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Resumo: Studo de la projekcio de Bergman en kelkaj Hartogs-aj regionoj
Oni montras ke la Bergman-a projekcio ne konservas glatecon de funkcioj en kelkaj
pseŭdokonveksaj malfermitaj aroj en la spaco de du kompleksaj variabloj.

Abstract: We show that the Bergman projection does not preserve smoothness of
functions in some pseudoconvex domains in the space of two complex variables.

1. Introduction
The purpose of this paper is to present two examples of domains where the Bergman
projection does not preserve smoothness.

In the space L2(Ω) of square-integrable functions in an open set Ω ⊂ Cn, the
holomorphic functions form a closed subspace O2(Ω) = L2(Ω)∩O(Ω), the Bergman
space. The orthogonal projection onto that subspace is the Bergman projection
P : L2(Ω) → O2(Ω). If Ω is bounded, the space C∞(Ω̄) of functions which are
smooth up to the boundary is a subset of L2(Ω). The question we study is whether
P preserves smoothness in the sense that P (C∞(Ω̄)) is contained in C∞(Ω̄).

A Hartogs domain in the space C2 of two complex variables is a domain
which contains along with (z, w) also every point (z, w′) with |w′| = |w|. It is said
to be a complete Hartogs domain if it contains with (z, w) also (z, w′) for all w′

with |w′| 6 |w|. Barrett [1984] has found a smoothly bounded Hartogs domain in
C2 where the Bergman projection does not preserve smoothness. His domain is not
pseudoconvex. It is interesting to compare this with the result of Boas & Straube
[1989] which shows that in a complete Hartogs domain (whether pseudoconvex or
not) the Bergman projection maps C∞(Ω̄) into itself.

Here we will show that in a suitable pseudoconvex Hartogs domain in C2, whose
boundary is not smooth, the Bergman projection does not preserve C∞(Ω̄). This
gives rise to a smoothly bounded pseudoconvex open subset of a two-dimensional
manifold C×

(
(C\{0})/∼

)
where the Bergman projection does not preserve smooth-

ness.
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Theorem 1. Let

Ω = {(z, w) ∈ C2; a < log |w| < b &
∣∣z − |w|i∣∣ < 1},

where b − a = mπ for some m = 1, 2, 3, ... . It is a bounded pseudoconvex domain
and its boundary is C∞ except at the points which satisfy |w| = ea, |z − eia| = 1 or
|w| = eb, |z − eib| = 1. Then there is a function f ∈ C∞(Ω̄) such that its Bergman
projection Pf is not Hölder continuous in Ω̄.
Now let θ be a positive number and let Xθ denote the compact complex manifold
obtained from C \ {0} by identifying w and eθw. If θ is an integer multiple of 2π,
then

Y = {(z, w) ∈ C×Xθ;
∣∣z − |w|i∣∣ < 1}

is a pseudoconvex domain in C×Xθ with real-analytic boundary. We can define in
a natural way a Bergman space O2(Y ) consisting of differential forms of type (2, 0)
and a Bergman projection P : L2(Y )→ O2(Y ) (see section 6).

Theorem 2. Let Y be the smoothly bounded pseudoconvex domain just defined, with
θ = 2πm for some m = 2, 3, 4, ... . Then the Bergman projection does not map the
forms with coefficients in C∞(Ȳ ) into the space of continuous forms on Ȳ .
Domains with similar properties were studied by Barrett [1986].

The structure of the proof of Theorem 1 is as follows. On a subspace C+(Ω)
of L2(Ω) which contains all Hölder-continuous functions in Ω̄ we construct a linear
functional T whose values are obtained as holomorphic extensions of inner products
〈f, gα〉 with certain elements gα of the Bergman space. More precisely, for a fixed
f ∈ C+(Ω) we define a holomorphic function Φ(α) = 〈f, gα〉 of a complex variable
α in the half-plane Reα > −1. Then T (f) is the point value T (f) = Φ(−2) of the
extension. The functional T has the following properties.
(a) If both f and Pf belong to C+(Ω), then T (Pf) = T (f), for f−Pf is orthogonal

to O2(Ω), in particular to the gα.
(b) T (f) = 0 if f is in C+(Ω) and holomorphic.
(c) T is not identically zero on C+(Ω); more precisely, C+(Ω) contains C∞(Ω̄) and

T is not zero on the latter space.
To finish the proof we only have to take an f ∈ C∞(Ω̄) with T (f) 6= 0. If

Pf did belong to C+(Ω), then it would follow from (a) that T (Pf) = T (f) 6= 0,
contradicting (b). For details see section 5.

The logical setup of the proof of Theorem 2 is similar, but the functional we use
is different. See section 6.

I am grateful to John Erik Fornæss for comments on an early version of this
paper.
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2. Worm domains

Diederich & Fornæss [1977] defined a one-parameter family of pseudoconvex domains
which have become known as worm domains. Each of them is a domain Ω in the
space of two complex variables (z, w) whose intersection with any complex subspace
w = constant is a disk in the z-plane with center at the point |w|i = exp(i log |w|)
and radius R(log |w|) 6 1. If R(log |w|) = 1, then the point (0, w) is on the boundary
of Ω. Let us agree to call any domain of the form

Ω = {(z, w) ∈ C2;
∣∣z − |w|i∣∣ < R(log |w|)}

a worm domain. In particular they are Hartogs domains and can be easily visualized
in the space of three real variables (Re z, Im z, log |w|). We shall give a condition
on the radius R which implies pseudoconvexity. It will be convenient to consider
ψ = 1− R2. We allow ψ < 0, i. e., R > 1. Where ψ > 1 there are no corresponding
points in Ω.

Let us say that a function ψ defined on some interval of R is trigonometrically
convex if ψ′′ + ψ > 0 in the distribution sense. This amounts to ψ(arg ζ)|ζ| being
convex (or, equivalently, subharmonic) in some sector in the complex plane. The
easiest examples are the convex nonnegative functions. Other examples are a sin and
a sin+ = amax(sin, 0), a > 0.

The following result is due to Diederich & Fornæss [1977], pages 277–279, for a
particular choice of the function ψ.

Proposition 2.1. Let −∞ 6 a < b 6 +∞ and let ψ be a trigonometrically convex
function on the open interval ]a, b[. Then

(2.1) Ω = {(z, w) ∈ C2; a < log |w| < b &
∣∣z − |w|i∣∣2 + ψ(log |w|) < 1}

is pseudoconvex. If ψ is of class Ck for some k = 1, 2, 3, ...,∞, then ∂Ω is of class
Ck except possibly where ψ = 1 or |w| = ea or |w| = eb; if in addition ψ(a+) > 1,
ψ(b−) > 1 and ψ′ 6= 0 when ψ = 1, then ∂Ω is of class Ck everywhere.

Proof. Locally we can introduce ζ = w−i as a new variable; then log |w| = − arg ζ
and argw = log |ζ|. The condition for a point (z, w) with a < log |w| < b to belong
to Ω, in addition to the obvious a < − arg ζ < b, becomes

|z|2 − 2 Re(zei arg ζ) + ψ(− arg ζ) < 0.

We can multiply this by |ζ| to get the equivalent condition

|z|2|ζ| − 2 Re(zζ) + ψ(− arg ζ)|ζ| < 0.

Here all terms are plurisubharmonic in (z, ζ): the first is the exponential of the pluri-
subharmonic function 2 log |z| + log |ζ|, the second is the real part of a holomorphic
function, and the third is convex in ζ by hypothesis. Therefore the set where this
function is negative is pseudoconvex.
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If ψ(a+) > 1 and ψ(b−) > 1 there can be a question about the smoothness of
the boundary only where the radius of the disk in the z-plane is zero, i. e., where
ψ = 1. Consider the domain

Ω′ = {(z, w) ∈ C2; a < log |w| < b & |z − 1|2 + ψ(log |w|) < 1}

which is diffeomorphic to Ω under the diffeomorphism (z, w) 7→ (z|w|−i, w) (defined
in a neighborhood of Ω̄). If ψ satisfies the condition mentioned at the points where
it takes the value 1, then the boundary of Ω′ near the points where the radius is zero
is given by the equation ψ(log |w|) = 1 − |z − 1|2. We can write this as log |w| =
ψ−1(1 − |z − 1|2), where z 7→ 1 − |z − 1|2 is C∞, and where the inverse ψ−1 is as
smooth as ψ. This proves the proposition.

The simplest choice is a = −∞, b = +∞, R = 1 identically; this defines an
unbounded pseudoconvex domain Ω0 whose boundary is C∞ except where w = 0.
Another choice is −∞ < a < b < +∞, R = 1; then Ω is bounded and its boundary is
smooth except where |w| = ea, |z − eia| = 1 or |w| = eb, |z − eib| = 1. The boundary
of these domains contains a piece of the analytic manifold z = 0.

It is easy to define smoothly bounded domains using Proposition 2.1: just take a
C∞ convex function ψ on [a, b] which is zero on some interval [a0, b0], positive outside
this interval and satisfies ψ(a) > 1, ψ(b) > 1. Since ψ is nonnegative and convex, it
is trigonometrically convex, and Ω is contained in the set where ψ < 1. There exist
two points a1 < b1 such that ψ(a1) = ψ(b1) = 1; obviously ψ′(a1) < 0, ψ′(b1) > 0.
Therefore ∂Ω is C∞.

We now ask whether the domains in Proposition 2.1 can be defined by a global
plurisubharmonic function. Diederich & Fornæss [1977] proved (pages 284–285) that
their worm domains do not possess a plurisubharmonic defining function of class C3.
We shall prove a somewhat stronger result here.

Proposition 2.2. Let Ω be as in Proposition 2.1 with ψ > 0 everywhere and ψ = 0
(i. e., R = 1) on some interval [a0, b0] of positive length. Denote the distance to the
boundary in Ω by dΩ. Then there is no function f ∈ PSH(Ω) satisfying −AdΩ 6
f 6 −BdΩ in Ω with positive constants A and B. In particular there cannot exist
a global plurisubharmonic defining function for Ω which is Lipschitz continuous. A
little more generally, if ε > π/(b0−a0 +π), there cannot exist a function f ∈ PSH(Ω)
satisfying −AdεΩ 6 f 6 −BdεΩ in Ω with positive A and B.

Proof. Suppose there is a plurisubharmonic function f with −AdεΩ 6 f 6 −BdεΩ.
Define first

f0(z, w) = sup
|w′|=|w|

f(z, w′), (z, w) ∈ Ω.

Then f0 is a function of (z, |w|), it is plurisubharmonic in Ω and satisfies the same
inequality as f there, for dΩ(z, w) = dΩ(z, w′) if |w| = |w′|. Next define

F (z) = inf
w
f0(z, w).

In view of the minimum principle for plurisubharmonic functions (Kiselman [1978],
Theorem 2.2), F is subharmonic on some Riemann surface in z. We may suppose
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without loss of generality that a0 < 0 < b0, so that this Riemann surface contains
the half-disk

U = {z ∈ C; |z| < r & Re z > 0}

for some positive r. If −AdΩ 6 f 6 −BdΩ, then F satisfies −A1|z| 6 F (z) 6 −B1|z|
in U for some new positive constants A1 and B1, and F has a continuous extension
to the closure Ū . We introduce an auxiliary function

G(z) = |z|
(

1− 1
2

log
|z|
r

cos arg z
)
.

We note that G is subharmonic in U , has a continuous extension to the closure of U
and coincides with |z| on the boundary of U . Consider F + B1G. This function is
6 0 on the boundary of U . But at the point z = r exp(−2A1/B1) ∈ U it assumes
a positive value: this contradicts the maximum principle for subharmonic functions
and completes the proof in the case ε = 1.

For the general case we define Fε(z) = F (z1/ε) in U for a sufficiently small
positive r. This is possible if arg i1/ε < b0 + π/2 and arg(−i)1/ε > a0 − π/2. It
is however no restriction to assume that b0 = −a0; then both conditions become
π/ε < b0 − a0 + π. The function Fε has a continuous extension to Ū and satisfies
−A1|z| 6 Fε(z) 6 −B1|z|. Thus the same argument applies, completing the proof of
Proposition 2.2.

It is interesting to note in this context the result due to Bonami & Charpentier
[1988]: the Bergman projection preserves the Sobolev class W 1/2(Ω) in a domain with
boundary of class C3 and admitting a global plurisubharmonic defining function.

3. Functions which are locally independent of the second variable
In the sets Ω as defined in the last section the functions which are locally independent
of the second variable w play an important role.

Proposition 3.1. Let Ω be a Hartogs domain in C2. If f ∈ L2(Ω) is of the form
f(z, w) = wkF (z, |w|) for some k ∈ Z, then w−kPf is locally independent of w.

Proof. If a is a complex number of modulus one, the mapping f 7→ f ◦ Ta defined by
Ta(z, w) = (z, aw) is an isometry T ∗a of L2(Ω) which moreover preserves the subspace
O2(Ω). This implies that T ∗a and P commute. Now if f(z, w)/wk is a function
of (z, |w|) (for w 6= 0), we have T ∗a f = akf for all numbers a of modulus one, so
that T ∗aPf = PT ∗a f = P (akf) = akPf . Therefore H(z, w) = w−kPf(z, w) satisfies
T ∗aH = H: it is invariant under rotation in the w-space and so must be a function of
(z, |w|). Since H is holomorphic, this implies that it is locally independent of w.

Proposition 3.2. Let Ω be defined as in Proposition 2.1 with a nonnegative ψ
such that ψ−1(0) is an interval. Assume f ∈ C(Ω) is locally independent of w and
lim f(z, w) = f0(w) exists as z → 0, (z, w) ∈ Ω, for every w such that (0, w) ∈ ∂Ω.
Then f0 is constant.

Proof. In particular f0 is equal to the limit

f0(w) = lim
t→0

f(tz, w)
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where t > 0 and z is chosen so that (tz, w) is in Ω for all t with 0 < t < ε for some
positive ε. The same z can serve for all w near the original point. Therefore f0 is
locally constant. Now the set of w we are considering is connected: it is the annulus
ea0 6 |w| 6 eb0 where [a0, b0] = ψ−1(0). So locally constant is the same thing as
being constant.

It will be important for us to have a supply of functions which are holomorphic
and locally independent of w. Let Ω0 be the set defined by (2.1) with the special
choices a = −∞, b = +∞, and ψ = 0. We define a function in Ω0 which we call
simply log z, by first defining it for w = 1 in the disk

D1 = {z ∈ C; |z − 1| < 1}

as the branch of the logarithm with log 1 = 0. Then we continue it analytically from
D1×{1} ⊂ Ω0 to all of Ω0. As in Diederich & Fornæss [1977], § 2, we can now define,
for any complex number α, a function

gα(z, w) = exp(α log z)

of (z, w) which we may also denote by zα, at least if we keep in mind that it is not
globally a function of z when α ∈ C \ Z.

4. The Bergman projection in a disk
Here we shall recall some formulas for the Bergman projection in a disk. In the unit
disk D = {z ∈ C; |z| < 1} we have an explicit expression for the Bergman projection
B : L2(D)→ O2(D):

(4.1) Bf(a) =
∫
D

f(z)
1

π(1− z̄a)2
dλ(z), a ∈ D;

see e. g. Krantz [1982: 50]. Here λ denotes Lebesgue measure in C. We change
variables in (4.1) to get the projection in the disk Dr = {z ∈ C; |z − 1| < r} and
write B : L2(Dr)→ O2(Dr) for the Bergman projection there also. This gives

(4.2) Bf(a) =
∫
Dr

f(z)ϕa(z) dλ(z), a ∈ Dr,

where

ϕa(z) =
(1− a∗)2

πr2(z − a∗)2
, a, z ∈ Dr,

and a∗ is the point defined by reflection in ∂Dr, in other words a∗ is determined by
(ā− 1)(a∗ − 1) = r2. If 0 < r < 1, we can in particular choose a∗ = 0, a = 1− r2:

(4.3)
∫
Dr

f(z)
z̄2

dλ(z) = πr2Bf(1− r2), 0 < r < 1.

In a suitable sense (4.3) holds also for r = 1 if f is Hölder continuous in D̄1. The
interpretation of the integral is then elementary if f(0) = 0, and one can prove that∫

D1

f(z)
z̄2

dλ(z) = πBf(0)
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by passing to the limit in (4.2). Here we let Bf denote also the continuous extension
to the closure of D1. Next we write f(z) = f(0)+(f(z)−f(0)) and consider the case
when f is identically one. Then we note that, in view of the mean value property for
antiholomorphic functions,∫

Dr

z̄α dλ(z) = πr2, 0 < r 6 1, Reα > −2.

We simply extend this function of (r, α) by continuity from Reα > −2 to Reα > −2.
This is the interpretation of (4.3) for r = 1 which we shall use.

Note that we do not define (4.3) for r = 1 as a principal value by cutting out a
disk around the origin: that will give a different value. In fact, it can be proved that

lim
ε→0

∫
z∈D1,|z|>ε

1
z̄2
dλ(z) =

π

2
.

5. A domain where the Bergman projection does not preserve smoothness

Every holomorphic function in a Hartogs domain Ω has a Laurent expansion

h(z, w) =
∑
j∈Z

hj(z, |w|)wj ,

where hj ∈ O(Ω). It turns out that in the worm domains (2.1) the functions which
are homogeneous of degree −1 exhibit a resonance phenomenon which we will exploit.
(It will give rise to property (b) of the introduction, and is made explicit in formula
(5.4) below.) We shall therefore calculate the scalar product 〈f/w, g/w〉 where f and
g are two functions in L2(Ω) satisfying f(z, w) = f(z, |w|), g(z, w) = g(z, |w|), but
we shall not suppose that they are holomorphic. Introducing polar coordinates for w
with |w| = r = et we get

〈f/w, g/w〉 =
∫∫

Ω

f(z, w)
w

g(z, w)
w̄

dλ(z)dλ(w) =

= 2π
∫∫

f(z, r)g(z, r)dλ(z)dr/r = 2π
∫∫

|z−eit|<R(t)

f(z, et)g(z, et)dλ(z)dt.

We now take z′ = ze−it as a new variable: the transformation (z, w) 7→ (z′, w)
preserves volumes and we get

〈f/w, g/w〉 = 2π
∫∫

|z′−1|<R(t)

f(eitz′, et)g(eitz′, et)dλ(z′)dt.
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If Ω is bounded and defined by a nonnegative function ψ, and if Reα > −1, we can
in particular choose g(z, w) = zᾱ and define

(5.1)

Tα(f/w) = 〈f/w, g/w〉 = 2π
∫∫

|z−1|<R(t)

f(eitz, et)g(eitz, et)dλ(z)dt =

= 2π
∫∫

|z−1|<R(t)

f(eitz, et)e−iαtz̄αdλ(z)dt.

Moreover

(5.2) Tα(f/w) = Tα(P (f/w))

for these α, since (z, w) 7→ zᾱ/w belongs to O2(Ω) and f/w − P (f/w) is orthogonal
to that space. Note that, by Proposition 3.1, the function P (f/w) is of the form
h(z, |w|)/w so that the scalar product 〈P (f/w), g/w〉 is given by the same formulas.

The equation (5.2) will of course be preserved under analytic continuation in the
parameter α. For example, if both f and P (f/w) happen to be bounded, we can
extend the equation to the half-plane Reα > −2.

Now if f is measurable and satisfies an estimate |f(z, w)| 6 C|z|ε with ε > 0,
then Tα(f/w) is well defined by (5.1) for Reα > −2− ε.

If f is continuous on the closure of Ω and independent of z, we may extend f to
all of C2 and write f(0, w) for the value of f at any of the points (z, w) ∈ Ω̄ (even
though the corresponding point (0, w) need not belong to Ω̄). In this case we can
easily extend Tα(f/w):

Tα(f/w) = 2π
∫∫

|z−1|<R(t)

f(0, et)e−iαtz̄αdλ(z)dt = 2π2

∫
R(t)2f(0, et)e−iαtdt,

for in view of the mean value property for antiholomorphic functions, the integral
with respect to z is equal to the area πR(t)2 times the value at the center of the disk.
The last integral has a sense for all α ∈ C.

If f is Hölder continuous with exponent ε in Ω̄ we can extend Tα(f/w) to all
α satisfying Reα > −2 − ε by combining these two ideas: we shall assume that f
is defined in all of C2 and write f(z, w) = f(0, w) + (f(z, w) − f(0, w)). We now
apply the functional Tα separately to the two terms. We see that if Reα > −2, then
Tα(f/w) can be written as

2π2

∫
R(t)2f(0, et)e−iαtdt+ 2π

∫∫ (
f(eitz, et)− f(0, et)

)
e−iαtz̄αdλ(z)dt.

Now the first term has a sense for all α, and the second is defined as an integral for all
α in the half-plane Reα > −2− ε. The extension so obtained seemingly depends on
the values of f(0, w) also for w outside the annuli where f(0, w) is defined originally
(these annuli are defined by the condition that log |w| belong to ψ−1(0) which is a
union of intervals), but it actually does not, since Tα(f/w) is a function of f restricted
to Ω for α satisfying Reα > −2, and then this must be true also of its holomorphic
extension.

Of course we do not need Hölder continuity everywhere in Ω̄, so we can summa-
rize the discussion in the following definition:
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Definition 5.1. For a worm domain Ω with R 6 1 we let C+(Ω) denote the space
of all bounded measurable functions f defined in Ω which satisfy an estimate

|f(z, w)− f0(w)| 6 C|z|ε, (z, w) ∈ Ω,

for a suitable measurable function f0 and some constants C and ε > 0. We define

T−2(f/w) = lim
α→−2

Reα>−2

Tα(M(f)/w), f ∈ C+(Ω),

where Tα is given by (5.1) for Reα > −2, and where M(f) denotes the mean value
of f(z, tw) over the circle |t| = 1.
The function f0 can be thought of as an extension of w 7→ f(0, w); it is not unique
since (z, w) ∈ Ω̄, R(log |w|) < 1 implies (0, w) /∈ Ω̄.

We can now use the formulas for the Bergman projection in a disk (see section
4) to express T−2. It will be enough to consider functions f ∈ C+(Ω) which are are
functions of (z, |w|) so that M(f) = f . If such an f is holomorphic in z for fixed w,
we get writing I for the open set where R > 0, ψ < 1, and J = ψ−1(0) for the set
where R = 1, ψ = 0,

(5.3)
T−2(f/w) = 2π2

∫
R(t)2f(eit(1−R(t)2), et)e2itdt =

= 2π2

∫
J

f(0, et)e2itdt+ 2π2

∫
I\J

R(t)2f(ψ(t)eit, et)e2itdt.

These formulas clearly use only values of f in Ω̄. It is by no means obvious how to
estimate the integral over I \ J . However, in the special case when R = 1 in the
whole interval ]a, b[ this term vanishes. Then we obtain the following result, which
implies Theorem 1 of the introduction:

Theorem 5.2. Let

Ω = {(z, w) ∈ C2; a < log |w| < b &
∣∣z − |w|i∣∣ < 1},

where b − a = mπ for some m = 1, 2, 3, ... . Let f ∈ C+(Ω) be holomorphic in z
for fixed w and satisfy f(z, w) = f(z, |w|),

∫
f(0, et)e2itdt 6= 0. Then P (f/w), the

Bergman projection of f/w, is not in C+(Ω).
We can easily find C∞ functions f which satisfy the hypotheses of the theorem; for
instance f(z, w) = g(log |w|), where g ∈ C∞(R) with support in [a, b] and Fourier
transform ĝ satisfying ĝ(−2) 6= 0.
Proof. In view of Proposition 3.1, P (f/w) = h/w, where h is a holomorphic func-
tion of (z, |w|). If h satisfied an estimate |h(z, w) − h(0, w)| 6 C|z|ε, we would get
T−2(h/w) = T−2(f/w) 6= 0 from (5.2). On the other hand, (5.3) yields

(5.4) T−2(h/w) = 2π2

∫
J

h(0, et)e2itdt = 2π2h(0, es)
∫
J

e2it dt = 0,

where we write h(0, es) for the common value of h(0, w) for all w such that (0, w) ∈
∂Ω; see Proposition 3.2. The last equality follows simply because J = ]a, b[ =
]a, a+mπ[ so that ∫

J

e2it dt =
∫ a+mπ

a

e2it dt = 0.

This contradiction proves the theorem.
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6. A smoothly bounded domain in a manifold
Let θ be a positive number and let Xθ denote the compact complex manifold obtained
from C \ {0} by identifying w and eθw. The differential form dw/w is well defined
on Xθ. We shall let q : C × (C \ {0}) → C × Xθ denote the canonical projection
which associates with (z, w) its equivalence class in C×Xθ.

Consider the domain

Ω = {(z, w) ∈ C× (C \ {0});
∣∣z − |w|i∣∣ < 1},

which is pseudoconvex in view of Proposition 2.1, and its subset

Ωθ = {(z, w) ∈ Ω; 0 < log |w| < θ}.

If θ = 2πm is an integer multiple of 2π, the condition on (z, w) to belong to Ω
does not change if we replace w by eθw, for in that case |eθw|i = e2πmi|w|i = |w|i.
Therefore

(6.1) Y = q(Ω) = {q(z, w) ∈ C×Xθ;
∣∣z − |w|i∣∣ < 1}

is a pseudoconvex domain in C×Xθ with real-analytic boundary. We have q(Ω̄θ) = Ȳ .
From now on we shall assume θ = 2πm.

We let L2(Y ) denote the space of all differential forms of bidegree (2, 0) with a
representation

F = f(z, w) dz ∧ dw/w

where f is square integrable on bounded subsets of Ω and satisfies f(z, eθw) = f(z, w).
The scalar product is

〈F,G〉 =
∫∫

Ωθ

f(z, w) dz ∧ dw/w ∧ g(z, w) dz ∧ dw/w.

The Bergman space O2(Y ) is the subspace of L2(Y ) with f holomorphic. It is
contained in a natural way in the Bergman space O2(Ωθ): an element of the latter
belongs to the former if it has an extension to all of Ω which is periodic in the
sense that f(z, eθw) = f(z, w). Our result that T−2(f/w) = 0 for all holomorphic
Hölder-continuous f in Ω̄θ is therefore true also for Y .

The function gα(z, w) = exp(α log z) (see the end of section 3) is well defined in Y
if αθ/2π is an integer. For instance, if θ = 4π, then

√
z is well defined in Y , although

it is not globally a function of z, and both
√
z dz ∧ dw/w and 1/

√
z dz ∧ dw/w are

elements of the Bergman space. But there seems to be no reason why the equation
T−2(Pf) = T−2(f), which was crucial in the proof of Theorem 5.2, should hold, for
this was a consequence of the fact that T−2 appeared as a limit of scalar products
with functions zᾱ, and such functions are defined on the manifold Xθ = X2πm only if
α is a rational number of the form α = k/m with k ∈ Z. (Moreover the corresponding
form belongs to the Bergman space only if k > −m.) This is the reason why we have
not been able to use the functional T−2 in the present proof. We shall therefore
construct another functional S as follows.
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Definition 6.1. Let γ denote the curve [0, θ] 3 t 7→ (eit, et) ∈ Ω̄θ which traces the
centers of the disks in the z-plane. Then q ◦ γ is a closed curve in Y . We let N(Y )
denote the set of all functions f ∈ C(Y ) which do not vanish on q ◦ γ. We define a
functional S by the change in argument of the number f(q(z, w)) along γ:

S(f) =
1

2πi
var
γ

arg f(q(z, w)) =
1

2πi
var
q◦γ

arg f, f ∈ N(Y ).

We list a few of the properties of S:

Lemma 6.2. If f ∈ N(Y ) ∩ O(Y ) ∩ C(Ȳ ) is a function of (z, |w|), then S(f) ∈ N.

Proof. We define three segments γ0, γ1, γ2 as follows:

γ0 : [0, θ] 3 t 7→ (0, eθ−t), γ1 : [0, 1] 3 t 7→ (t, 1), γ2 : [0, 1] 3 t 7→ (1− t, eθ).

They are all contained in the boundary of Ωθ. Let Γ be the closed curve in Ω̄θ
consisting of γ1 + γ + γ2 + γ0. Now clearly

var
q◦Γ

arg f = var
q◦γ

arg f

for any f ∈ C(Ȳ ) which is holomorphic, locally independent of w, and nowhere zero
on q◦Γ. For by Proposition 3.2, f ◦q is constant on γ0, and the contributions from γ1

and γ2 cancel each other, since q(t, 1) = q(t, eθ). If f satisfies only the hypotheses of
the lemma, we cannot of course guarantee that f is never zero on q ◦Γ. But f(q ◦γ0)
is a point, and f(q ◦ γ1) ∪ f(q ◦ γ2) is a countable union of smooth arcs, hence a set
of measure zero. Therefore f(q ◦ Γ) is the union of f(q ◦ γ) and a compact set of
measure zero, so there are infinitely many complex numbers a of arbitrarily small
modulus such that f−a is nowhere zero on q ◦Γ. If we take any such a with modulus
smaller than infq◦γ |f |, then we know that

S(f) =
1

2πi
var
q◦Γ

arg(f − a).

Now if f ◦ q is a function of (z, |w|), then given any sufficiently small positive number
ε (it suffices that ε < 2π/(θ + π) = 1/(m+ 1/2)), we can write

f(q(z, w)) = f(q(z, |w|)) = g(zε)

for some function g. When (z, w) runs through Γ, the point zε runs through a curve
which we call Γε, and which consists of the segment from 0 to 1 followed by the arc
of the unit circle from 1 to eiεθ, followed by the segment from that point back to the
origin. The function g is continuous on the closure of the sector surrounded by Γε
and holomorphic inside the curve. And

var
q◦Γ

arg(f − a) = var
Γε

arg(g − a) = 2πiN,

where N > 0 is the number of zeros of g−a inside the curve Γε, by the usual argument
principle. This proves the lemma.
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Lemma 6.3. The set of all forms F = f dz ∧ dw/w ∈ O2(Y ) with f ∈ N(Y ) is
open in O2(Y ) and the functional S restricted to such forms is locally constant for
the Bergman topology.

Proof. We know that point evaluations are continuous in the Bergman norm and
moreover uniformly so over any compact set. Since the image of q ◦ γ is compact in
Y , there is a constant C such that

sup
q◦γ
|f | 6 C‖F‖, F ∈ O2(Y ).

We apply this to G− F ∈ O2(Y ):

sup
q◦γ
|g − f | 6 C‖G− F‖.

For a fixed F with f ∈ N(Y ) we define ε = infq◦γ |f |/C > 0. Then infq◦γ |g| > 0
for all G = g dz ∧ dw/w ∈ O2(Y ) such that ‖G− F‖ < ε, i. e., we have proved that
g ∈ N(Y ). The change in argument for g must be the same as for f .

Theorem 6.4. Let Y be the smoothly bounded pseudoconvex subset of C×Xθ defined
by (6.1), with θ = 2πm for some m = 2, 3, 4, ... . Then

F = z−1/m dz ∧ dw/w

is an element of the Bergman space O2(Y ). Let ϕ ∈ C∞(C) vanish near 0, satisfy
0 6 ϕ 6 1, and be such that

{z ∈ C; |z| < 2 & ϕ(z) 6= 1}

has sufficently small Lebesgue measure. Then ϕF is a smooth form, and its Bergman
projection is

P (ϕF ) = h(z, w) dz ∧ dw/w

with a holomorphic function h which cannot be continuous up to the boundary of Y .
We cannot use m = 1, for the function z−1 is not in L2 near the origin.
Proof. We can calculate S(z−1/m) explicitly, and find that it is equal to −1. Next
we estimate the distance between P (ϕF ) and F in the Bergman space: by the
Pythagorean theorem,

‖P (ϕF )− F‖2 = ‖ϕF − F‖2 − ‖ϕF − P (ϕF )‖2 6 ‖ϕF − F‖2.

Now ‖ϕF − F‖ = ‖(1 − ϕ)F‖ can be made arbitrarily small if only ϕ is suitably
chosen. Lemma 6.3 shows that when ‖P (ϕF )−F‖ is small enough, the coefficient h
of P (ϕF ) is in N(Y ), and S(h) = S(z−1/m) = −1.

We note that the coefficient h of P (ϕF ) satisfies h(z, w) = h(z, |w|) in view of
Proposition 3.1—or rather its analogue for O2(Y ). Now if h were continuous up to
the boundary, we would have S(h) ∈ N by Lemma 6.2. This contradicts S(h) = −1
and proves the theorem.



A study of the Bergman projection 13

References

Barrett, David. 1984. Irregularity of the Bergman projection on a smooth bounded
domain in C2. Ann. of Math. 119, 431–436.

Barrett, David. 1986. Biholomorphic domains with inequivalent boundaries. Inven-
tiones Math. 85, 373–377.

Boas, Harold P. & Straube, Emil J. 1989. Complete Hartogs domains in C2 have
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