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Volumes, areas, and masses

Christer O. Kiselman

1. The Euclidean unit ball and unit sphere

Let Vn = vol(Bn) denote the volume of the Euclidean unit ball Bn in Rn, and let
An−1 = area(Sn−1) be the area of its boundary, the unit sphere Sn−1 in Rn. It is
then easy to prove the two relations

Vn =
An−1

n
and An = 2πVn−1.

The first just says that the volume of Bn is the integral of the areas of all spheres
rSn−1 when r varies from 0 to 1. The second expresses the fact that over each
point x in Bn−1 there is a circle in Sn, the inverse image of x under the projection
p: Sn → Bn−1 defined by p(x1, ..., xn+1) = (x1, ..., xn−1), and that the n-dimensional
measure of the set p−1(M) over a set M in Bn−1 is just 2π times the (n − 1)-
dimensional measure of M . These two formulas give rise to 2-step induction formulas:

Vn =
2π

n
Vn−2 and An =

2π

n − 1
An−2,

from which all volumes and areas can be calculated. We need only start with V0 = 1,
V1 = 2 and A0 = 2, A1 = 2π to get generally in Rn:

In R0 = {0} V0 = 1 A−1 = 0

In R1 V1 = 2 A0 = 2

In R2 = C V2 = π A1 = 2π

In R3 V3 =
4π

3
A2 = 4π

In R4 = C2 V4 =
π2

2
A3 = 2π2

In R5 V5 =
8π2

15
A4 =

8π2

3

In R6 = C3 V6 =
π3

6
A5 = π3

In R7 V7 =
16π3

105
A6 =

16π3

15

In R8 = C4 V8 =
π4

24
A7 =

π4

3

The general formulas are

Vn =
πn/2

(n/2)!
, An−1 =

2πn/2

(n/2 − 1)!
.
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To prove this it is enough to check that the formula for Vn satisfies the 2-step induction
formula above and gives the right value for n = 0 and n = 1. And for the latter is is
good to remember that 1

2
! = Γ( 3

2
) = 1

2

√
π. In general, Γ(z) = (z−1)! =

∫ ∞

0
e−ttz−1dt

for Re z > 0.
The formulas look a bit simpler in R2k = Ck:

V2k =
πk

k!
, A2k−1 =

2πk

(k − 1)!
.

Therefore the sum of the volumes of all unit balls in Ck, k ∈ N, is eπ. (But is it
allowed to add volumes of different dimensions?) In Rn for odd n = 2k + 1 they are

V2k+1 =
2k+1πk

(2k + 1)!!
, A2k =

2k+1πk

(2k − 1)!!
.

Here (2k + 1)!! = 1 · 3 · 5 · · · (2k + 1).
Let rn be the radius of a ball with the same volume as the cube [−1, 1]n, that is,

with volume 2n. Of course this radius is smaller than the radius of the circumscribed
sphere, which is

√
n, so it is reasonable to set rn = θn

√
n. In fact rn should be

somewhere between this radius and the radius of the inscribed ball in the cube, which

is 1. Now rn = 2V
−1/n
n , so θn = 2V

−1/n
n n−1/2 →

√

2/πe, which is approximately
0.48394. We have for example θ6 ≈ 0.620971; θ12 ≈ 0.5636; θ138 ≈ 0.4947104.

Another way to calculate An is to study the integrals

In =

∫

Rn

e−‖x‖2

2dx = An−1

∫ ∞

0

e−r2

rn−1dr =
1

2
An−1Γ(n/2),

where ‖x‖2 is the Euclidean norm, ‖x‖2 =
√

∑

x2
j . Using iterated integrals we see

that In = In
1 . On the other hand it is easy to calculate I2 using polar coordinates.

One finds I2 = π, thus In = πn/2. This gives the value for An−1 already found.

2. Other norms

The l1 norm ‖x‖1 =
∑

|xj | and the l∞ norm ‖x‖∞ = max |xj | are sometimes used.
For these norms, the volumes of the unit balls in Rn are

V 1
n =

2n

n!
, V ∞

n = 2n.

However, we can also use complex lp norms: ‖z‖1 =
∑

|zj | and ‖z‖∞ = max |zj |.
Then the volumes of the unit balls in Ck are (2π)k/(2k)! and πk respectively.

A little table is useful for comparison:

p = 1 p = 2 p = ∞

Rn 2n

n!

πn/2

(n/2)!
2n

R2k 4k

(2k)!

πk

k!
4k

Ck (2π)k

(2k)!

πk

k!
πk
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3. The mass defined by a subharmonic function

Let E be a radial fundamental solution of ∆E = δ in Rn; this implies that we have

∂E

∂r
=

1

An−1

r1−n, n = 1, 2, 3, ...,

in all dimensions. Therefore, after having made an unimportant choice of a constant,

E(x) =
‖x‖2−n

2

(2 − n)An−1

, n 6= 2, and E(x) =
1

2π
log ‖x‖2, n = 2.

It will be convenient in the sequel to use a notation for the average of a function
f over a set A:

∫

!

A

f(x)dx =

∫

A

f(x)dx

/
∫

A

dx,

provided 0 <
∫

A
dx < +∞.

Proposition. Let u ∈ C2(Ω), where Ω is an open set containing RB, the closed ball

of radius R and center at the origin. Let µ = ∆u be its Laplacian. Then

(3.1)

∫

RB

(E(R)− E(x))µ =

∫

!

RS

(u − u(0)).

From this it follows that if µ > 0, θ > 1,

∫

!

rB

µ 6
n(n − 2)

1 − θ−n+2
r−2

∫

!

θrS

(u − u(0)), n 6= 2.

In particular if n = 1:

∫

!

rB

µ 6
1

θ − 1
r−2

∫

!

θrS

(u − u(0)) =
1

(θ − 1)r2

(

1

2
u(θr) − u(0) +

1

2
u(−θr)

)

and if n = 2:
∫

!

rB

µ 6
2

r2 log θ

∫

!

θrS

(u − u(0)).

Choosing u(x) = (E(x)− E(r))+ we see that these inequalities cannot be improved.

Proof. We start from Green’s1 formula:

∫

Ω

(u∆v − v∆u) =

∫

∂Ω

(

u
∂v

∂N
− v

∂u

∂N

)

.

1George Green (1793–1841).
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Let µ = ∆u, v(x) = E(x) − E(R) 6 0 in Ω = RB. Then v = 0 on ∂Ω = RS, and
∆v = δ. We get

(3.2)

∫

RB

(uδ − vµ) =

∫

RS

u
∂E

∂r
=

∫

!

RS

u,

for ∂E/∂r is a radial function whose mean value over RS is 1. We can write (3.2) as

∫

RB

(−v)µ =

∫

!

RS

(u − u(0)),

i.e., we have proved (3.1). Now E(θr) − E(r) = (θ−n+2 − 1)E(r) > 0 if n 6= 2 and

θ > 1, and E(θr)− E(r) =
1

2π
log θ > 0 when n = 2, so we get

∫

!

rB

µ =
1

rnVn

∫

rB

µ 6
1

rnVn(E(θr)− E(r))

∫

!

RS

(u − u(0));

the last inequality follows since −v > E(R) − E(r) > 0 in |x| 6 r < θr = R.
Continuing we see that

∫

!

rB

µ =
1

rnVn(θ−n+2 − 1)E(r)

∫

!(u − u(0)) =
n(n − 2)

1 − θ−n+2
r−2

∫

!(u − u(0))

for n 6= 2, and

∫

!

rB

µ 6
1

r2V2
1

2π log θ

∫

!(u − u(0)) =
2

r2 log θ

∫

!(u − u(0))

when n = 2.


