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Volumes, areas, and masses

Christer O. Kiselman

1. The Euclidean unit ball and unit sphere

Let V,, = vol(B™) denote the volume of the Euclidean unit ball B™ in R", and let
A,_1 = area(S™1) be the area of its boundary, the unit sphere S*~! in R™. Tt is
then easy to prove the two relations
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and A, =27V,_1.

The first just says that the volume of B™ is the integral of the areas of all spheres
rS"~! when r varies from 0 to 1. The second expresses the fact that over each
point 2 in B"~! there is a circle in S™, the inverse image of  under the projection
p: S™ — B"~! defined by p(z1,...,Tps1) = (21, ..., Zn_1), and that the n-dimensional
measure of the set p~'(M) over a set M in B™" ! is just 27 times the (n — 1)-
dimensional measure of M. These two formulas give rise to 2-step induction formulas:
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from which all volumes and areas can be calculated. We need only start with V, = 1,
Vi =2and Ay = 2, A; = 27 to get generally in R™:
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The general formulas are
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To prove this it is enough to check that the formula for V;, satisfies the 2-step induction
formula above and gives the right value for n = 0 and n = 1. And for the latter is is
good to remember that 3! = I'(3) = 1./m. In general, I'(z) = (z—1)! = [~ e~ "t*"'dt
for Rez > 0.

The formulas look a bit simpler in R?* = C*:
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Therefore the sum of the volumes of all unit balls in C*¥, k € N, is ™. (But is it
allowed to add volumes of different dimensions?) In R™ for odd n = 2k + 1 they are

Vor, =
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Here (2k+1)!'=1-3-5---(2k + 1).

Let 7, be the radius of a ball with the same volume as the cube [—1, 1]", that is,
with volume 2". Of course this radius is smaller than the radius of the circumscribed
sphere, which is y/n, so it is reasonable to set r, = 6,y/n. In fact r, should be
somewhere between this radius and the radius of the inscribed ball in the cube, which
is 1. Now r, = 2Vn_1/n, so 0, = 2Vn_1/nn_1/2 — /2/me, which is approximately
0.48394. We have for example 0g =~ 0.620971; 015 ~ 0.5636; #1358 ~ 0.4947104.

Another way to calculate A,, is to study the integrals
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where ||z[|2 is the Euclidean norm, [|z]lz = |/>_23. Using iterated integrals we see

that I,, = I7". On the other hand it is easy to calculate Iy using polar coordinates.
One finds Iy = 7, thus I, = /2. This gives the value for A, _; already found.

2. Other norms

The ! norm ||z||; = Y |z;| and the {* norm ||z| s = max |z;| are sometimes used.
For these norms, the volumes of the unit balls in R" are
2n

LvE=2,

V, =
n!

n
However, we can also use complex [ norms: ||z]|; = ) |z;| and ||z|lcc = max|z;|.
Then the volumes of the unit balls in C* are (27)%/(2k)! and 7% respectively.
A little table is useful for comparison:
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3. The mass defined by a subharmonic function
Let E be a radial fundamental solution of AE = ¢ in R™; this implies that we have
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in all dimensions. Therefore, after having made an unimportant choice of a constant,

Iz~

E(r) = [CETy

1
n#2, and E(:U):%logﬂxﬂg, n=2.

It will be convenient in the sequel to use a notation for the average of a function

f over a set A:
ff(m)dx = /A f(m)dac//Adx,

provided 0 < fA dxr < 4o00.

Proposition. Let u € C?(Q), where Q is an open set containing RB, the closed ball
of radius R and center at the origin. Let u = Au be its Laplacian. Then

(3.1 | @@ - E@)n= fu-uo)
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From this it follows that if p >0, 8 > 1,
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In particular if n = 1:
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and if n = 2:

Choosing u(z) = (E(x) — E(r))" we see that these inequalities cannot be improved.

Proof. We start from Green’s! formula:

ov Ou
/Q(UAU — vAu) = /aQ (uﬁ—N —va—N).

LGeorge Green (1793-1841).
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Let p = Au, v(z) = E(zr) — E(R) < 0in Q = RB. Then v = 0 on 092 = RS, and
Av =9. We get

OFE
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for OF /Or is a radial function whose mean value over RS is 1. We can write (3.2) as
| Cou=fu-uo),
RB
RS

i.e., we have proved (3.1). Now E(6r) — E(r) = (672 — 1)E(r) > 0 if n # 2 and
1

6 > 1, and E(0r) — E(r) = o logf > 0 when n = 2, so we get
T
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the last inequality follows since —v > E(R) — E(r) > 0 in |z| < r < 0r = R.
Continuing we see that
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for n # 2, and
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when n = 2.



