disjoint
closed subsets of E. If there exist rectifiable curves with extremities in A and
B respectively, and if A stands for the lower limit of their lengthes, then there
exists a simple arc whose length is A and whose extremities lie in A and B
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respectively.

In what follows, we will always suppose that references sets Z are com-
pact, and that for any points z,y selected in a same connected component
Z, there is an rectifiable path with a length limited by a Amax(Z,z) and
linking these two points. This happens, particularly, when in R", the set Z is
the topological closure of a bounded open set. Rectifiable arcs, as a precau-
tion, are meant to exclude compact sets such as, for instance, a spiral which
winds indefinitly around a circle. We now present geodesic metrics for two
dimensions in a digital approach, but we shall treat the 3-D case, in chapter
9, in the Euclidean version.This will allow the reader to compare both styles.

7.2.2 Geodesic distance

Let X be a set in Z*. We define the geodesic distance between two points
p1 and ps of X as the infimum of the length of the paths between p; and p,
in X (if there are such paths at all):

dx(p1,p2) = Inf{l(Cp, p,), Cp, p, Path between p; and p, included in X}.
(7.1)

Remark that this distance is a generalized one, in the sense that we put
conventionally dx(p1,p2) = +0o when p; and ps are in different connected
components of X. The definition of dx is illustrated in Fig. 7.2

We call geodesic ball of radius n € Z* and of center p € X the set
Bx(p,n) defined by:

Bx(p,n) ={p € X,dx(p',p) <n}. (7.2)

7.2.3 Geodesic dilations and erosions

Suppose now that X is equipped with its associated geodesic distance dx.
Given an € Z", we consider the structuring function which associates with
each pixel p € X the geodesic ball Bx(p,n) of radius n centered in p. This
allows us to define the geodesic dilation of a subset Y of X in the following
way:
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Figure 7.2: Geodesic distance in a set X.

Definition 7.2 The geodesic dilation 6&?) (Y) of sizen of setY inside set X
s given by

s (V)= Bx(pn) ={p/ €Y, FpeY.dx(p/.p) <n}.  (7.3)

peEY

The dual formulation of the geodesic erosion of size n of Y inside X is
the following:

(V)= {peY,Bx(pn) CY} = {pe Y,V € X/Y,dx(p.p) > n}( |
7.4

Examples of geodesic dilation and erosion are shown in Fig. 7.3.

As already remarked above, the result of a geodesic operation on a set
Y C X is always included in X, which is our new workspace. As far as
implementation is concerned, an elementary geodesic dilation (of size 1) of a
set Y inside X is obtained, in the hexagonal case, by intersecting the result
of a (Euclidean) dilation of size 1 of Y with the workspace X:

sP(Y)= (Y e H)NX. (7.5)

A geodesic dilation of size n is obtained by iterating n elementary geodesic
dilations:
n 1 1 1
80(V) = 6 (8.8 (Y))). (7.6)

TV
n times




CHAPTER 7. 2-D GEODESY AND SEGMENTATION 111

Figure 7.3: Examples of a geodesic dilation and of a geodesic erosion of set
Y inside set X.

(By duality, geodesic erosions are easily determined).

7.2.4 Reconstruction and Geodesic SKIZ

One can remark that by performing successive geodesic dilations of a set
Y inside a set X, it is impossible to intersect a connected component of X
which did not initially contain a connected component of Y. Moreover, in
this successive geodesic dilations process, we progressively “reconstruct” the
connected components of X that were initially marked by Y. This is shown
in figure 7.4.

Now, the sets with which we are concerned are finite ones. Therefore,
there exists a ng such that

Vi > ng, §9(Y) =600 (Y).

At step mg, we have entirely reconstructed all the connected components
of X which were initially marked by Y. This operation is naturally called
reconstruction:

Definition 7.3 The reconstruction rx(Y') of the (finite) set X from set Y
1s given by the following formula:

rx(Y) = lim 60 (V). (7.7)

n——+4oo
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Figure 7.4: Successive geodesic dilations of set Y inside set X.

Figure 7.5: Reconstruction of X (light set) from Y (dark set).

Fig. 7.5 illustrates this transformation. It may occur, sometimes, that
a given grain X contains more than one marker. In such cases, one uses to
share the zones of influene of the various markers Y; in set X by means of
the geodesic influence zones of the connected components of set Y inside X

Let us remind brefly the so-called (non geodesic) SKeleton by Influence
Zones or SKIZ. Given a set C C IR? made of N compact connected com-
ponents (X,,)i1<n<n, with N < oo. The influence zone Z(X,,) of X,, is the
locus of those points X¢ which are closer to X,, than to any other connected
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component of X:
Z2(X,) = {p € R*,Vj # n,d(p, X,,) < d(p, X;)}. (7.8)

The major interest of the SKIZ, versus the calssical skeleton lies in a property
of robustness, proved by Ch. Lantuejoul [32], and which is stated as follows:

Theorem 7.4 Let X = U{K,,1 < n < N < oo} be a finite union of N
compact sets K,. Let {X;} be a sequence F(IR*), where each element X;
is the union of N disjoint compact terms K, ; , and K, ; converges towards
a K, (ie K, — K,andn # p = K,NK, =0) Then the SKIZ
Sz:F (R?) —:F(IR?) is a continuous mapping

Xi—X = 5z(X;)— SzX)

In more intuitive terms, the skeleton is parasited by all its barbs. By
clipping them completely one obtains a continuous operation.This Euclidean
relation Eq(7.8) remains valid in the digital planec Z*. The distance used then
is a discrete one, defined on the square or on the hexagonal grid. Most of
the time, we use the hexagonal distance dg: dg(p1, p2) = n if and only if the
length of the shortest paths between p; and py, whose edges are included in
the grid, is equal to n. An example of SKIZ is presented in Fig. 7.6. One can
show that the skeleton by influence zones is a subset of the skeleton S(X¢)
of the background of X, i.e. of X®. In practice, it is often determined by
removing the irrelevant edges of S(X©), which are called parasitic barbs. The
SKIZ will be very useful for the binary segmentation algorithm presented in
section 3 of this chapter.

Indeed, the notions of influence zones and of SKIZ extend directly to the
geodesic case: it suffices to use a geodesic distance in Eq.(7.8). We then
obtain partitions of the type shown in Fig.(7.7).

7.2.5 Geodesic operations for grey-tone images

At present, all the tools required for solving our binary segmentation problem
are available. However, in the grey-tone case, a few more tools will be neces-
sary, namely the geodesic decimal erosions and dilations. Therefore, it seems
rather convenient to present these operations just after the corresponding
binary ones.
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Figure 7.6: Example of skeleton by influence zones.

Figure 7.7: Example of geodesic SKIZ.
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ik}

Figure 7.8: Examples of grey-tone geodesic dilation (a) and erosion (b).

The digital formulas (7.5) and (7.6) can easily be extended to the case of
grey-tone functions defined on a digital grid. Given two functions f and ¢ in
F(Z?,Z), such that f < g, the geodesic dilations of size 1 and of size n > 1
of g with respect to f are defined by:

5501)(9) = (g® H)Af,
50(g) = 8760 (9)). (7.9)

N J/
~~

n times

By duality, when g > f, geodesic decimal erosions of g with respect to f
are defined in the following way:

(g = (goH)V T, (7.10)
09 = 676 (9). (7.11)

These two transformations are presented in Fig. 7.8. They will turn out to
be extremely useful when associated with watersheds (see § 7.4).

Lastly, the concept of reconstruction is easily extended to the decimal
case. Given two functions f and g in F(Z?, Z) such that f < g, the recon-
struction of f from g is defined by:

r(g) = lim 5" (g)- (7.12)
This transformation, which is shown in Fig. 7.9 is constantly useful in math-
ematical morphology. Among other things, it is frequently used in image
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Figure 7.9: Example of decimal reconstruction.

filtering. Indeed, it is very easy to prove that the transformation 1), defined
by
Un(f) = r;(f © H)

is a morphological filter. Moreover, by subtracting ¥, (f) from the initial
function f, we get a powerful tool for extracting the light and thin areas of
this grey-tone image.

7.3 Binary segmentation

We will now make use the tools that we have presented at the beginning of
this chapter for designing a powerful binary segmentation algorithm. Starting
from the markers of our objects, i.e. from the ultimate erosion, our goal is
to contour finely these objects. We could consider using the geodesic SKIZ,
and defining each object as the geodesic influence zone of its marker inside
the initial set. Unfortunately, this is not a satisfactory algorithm. Indeed,
as shown in Fig. 7.10, the separating lines thus defined between objects are
poorly located. This is due to the fact that we did not take the altitude
of the markers—i.e. the value that is associated with them by the quench
function—into account.

The way for designing a good segmentation procedure—in taking the
above altitudes into account—is to use successive geodesic SKIZ. Let n,, be
the size of the largest non empty erosion of X, i.e. such that

XSn,H#0 and X S (n, +1)H = 0.
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Figure 7.10: Bad segmentation algorithm (geodesic SKIZ of the ultimate
erosion of X inside X).

Necessarily, X © n,, H is a subset of the ultimate erosion of X . Denote X,,
this set. Now, consider the erosion of size n,, — 1 of X, i.e. X & (n,, — 1)H.
Obviously, the following inclusion relation holds:

X, € X © (nm — 1)H.

Now, let Y be a connected component of X & (n,, — 1)H. There are three
possible inclusion relations between Y and Y N X, :

1. YNX, = 0: in this case, Y is another connected component of Ult(X).
2. YNX,, #0andis connected: here, Y is used as a new marker.

3. YNX,, #0 and is not connected: in this last case, the new markers
that are produced are the geodesic influence zones of Y N X,  inside
Y.

These three different cases are shown on Fig. 7.11.
Let X, 1 be the set of the markers produced after this step. To sum-
marize what we have just said, X,,, _; is made of the union of

e the geodesic influence zones of X,  inside X & (n,, — 1)H,

e the connected components of Ult(X) whose altitude is n,, — 1.
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Figure 7.12: How to obtain X,_; from X,.

This procedure is then iterated at levels n,, — 2, n,, —3,etc ... until level
0 is reached. In a more formal way, for every n €]0, n,,|, let us introduce the
following notations:

(1) u,(X) is the set of the connected components of Ult(X) having altitude
n:
pEu,(X) <= peSX)andgq,(p)=n.

(11) For every set Y C X, z, (V) designates the set of the geodesic influence
zones of the conected components of Y inside X.

The recurrence formula between levels n and n — 1 can now be stated:

Xn—l =z Xn) U Un_l(X). (713)

Xe(n71)H(

It is illustrated by Figure 7.12.
The set Xy that is finally obtained after applying this algorithm produces
a good segmentation of X. Fig. 7.13 presents an example of this binary
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segmentation algorithm. In some cases, it is still unsufficient for obtaining a
satisfactory segmentation, and other procedures, making use of an a priori
knowledge on the objects to segment, or based on more elaborated notions,
such as critical balls [6], must be designed.

7.4 Watersheds and segmentation of grey-
tone images

7.4.1 Catchment basins, watersheds

At first sight, the elaboration of the algorithm presented in the preceding
section seems complicated. Therefore, we now give a more intuitive approach
of this procedure. Consider the function —distyx, where distx is the distance
function (i.e. at each point x € X, the shortest distance from z to the
points of X¢) and regard it as a topographic surface. The minima of this
topographic surface are located at the different connected components of the
ultimate erosion of X. Now, if a drop falls at a point p of X, it will slide along
the topographic surface until it finally reaches one of its minima. We define
the catchment basin W(m) associated with a minimum m of our topographic
surface in the following way:

Definition 7.5 The catchment basin W(m) associated with a minimum m
of a function regarded as a topographic surface is the locus of the points p
such that a drop falling at p finally reaches m.

This definition is not very formal, but it has the advantage of being rela-
tively intuitive. In our example, the catchment basins of the function —dist x
exactly correspond to the regions that were extracted by the algorithm pre-
sented in the previous section.

Actually, this notion of catchment basin can be defined for any kind of
grey-tone function and the algorithm can be easily adapted to the determina-
tion of the basins of any decimal image I: it suffices to replace the successive
erosions X & nH—which correspond to the different thresholds of the dis-
tance function of X—Dby the successive thresholds of 1. The lines separating
different basins are called watersheds or dividing lines. These notions are
illustrated in Fig. 7.14.
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Figure 7.13: A step by step example of the correct binary segmentation
algorithm.
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Figure 7.14: Catchment basins and watersheds.

The watersheds constitute an extremely powerful tool for segmenting
grey-tone images [4]. Indeed, grey-tone segmentation mostly comes down
to a contour detection problem, which can be approached by watersheds:
contours can be defined in grey-tone images as regions where the grey val-
ues are varying very fast, i.e. as crest-lines of the gradient. Notice that the
gradient of a decimal image I can have several morphological definitions, the
most common among them being;:

grad(l) =(I® H) - (I © H).

The determination of the crest lines of grad(/) can be done by means of the
watersheds transformation. Finally, we define the contours of a grey-tone
image I as the dividing lines of its gradient.

7.4.2 Geodesic watersheds

The watersheds of the gradient build a very general approach of contour
detection. However, the resulting images are most of the time over-
segmented, i.e. the relevant contours are swamped by a mass of irrele-
vant ones. This is often due to the fact that the images under study are
noisy. Moreover, this approach is unsatisfactory in the sense that it does not
make use of any markers when in fact we know that the first step of every
segmentation is the marking of the objects to be segmented.
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This initial marking step actually makes use of an external knowledge
about the image or the collection of images under study. We may well want
to extract only one type of objects among all those that are present. To
achieve this, we shall first mark our objects—i.e. make use of the particular
knowledge available on the problem—by means of a procedure that can be
completely different from a problem to another. The question that arises
then is the following: is it possible, starting from these markers, to detect the
precise contours of our objects and to avoid at the same time the appearence
of irrelevant contour arcs? The response is yes. By using markers, we will
not remove the irrelevant contour arcs of the watersheds of the gradient, but
we will avoid the over-segmentation by modifying the gradient function
on which the watersheds are computed.

Let now I be a grey-tone image and suppose that the desired markers have
been extracted. Denote M C Z? this set of markers. They must correspond
exactly to the minima of the function 6(I) on which we plan to compute
watersheds. Moreover, the second requirement is that this function must be
as close as possible to the gradient function grad(I). It is only under this
condition that its dividing lines will be properly located. Therefore, starting
from grad([/), the construction of §(7) is done in two steps:

e Impose as minima the previously extracted markers (i.e. the set M).

e Suppress the undesirable minima.
In step 1, we simply construct the function f defined by:

c when p € M,
grad(I)(p) otherwise,

Vp, f(p) = {

with ¢ being an arbitrary constant, strictly minorating grad(7).

In the step 2, we have to suppress the unwanted minima of f, without
forgetting to fill their associated basins! To do so, we first construct the
following function g:

¢ when p e M,
A otherwise,

Vp, g(p) = {

with A being an arbitrary constant majorating grad(/). Then, we iteratively
erode g geodesically “over” f until stability is reached. These two operations
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Figure 7.15: Construction of the function whose watersheds correspond to
the desired contours.

are illustrated in Fig. 7.15. The resulting function, 6(I), is such that its
watersheds correspond exactly to the desired contours. Note that this trans-
formation (grad(l) — 6(I)) is actually a V-filter, since it is the composition
product of a closing by an opening!he whole procedure presented above may
be referred to as geodesic watersheds segmentation. It is extremely powerful
in a number of complex segmentation cases, since the only problem (which
can be itself very complicated!) comes down to detecting the markers of the
objects to extract.

7.4.3 Variants of the watershed approach

The general algorithm detailed in the preceding section is based on the detec-
tion of markers of the objects present in the grey-tone image I under study.
In simple cases, these markers are merely the minima of the gradient of I.
Indeed, an object O often corresponds to a region of I which is relatively ho-
mogeneous compared to its neighborhood. Therefore, this region is nothing
but a minimum of the gradient grad(/). The associated basin “extends” this
region until it is bounded by crest lines of the gradient, i.e. by the actual
contours of O.

For more complex problems, taking the minima of the gradient image of
I is far from providing a good set of markers. As explained above, this may
be due to noise or to the fact that the desired objects constitute only a small
subset of the objects present in the image. In such cases, special marking
procedures have to be designed before applying the segmentation algorithm
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of § 7.4.2.

But in some other cases, it is impossible to find markers of the regions or
of the objects to extract, since these objects or regions are not themselves well
defined. This kind of situation often occurs, for instance, with remote sensing
images, where the large variety of zones (fields, roads, houses, towns, lakes etc

under different lighting conditions) makes it almost impossible to design
good marking procedures. Therefore, other segmentation algorithms have to
be applied. One of the possibilities is to use the following approach:

e Computation of the watersheds of grad(/). This results in an awfully
over-segmented image.

e Removal of the irrelevant contours.

This kind of method is part of a more general class of algorithms called
region growing algorithms: Starting from the watersheds image W (grad([)),
we can assign to each of its different basins a value characterizing them (e.g.
the mean value of the corresponding pixels in ), and produce this way a
sort of mosaic image. In a second step, adjacent basins may be progressively
merged into larger regions (thus removing contours) until a given criterium
is fulfilled.

Many different criteria for merging regions can be found in literature.
When associated with morphological treatments, some of them may result
in particularly good segmentations [5]. Another way of approaching this
problem is to regard the mosaic image of the catchment basins as a planar
graph, whose vertices are the different regions and whose edges are each pair
of adjacent regions. This kind of object being a lattice, it can be processed by
mathematical morphology [78]. Morphological merging procedures, based on
gradients and watersheds on graphs [77], seem then to provide very efficient
segmentation methods.



Chapter 8

3-D grids and Operators

8.1 Introduction

In image processing, 3-D treatments appeared during the 80’s for both anal-
ysis and synthesis purposes. In the present paper, we concentrate on analysis
of images, or more precisely, of stacks of binary images. These piles of sec-
tions are nowadays currently produced macroscopically (e.g. NMR), or at
microscopical scales (e.g. confocal microscopes). They produce experimental
data on 3-D rasters which tend to be cubic. Downstream, these computer-
ized data are binarized by some techniques we will not consider here. These
binary data constitute, by definition, sets in Z*, as well as estimations of sets
of R3. How to access them ? How to extend to the 3-D space the usual 2-D
notions of sizes, directions, distances, connectivity, homotopy, etc.? This is
what we would like to develop hereafter. A survey of literature shows that in
3D morphology, the two places that have been producing the most substan-
tial series of results, and for a long time, are the pattern recognition section,
at Delft University of Technology (see in particular P.W. Verbeek [76], J.C.
Mullikin [51], Jonker [29]) and the Centre de Morphologie Mathématique, at
the Ecole des Mines de Paris (see in particular Serra [60], Meyer [47] [18],
Gratin [19], Gesbert et al.[16]).

125
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8.2 Three dimensional grids

By grid, we do not only mean a regular distribution of points in the the 3-D
space, but also a definition of the elementary edges, faces, and polyhedra
associated with these points. The three crystallographic grids we find below
derive from the cube, and are constructed as follows

i/ cubic grid, which is generated by translations of a unit cube made of 8
vertices ;

ii/ the centred cubic grid (cc grid) where the centres of the cubes are
added to the vertices of the previous grid ;

iii/ the face-centred cubic grid (fcc grid) where the centres of the faces
are added to the vertices of the cubic grid.

A comprehensive comparison of these grids can be found in F. Meyer’s
study [47].

8.2.1 Interplane distances

In the last two grids, the vertices generate square grids in the horizontal
planes, and in vertical projection the vertices of plane No n occupy the centres
of the squares in plane No n — 1. We shall say that these horizontal plane
are staggered. If a stands for the spacing between voxels in the horizontal
planes, then the interplane vertical spacing is equal to a/2 in the cc case,
and to a\/§/2 in the fcc one.

8.2.2 First neighbors

Every vertex has

e 6 first neighbors in the cubic case
e 8 first neighbors in the cc case

e 12 first neighbors in the fcc case

Geometrically speaking, when point x is located at the centre of the
3 x 3 x 3 cube, its projections

e on the faces of the cube provide the cubic neighbors
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e on the vertices the cc-neighbors

e and on the edges the fce-neighbors

Fig. (8.1) illustrates this point. One can see, also, that the first neighbors
generate the smallest isotropic centred polyhedron of the grid, i.e. a 7-voxel
tetrahedron (cubic case) a 9-voxel cube (cc-grid) a 13-voxel cube-octahedron
(fcc grid). Denote them by the generic symbol B, and the n'* iteration of B
by B, i.e.

B,=B®B .. &B n times ,

with By = Identity. From the implication n > p = B,, > B, n,p non
negative integers, from the equality B, B, = B,,.,, and from the symmetry
of B we draw (proposition 2.4 in Serra [63]) that the 3-D raster of points
turns out to be a metric space (in three different ways, according to the
grid), where the smallest isotropic centred polyhedron is the unit ball.

8.3 Elementary edges, faces, and polyhedra

In order to complete the definition of the grids, we will introduce now el-
ementary edges, faces and polyhedra. Edges are necessary to define paths,
hence connectivity. Faces and polyhedra are required to introduce notions
such as Euler-Poincare number for example, or more generally, to introduce
the graph approach.

8.3.1 Cubic grid

As elementary edges, the best candidates are obviously the closest neighbors
(in the Euclidean sense), i.e. those of fig. (8.1). However, they are not so
numerous, in the cubic and in the cc case, in particular, which leads to poor
connections. For example, in the cubic grid, the extremities of the various
diagonals are not connected, we meet here a circumstance similar to that
which led to the 8 and 4-connectivities in the 2-D grid. For the same reason,
the authors who focused on the cubic grid, such as A. Rosenfeld [31], at the
beginning of the 80’s, introduced the 26- and the 6-connectivity on the cubic
grid. When the foreground X is 26-connected, then the background X¢ is
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Figure 8.1: The three 3-D grids that derive from the cubic symmetry.

6-connected and vice-versa. In other words, a voxel x € X admits, as edge
partners, all those voxels y € X that pertain to the cube C': 3 x 3 x 3 centred
at x. Coming back to fig.(8.1b), we now have to take into account not only the
centres of the cube faces, but also the 12 middle points of its edges, and its
8 vertices. Such an extension of the connectivity for X is possible only when
the connectivity on X° remains restricted to the six closest neighbors. If not,
we should run the risk of over crossings of diagonals of 1’s and of 0's, so the
faces should be undefined.This dissymmetrical connectivity brings into play
a second digital metric, where cube 3 x 3 x 3 is the unit ball. In particular,
the boundary of set X€is

06X =X \X° ol
whereas the boundary of set X is defined via the unit tetrahedra T :
X =X\X&acdl

We draw from this last equation that §X ©T = (), and from the previous
one that 6X¢© C = (). The boundary of X is thinner, but it may comprise
zones of a thickness 2, and of course lines or fine tubes.

Note also that, unlike tetrahedron 7', cube C' admits a Steiner decomposi-
tion into three orthogonal segments of three voxels length each. Consequently,
the dilation X @ nC' is obtained as the product of three linear dilations of
size 2n in the three directions of the grid.
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8.3.2 cc grid

The cc grid call very similar comments, but now with staggered horizontal
planes. The low number of the first neighbors (i.e. 8) of each voxel suggests to
add the second neighbors, in number of six (see fig.8.1). This results in the
unit rthombododecahedron R shown in fig.(8.2), which exhibits 15 vertices
(including the centre), 12 rhomb faces, identical up to a rotation, and 24
edges whose common length is the first neighbor distance.

Just as previously, with the cubic grid, the adjunction of 2nd neighbors
complicate the situation, for they cannot be added simultaneously to the 1's
and 0's. This results in a 14-connectivity for the grains versus a 8-connectivity
for the pores. By comparison with the cubic case, the connectivity contrast
between foreground and background is reduced, but it remains.

Again, as previously, a new metric is provided, namely that of the rhom-
bododecahedron. In this metric, the isotropic dilations can be decomposed
into segment dilations, since R admits a Steiner decomposition into the four
diagonals of the cube (2,2,2), i.e.

(o)) e ) e

where -1, 0, 1 indicate the level of the plane, and where the origin is always
assigned to the point of plane 0 [10].

8.3.3 fcc grid

With the fcc grid, things become simpler [6][8]. We still are in a grid where
the odd horizontal planes have been shifted by (a/2,a/2,0) from the cubic
spacing, but now each voxel x admits 14 nearest neighbors, at a distance
av/2/2. They form the unit cube-octahedron D, of figure (8.2), centred at
point z. Geometrically speaking, such a high number of first neighbors means
that the shape of D is a better approximation of the Euclidean sphere, than
those of the cube C' and the rhombododecahedron R.

As far as connections are concerned, it becomes cumbersome to resort to
2nd neighbors. Therefore there no longer is a risk of diagonal overcrossing.
The existence of an edge no longer depends on the phase under study but
exclusively on the intersection between grid and sets: two neighbors 1’s define
an edge in set X, two neighbors 0’s an edge in set X°¢.
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Figure 8.2: a): The rhombo-dodecahedron; b): The cube-octhedron; ¢) The
tetrakai-decahedron.

Finally X and X¢ are treated by the same balls D,,, but the latter cannot
be decomposed into Minkowski sum of segments, unlike C' and R.

8.3.4 Digital fcc grids, virtual staggering

How to produce a stack of staggered square grids, or, equivalently, how to
produce a digital unit cube-octahedron? An easy way is to favor the diag-
onal horizontal directions, as in Eq. ??. The staggering structure is created
automatically, since each of the two diagonal subgrid appears, alternatively,
in the successive horizontal planes. The negative counterpart is that half of
the voxels only are taken into account. For example, the dilation of Eq.
?? produces neither the central points at levels +1 and -1, nor the middle
points of the sides at level zero. We may always add these points, in order
to complete the basic cube-octahedron, but then

i/ We increase the elementary size from 13 up to 19 voxels, hence we
become less accurate in delineating boundaries, ultimate erosions, skeletons,
ete.

ii/ We lose the advantage of a unique type of edges, which governs ho-
motopy and connectedness properties.

iii/ We do not know what to do with the amount of information carried
by the non used voxels.
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Figure 8.3: Decomposition of the unit cube-octahedron on the cubic grid
in order to simulate the staggered structure (a: odd central plane, b: even
central plane).

An alternative solution should consist in interpolating one horizontal grid
every two planes. This would add a computational step, but above all, it
seems ”fiddled”: how to weight the four horizontal neighbors, versus the two
vertical ones 7 How to display the resulting grid ? etc. Therefore, we propose
neither to move nor to remove or even modify, any voxel of the cubic initial
data, and to consider each even plane, as it is, as being staggered. According
as the central plane is odd or even, we then obtain one of the two elementary
polyhedra of fig. 8.3.

Such a virtual staggering is similar to that used in Z2, when one gener-
ates a hexagonal grid from a square raster. In both cases, the irregularity
of the unit polyhedron (resp. polygon) is self-compensated by iteration. In
other words, the mappings which bring into play sequences of successive
sizes, such as distance functions, medial axes, granulometries, sequential al-
ternated filters, etc. are treated by means of actual digital cube-octahedra
(resp. hexagons), (see fig. 8.4).

8.3.5 Comparison of the grids

As a conclusion, three reasons argue in favor of the fcc grid, namely

1/ the shape of the cube-octahedron D provides a better approximation
of the unit Euclidean sphere, than C' or R (isotropic dilations, skeletons,
distance functions, etc. will seem more ”FEuclidean”) ;

2/ D is more condensed : 13 points on 3 consecutive planes (D) are more
economic than 15 points on 5 planes (R), or 27 on 3 planes. D leads to
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Figure 8.4: expanded polystyrene (foam); b) Cube-octahedral dilation of size
5 of a); ¢) Cube-octahedral closing of size 12 of a).

thinner boundaries, to finer ultimate erosions, etc. and requires less logical
tests in its implementation.

3/ In the fcc grid, the connectivity is based on the first neighbors only,
which allows a common approach for grains and for pores (in cubic grid, when
one decides to attribute a priori more than four possible neighbors to the
1’s than to the 0's, a rather severe assumption is made, which holds, para-
doxically, on the convexity of the pores. Most often, both grains and pores
exhibit concave and convex portions, and the 26/6-connectivity assumption
is just irrelevant).

Facing these advantages, the weakness of the fcc grid is the staggered
organization of its successive horizontal planes. However, is it really a draw-

back ?

8.4 Increasing operations and their residues

As soon as spheres and lines (in a set of directions) are digitally defined, it
becomes easy to implement isotropic and linear dilations and erosions, hence
openings, closings, granulometries, and all usual morphological filters.The
example of figure8.4 illustrates this point. Similarly, the residuals associated
with distance function, i.e. skeletons (in the sense of ”erosions\openings”),
conditional bisectors, and ultimate erosions derive directly.
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Figure 8.5: a) Kidney under study (supremum of the sections); b) other
kidney specimen.

8.5 Confocal microscopy of embryonic kidney

In February 1999, Dr. John Bertram!, nephrologist, presented his current
work at CMM. The subject of his research is the embryonic development
of the kidney studied in animals such as the rat. He takes advantage of the
property of embryonic kidney to develop in vitro, which enables him to study
the organ evolution by confocal microscopy without animal destruction.[3].
The data of the example which follows comes from Dr Bertram’s laboratory.

We can see in fig.(8.5) an image of each kidney after binarization, showing
that the structure develops in the form of a tree. The expected morphological
description goes far beyond the preliminary study. It bears on the geometry
of the tree, and involves two objects :

- extremities : where are they located? how are they arranged in space?

- branches : where are they located? according to which hierarchy and
length?

Confocal microscopy results in a highly anisotropic sample. Each series
contains 29 sections 30 p thick ; in which the orientation is roughly perpen-
dicular to the trunk.

On each section, the pixels are arranged according to a square grid, whose

'Dpt of Anatomy, faculty of Medecine, Univ. de Melbourne, Parleville, Victoria 3052,
Australia
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spacing is about 4. The digital volume element (voxel) looks like a cylinder
with a square base, which is seven times as high as it is wide. Each branch
extremity is surrounded by nephrons, whose number is indicative of the future
capacity of the fully-grown kidney. The nephrons, which cannot be seen here,
will become visible through a double staining. Then, we will have to study
the relationship between the shape of the tree and the number of nephrons
it can receive.

8.6 3-D Geodesic wavefronts

8.6.1 Wavefronts and tree diagrams

Let Z be a compact set in R™ and z € Z, be a point in Z. The vawefront from
a point x at distance A is the geodesic sphere F' (A, z) of (geodesic) radius
A and centered in x, where geodesy is generated by field Z.We propose to
study the evolution of the connected components number of the wavefront
F (), z) when, as X increases, the compact space Z is swept. The two types of
branching, division or confluence, supposedly remain in finite number when
A € [0, Apax], so that for any branching at A = Ay < Apax, it is always
possible to find an open interval |A; Ao[ containing Ao, and inside which there
are no other branching. The number of branches which may gather in )
is supposed to be finite. Finally, as the branching may take the two dual
shapes (division or confluence) when A increases, it is conventionally agreed
in the proof below that the passage A\; — Ay corresponds to a division
Therefore, we are led to the situation described in figure(8.6), where point

x is in black, the ball B (Mo, z) in light grey, its complement K (\g) in Z in
dark grey, and where the white wavefront indicates the precise moment of
the branching. So, the compact set

K(\)=2\B\z)

has a unique connected component, when A\ < )y, and more when \ > ).
In order to determine what happens when A = Ay, we first observe that for
compact sets, we have N{K (A\), A < Ao} = K (Ng) .

The compact K (o) is composed of only one connected component. Oth-
erwise, they would be separated by a minimum distance d ; but this is in-
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Figure 8.6: Example of branching

compatible with the fact that, for any dilation of size ¢, with 0 < & < d, the
geodesic dilate of K()\g) becomes connected. Therefore, the front F' (Ao, x)
itself is connected, as otherwise, to switch from one of its components to
another one, it would be necessary to cross a K(A) with A > X, but these
K (\) are not connected anymore.

When Z has several branchings, the same description applies for each
branch, upwards or downwards from the propagation from point z, which
consequently partitions the set Z into a series of successive pieces.

The case of the X branching has also to be considered. It occurs when at
least two branches stop at the critical front, and at least two of them start
from there. In this case, the intermediary connected region is reduced to the
front in Ag, for, if it was larger, we would come back to the previous case;
and if the front was not taken into accout, we would no longer have a critical
element, but only separated branches. By gathering these results, we can
state :

Proposition 8.1 Let Z be a compact of R"™. If, for any point x € Z, the
wavefront F' (A, z) emanating from x admits a finite number of connected
components, with a finite variation, then, as radius X varies, F (A, z) par-
titions Z into a finite number of connected sections, corresponding to open
intervals of \, and separated by connected components of the front which are
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located at the critical points of the branchings.

Clearly, the mapping x — P (z) which associates with any point x € Z
the tree diagram characterized by the proposition, depends on the choice
of point x, even if, when considering the common meaning of a tree, the
partition remains almost the same for all the points selected low enough in
the trunk. Besides, in this case, the tree may be defined as a partition for
which there is no confluence for a suitably selected origin z (i.e. in the trunk).

Note that we are talking about connectivity here, and not about homo-
topy: in R? particularly, the sections may show closed pores or toric holes.

8.6.2 The ultimate elements of the wavefronts

This section takes up a classical C. Lantuejoul’s and S. Beucher’s result [33],
but presents it differently. When using geodesics, it becomes possible to asso-
ciate any point x € Z, Z € R", with the point or points y € Z which are the

furthest away from z. Indeed, let B (A, z) be the geodesic open ball of radius
A and centre x, and \gbe the upper limit of the A such that B (A, z) be strictly
contained in Z. As the non empty compact sets {Z\ é (A z), A< )\0} de-
crease and that R" is a separated space, the intersection

£ < Ao [Z\ B (\ x)} (8.2)

is itself a non empty compact set, whose points are all at the maximum
distance Ay from x. This intersection is named ”geodesic ultimate eroded

set”, and B (Mo, z) is the ”geodesic ultimate dilated set” of point x.

The existence of extreme points may also be considered in a regional
framework, and not a global one anymore. We must suppose that, Z and
x being given, it is possible to find a u(Z,z) < A (Z,x) such that each

connected component of Z \ B (A, z), ;0 < A< Ao decreases without subdi-
viding. Then, the previous analysis should simply be applied to sets

KN [Z\é(A,x)] <A< o

where the K;,i € I refers to the connected components of Z \ B (u, ).
Therefore, we obtain the farthest connected components from point x, such
as, for instance, the fingers tips for x taken around the middle of the wrist.
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Figure 8.7: Cube-octahedron

Both algorithm families about geodesics correspond to both our points of
view. Invasion by geodesic balls led to all the particles reconstruction variants
(deletion of the grains crossing the field border, hole filling, individual anal-
ysis, etc ...) and the search for extreme residues led to the ultimate eroded
points, to the objects limits and to the length of a connected component (
as a supremum of the distances between pairs of extreme points).

8.6.3 3-D Digital wavefronts

The digitization of geodesic operations may cause errors, but limited ones ;
indeed, it is advisable to choose, as a circle or unit sphere, the closest shapes
to their Euclidean homologues. Therefore, in 2D the hexagon, whose six
vertices are equidistant from the center is better than the square, and, for
the same reason, the cube-octahedron is better than the cube in 3D.

This Z3 ball is very easy to build, when a numerical data network in square
grid [70] is available. It suffices to shift all even planes by half a diagonal
of the unit cube (any diagonal, but always the same one). In practice, data
are of course not moved, but only structuring elements. For example, the
substitute for the 13 vertices of the regular cube-octahedron of fig.(8.7) is
calculated by dilating the central point according to the staggered unit cube-
octahedron presented in the previous chapter (which differs whether the
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center lies in an even plane or in an odd one). The wavefront emanating from
this central point starts with the point 12 neighbours ; when the interplane
equals a/ V2 (a = square grid spacing of the horizontal planes), the structure
becomes completly isotropic and the 12 neighbours are equidistant from the
center. This will be our assumption (section 4) about the shinbone, but this
hypothesis is not essential, and, in any case, cannot be ventured for the study
about embryonic kidneys (section 3)

The switch from the unit ball C(x) of Z* (octahedron, prism or cube) to
its geodesic version Bj(z) inside a mask Z is

Bi(z)=C(x)NnZ

and the geodesic ball B, (x) of the size is obtained by n iterations of the
previous one :

B, (x) = B1[By1(x)|NZ

The corresponding wavefront, or geodesic sphere equals

Fy (2) = By (2) \ Bn (2)

8.7 Use of the tree diagram for embryonic
kidneys

In order to illustrate the above matter, we propose to segment the first one
of the two kidneys of fig. 8.5. The analysis contains four steps :

1/ set construction from the initial data ;

2/ geodesic distance function of a marker in the set;

3/ extremities;

4/ branches.

8.7.1 Binarization

This simple operation only requires a thresholding between 60 and 255, fol-
lowed with the fill-in of the bi-dimensional internal pores. Still, the main
connected component has to be extracted. In order to do this, we take as
marker x one point at the beginning of the trunk. The reconstruction shows
that the kidney tree diagram is broken around the middle in two separated



CHAPTER 8. 3-D GRIDS AND OPERATORS 139

bl

Figure 8.8: a) Perspective view of the binarized kidney; b) confocal section
n|0xb014

parts. This is caused by the inaccuracy of confocal microscopy. In order
to put it right, both parts have been reconnected by a small closing (see
fig.(8.8a)).

8.7.2 geodesic distance function

The geodesic distance function starts from marker = at the base of the kidney
and progresses inside the tree according to unit cube-octahedra (fig.8.9).

8.7.3 Extremities

The extremities are nothing but the region maxima of the previous geodesic
function. These ultimate eroded points are shown on 8.10a, where lots of
quite insignificant but very small real maxima can been observed. They are
removed by a small surface opening (fig.8.10b). When using this algorithm in
routinely, it would better to start with a regularization of the set under study
by means of an isotropic tridimensional opening of size 1 or 2, providing that
it does not break the connectivity.
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Figure 8.9: Geodesic distance function from the anchorage point (negative
view of the supremum of the sections)

Figure 8.10: a) All extremities of the Kidney ; b) Filtered extremities.
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Figure 8.11: Projection of the 3D branchings

8.7.4 Branchings

The extraction of branchings, which is conceptually simple, may nevertheless
lead to a appreciable computing time. Considering the quite visible structure
of the projected tree, the algorithm used below is slightly less precise, but
faster and easier to implement.

In a first step, bidimensional branchings on the tree projection are in-
vestigated, then, we get back to the 3D space by building vertical cylinders
whose bases are located at the 2D branchings, and slightly dilated (size 2).
Finally, we take the intersection between these cylinders and the 3D tree.
The operation leads to fig.8.11.

8.7.5 Results

In all, starting from the connected kidney tree, we got to its segmentation into
disjoint branches separated by thin branchings. Some branches contain one
or more, of the tree extremities. From such a segmentation, it now becomes
possible to replace the object under study by a "tree” in the meaning of
graph theory, where the edges can be weighted geometrical characteristics
(volume, length, location of its center, possible end points ... etc).
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