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Salomon Bochner (1899–1982) and Torsten Carleman (1892–1949) presented gen-
eralizations of the Fourier transform of functions defined on the real axis. While
Bochner’s idea was to define the Fourier transform as a (formal) derivative of high
order of a function, Carleman, in his lectures in 1935, defined his Fourier trans-
form as a pair of holomorphic functions and thus foreshadowed the definition of
hyperfunctions. Jesper Lützen, in his book on the prehistory of the theory of dis-
tributions, stated two problems in connection with Carleman’s generalization of
the Fourier transform. In the article these problems are discussed and solved.
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1 Introduction

In order to define in an elementary way the Fourier transform of a function we
need to assume that it decays at infinity at a certain rate. Already long ago
mathematicians felt a need to extend the definition to more general functions.
In this paper I shall review some of the attempts in that direction: I shall
explain the generalizations presented by Salomon Bochner (1899–1982) and
Torsten Carleman (1892–1949) and try to put their ideas into the framework
of the later theories developed by Laurent Schwartz and Mikio Sato.

In his book on the prehistory of the theory of distributions, Jesper Lützen
[1982] gives an account of various methods to extend the definition of the
Fourier transformation. This paper has its origin in a conversation with
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Anders Öberg, who pointed out to me that Lützen had left open two ques-
tions. I shall try to answer these here. Thus this paper is in a way an historical
survey, but not exclusively.

2 Bochner

In his book Vorlesungen über Fouriersche Integrale [1932], translated as Lec-
tures on Fourier Integrals [1959], Salomon Bochner extended the definition of
the Fourier transform to functions such that f(x)/(1 + |x|)k is integrable for
some number k. The usual Fourier transform of f is defined as

F(f)(ξ) = f̂(ξ) =
∫
R

f(x)e−ixξdx, ξ ∈ R,

provided the integral has a sense; e.g., if f is integrable in the sense of
Lebesgue. If f is sufficiently small near the origin we may form

gk(ξ) =
∫
R

f(x)e−ixξ

(−ix)k
dx, ξ ∈ R,

and this integral now has a sense if f(x)/xk is integrable. If both f and f/xk

are integrable, then the kth derivative of gk is equal to f̂ . So gk is a kth

primitive function of f̂ in the classical sense. This is the starting point of
Bochner’s investigation.

To overcome the somewhat arbitrary assumption that f is small near
the origin, Bochner [1932:112, 1959:140] adjusted the integrand by using the
Taylor expansion of the exponential function and defined

E(α, k) _̂
k 1

2π

∫
R

f(x)
e−iαx − Lk(α, x)

(−ix)k
dx, α ∈ R, k ∈ N,

where

Lk(α, x) =


k−1∑
j=0

(−iαx)j

j!
, |x| 6 1,

0, |x| > 1.

The symbol _̂
k

means that the difference between the two sides is a poly-
nomial of degree less than k. Thus E is undetermined, but its kth derivative
is not influenced by this ambiguity. Bochner’s Fourier transform is this kth

derivative, a formal object. Calculations are done on E, not on its derivative
E(k).
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In his review of Schwartz [1950, 1951], Bochner [1952:79–80] remarks that
any distribution in D′(Rn) agrees in a given bounded domain with the kth

derivative of a continuous function for some sufficiently large k. Thus the
Fourier transforms that Bochner constructs are locally not less general than
distributions. Bochner’s review portrays the theory of distributions as not
going much beyond what he himself has presented in his book [1932]; “it would
not be easy to decide what the general innovations in the present work are,
analytical or even conceptual” [1952:85]. Later generations of mathematicians
have been more appreciative.

In several papers, starting in 1954, Sebastio e Silva developed the idea
of defining distributions as derivatives of functions. He used an axiomatic
approach; see, e.g., [1964].

3 Streamlining Bochner’s definition

In particular, if f vanishes for |x| 6 1, then the definition of E(α, k) simplifes
to

E(α, k) _̂
k 1

2π

∫
R

f(x)
e−iαx

(−ix)k
dx.

We may therefore split any function f into two, f = f0 + f1, where f0(x) = 0
for |x| > 1, f1(x) = 0 for |x| 6 1. For f1 we then define the function E(α, k)
as above without the need to use Taylor expansions, while f0, a function of
compact support, has a Fourier transform in the classical sense; the latter is
an entire function of exponential type.

Another way to avoid the division by (−ix)k is to divide instead by some
power of 1 + x2. This can easily be done in any number of variables, defining
x2 as an inner product, x2 = x · x =

∑
x2

j . Since the function 1 + x2 has no
zeros, the mapping f 7→ (1 + x2)f is a bijection. We may define

Fs,ε(f)(ξ) =
∫
Rn

f(x)e−ixξ(1 + ε2x2)−sdx, ξ ∈ Rn, s, ε ∈ R.

Then the usual Fourier transform is obtained when s or ε vanishes:

F0,ε = Fs,0 = F0,0 = F .

If f(x)(1+x2)−t ∈ L1(R), then Fs,ε(f) is a bounded continuous function
for all s > t and all ε 6= 0. By applying a differential operator of order 2m,
m ∈ N, we can lower the index s by m units:

(1− ε2∆)mFs,ε(f) = Fs−m,ε(f),
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where ∆ is the Laplacian, ∆ =
∑
∂2/∂x2

j . In particular, if (1 + x2)−mf is
integrable, then Fm,ε(f) has a sense, and (1− ε2∆)mFm,ε(f) is a generalized
Fourier transform of f . This is a somewhat streamlined version of Bochner’s
idea of defining a primitive function of the Fourier transform of f . The word
primitive must now be understood in terms of the differential operator 1−ε2∆.
We shall come back to this idea in section 9.

The transform Fs,ε(f) depends continuously on (s, ε): for ϕ ∈ S(Rn),

Fs,ε(ϕ) → Fs0,ε0(ϕ) as (s, ε) → (s0, ε0) ∈ R2.

This is easy to prove using norms which define the topology of S(Rn), either
the norms defined in (5.4) below or those given in Proposition 9.3. By duality
we get the same statement for u ∈ S ′(Rn). In particular, if one of s0 and ε0
is zero, then for all ϕ ∈ S(Rn),

Fs,ε(ϕ) → ϕ̂ as (s, ε) → (s0, ε0).

4 Carleman

In 1935, Torsten Carleman lectured on a generalization of the Fourier trans-
formation at the Mittag-Leffler Institute near Stockholm, Sweden. His notes,
however, were not published until nine years later. In his book [1944] he quotes
Bochner [1932] and the work of Norbert Wiener. In June, 1947, Carleman
participated in a CNRS meeting in Nancy organized by Szolem Mandelbrojt
and presented his theory there; see Carleman [1949].

Carleman’s approach is quite different from Bochner’s and foreshadows
the definition of hyperfunctions. In fact, in modern terminology, he defines
the Fourier transform for a large class of hyperfunctions of one variable.

He remarks in the beginning that he will cover the case of functions which
are integrable in Lebesgue’s sense on each bounded interval and which satisfy
the condition

(4.1)
∫ x

0

|f(x)|dx = O(|x|κ), x→ ±∞,

for some positive number κ. This condition is equivalent to the one imposed by
Bochner, i.e., that f(x)/(1 + |x|)k be integrable for some k. He then remarks
that the usual Fourier transform of an integrable function can be written

g(z) =
1√
2π

∫ ∞

−∞
e−izyf(y)dy = g1(z)− g2(z),

where

g1(z) =
1√
2π

∫ 0

−∞
e−izyf(y)dy and g2(z) = − 1√

2π

∫ ∞

0

e−izyf(y)dy;
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the function g1 is well-defined and continuous for Imz > 0 and is holomorphic
in the open upper half plane; similarly with g2 in the lower half plane. So
the Fourier transform of f appears as the difference between the boundary
values of two holomorphic functions g1 and g2, each defined and holomorphic
in a half plane. In the case we are now considering, i.e., when f is integrable,
the holomorphic function gj has boundary values in a very elementary sense:
it admits a continuous extension to the closed half plane, given by the same
integral. We shall write B(g1, g2)(x) for the difference limy→0+(g1(x + iy) −
g2(x− iy)).

Carleman then asks [1944:37] whether it is always possible to decompose a
function defined on the real axis in this way, and whether this decomposition,
if it exists, is unique. In the sequel he answers in the affirmative these two
questions. Thus he shows that any measurable function of one variable satis-
fying (4.1) can be represented as a hyperfunction, and that the representation
is unique in a reasonable sense, i.e., as could be expected, unique modulo an
entire function—in fact, in view of the growth conditions he imposes, modulo
a polynomial.

Carleman then proceeds to define the Fourier transform of a pair of func-
tions. He considers functions f1, f2 defined respectively for Imz > 0 and
Imz < 0 such that there exist nonnegative numbers α and β and, for all θ0 in
the interval ]0, π/2[, a number A(θ0) such that

(4.2) |f1(reiθ)| < A(θ0)(rα + r−β), r > 0, θ0 < θ < π − θ0,

and

(4.3) |f2(reiθ)| < A(θ0)(rα + r−β), r > 0, π + θ0 < θ < −θ0.

Let us call such a pair (f1, f2) a Carleman pair of class (α, β). He then defines
[1944:48] another pair of holomorphic functions G,H by

(4.4) G(z) =
1√
2π

∫
L

e−izyf1(y)dy and H(z) =
1√
2π

∫
L′
e−izyf2(y)dy.

Here L is a half line in the upper half plane issuing from the origin, and
similarly with L′ in the lower half plane. Thus, for a particular choice of L,
the function G will be defined in a half plane {z; Im(zy) < 0}; by letting L
vary in the upper half plane, we will get a function defined in the complement
of the positive real half axis; similarly H will be defined in the complement
of the negative real half axis. In particular the difference H −G is defined in
C r R.
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The integrals are well-defined if β < 1; if not, Carleman has to resort to
the kind of trick that Bochner used: he defines the mth derivatives as

(4.5) G(m)(z) =
1√
2π

∫
L

e−izy(−iy)mf1(y)dy

and

(4.6) H(m)(z) =
1√
2π

∫
L′
e−izy(−iy)mf2(y)dy,

so that G and H are determined only up to a polynomial of degree at most
m− 1. (This ambiguity will not affect the definition of the Fourier transform
as we shall see.) The factor ym attenuates the singularity at the origin. He
chooses m such that 0 6 β −m < 1; in fact, any m > β − 1 will do. Next he
defines

g1(z) = H(z)−G(z) for Imz > 0 and g2(z) = H(z)−G(z) for Imz < 0,

and remarks that it is easily proved that g1 and g2 satisfy inequalities similar
to those for f1 and f2,

|g1(reiθ)| < A1(θ0)(rα′
+ r−β′

), θ0 < θ < π − θ0,

and

|g2(reiθ)| < A1(θ0)(rα′
+ r−β′

), −π + θ0 < θ < −θ0,

where we may choose α′ = β − 1 > −1 and β′ = α + 1 > 1 if we assume
that β 6= 1, 2, 3, ... . If β = 1, 2, 3, ..., there appears a logarithmic term in the
estimate at infinity, and we may take α′ as any number strictly larger than
β − 1 while β′ = α + 1 as before. The interchange between α and β means
that the growth of the fj near the origin is reflected in the growth of the gj at
infinity and conversely. A convenient comparison function is rγ−1/2+r−γ−1/2,
i.e., with α = γ− 1

2 , β = γ+ 1
2 . Then we achieve symmetry for γ 6= 1

2 ,
3
2 ,

5
2 , ....

Thus Carleman’s Fourier transform CF(f1, f2) of the pair f = (f1, f2) is
the pair (g1, g2); let us denote it by g = S(f). He needs to interchange the
gj , so he defines a new operation T by T (g) = (h1, h2), where h1(z) = g2(z)
and h2(z) = g1(z). Carleman’s version of Fourier’s inversion formula [1944:49]
then reads (T ◦S ◦T ◦S)(f1, f2) = (f1 +P, f2 +P ), where P is a polynomial;
the latter does not influence the difference between the two functions. Since
the calculation has to be done on the derivatives, the proof [1944:50–52] is a
bit involved.
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5 Schwartz

To extend the Fourier transformation Laurent Schwartz took the formula

(5.1)
∫
Rn

f̂(ξ)g(ξ)dξ =
∫
Rn

f(x)ĝ(x)dx

as his starting point. The formula holds under quite general conditions and
for most definitions of the Fourier transformation; no constant is needed. In
particular it is true if both f and g are integrable on Rn. To be precise,
Schwartz [1966:231] defined

(5.2) F(f)(ξ) =
∫
Rn

f(x)e−2iπx·ξdx, ξ ∈ Rn,

so that the inversion formula reads

f(x) =
∫
Rn

F(f)(ξ)e2iπx·ξdξ, x ∈ Rn.

Formula (5.1) makes it natural to define Schwartz’s Fourier transform
SF(u) of a functional u by

(5.3) SF(u)(ϕ) = u(ϕ̂), ϕ ∈ Φ,

Schwartz [1966:250]. In this way SF(u) is defined as a functional on a space
of test functions Φ provided u itself is defined on the space Φ̂ of all transforms
of functions in Φ. Schwartz made this situation completely symmetric by
defining Φ so that Φ̂ = Φ. Since he wished Φ to contain D(Rn), it must also
contain D(Rn) ∪ D̂(Rn), and this is indeed the case for the Schwartz space
S(Rn). It is defined as the space of all smooth functions on Rn such that the
norms

(5.4) ϕ 7→ sup
x∈Rn

|xα∂βϕ/∂xβ |, α, β ∈ Nn,

are finite, and is equipped with the weakest topology making all these norms
continuous. This makes the dual space smaller than the dual of D(Rn); it is
the well-known space S ′(Rn) of temperate distributions, strictly contained in
D′(Rn). These distributions, which are also known as tempered distributions,
were called distributions sphériques in the beginning (see Schwartz [1949:3]),
since they are the restrictions of the distributions defined on the n-dimensional
sphere, which is identified with the one-point compactification Rn ∪ {∞}.

Let us denote by [f ] ∈ D′(Rn) the distribution defined by a function
f ∈ L1

loc(R
n), thus

[f ](ϕ) =
∫
Rn

f(x)ϕ(x)dx, f ∈ L1
loc(R

n), ϕ ∈ D(Rn).
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Then, in view of (5.1), Schwartz’s Fourier transform of [f ], defined by (5.3),
is the distribution defined by the function f̂ :

SF([f ])(ϕ) = [f ](ϕ̂) = [f̂ ](ϕ), f ∈ L1(Rn), ϕ ∈ D(Rn),

which means that SF extends the classical Fourier transformation to a larger
class.

For any c1, c2 > 0, the mappings

(5.5) ϕ 7→ (1 + c1x
2)ϕ, ϕ 7→ (1− c2∆)ϕ

are topological isomorphisms of the space S(Rn) of Schwartz test functions.
Here, again, we write x2 for the inner product x · x =

∑
x2

j and ∆ for the
Laplacian

∑
∂2/∂x2

j . They correspond to each other under the Fourier trans-
formation in the sense that, for c1 = 4π2c2,

F
(
(1 + c1x

2)ϕ
)

= (1− c2∆)ϕ̂ and F
(
(1− c2∆)ϕ

)
= (1 + c1ξ

2)ϕ̂.

By duality the mappings (5.5) give rise to isomorphisms of S ′(Rn),

(5.6) u 7→ (1 + c1x
2)u, u 7→ (1− c2∆)u.

To define not only the Fourier transform û(ξ) for all ξ ∈ Rn but more
generally the Fourier–Laplace transform û(ζ) for all ζ ∈ Cn (at least as a
functional), it would be desirable to find a space Φ such that

(5.7) D ⊂ Φ ⊂ S,

and such that

(5.8) for all ϕ ∈ Φ and all ζ ∈ Cn,

∫
Rn

e−iζ·xϕ(x)dx is well defined.

In 1961 I attempted to define the Fourier–Laplace transform in Cn, in-
spired by Schwartz’s definition of S(Rn). I realized then that it is not possible
to require (5.7) and (5.8) and keep the symmetry in the sense that Φ̂ = Φ.
Indeed, the function defined as ψ(ξ) = exp

(
− 1/(1− ‖ξ‖2)

)
for ‖ξ‖ < 1 and

ψ(ξ) = 0 for ‖ξ‖ > 1 is in D(Rn) but its Fourier transform ϕ = ψ̂ does not
satisfy

∫
Rn |e−iζ·xϕ(x)|dx <∞ for any ζ ∈ Cn r Rn.

By abandoning the requirement that Φ̂ be equal to Φ, Gel ′fand & Shilov
[1953] found other interesting spaces of test functions. In particular they
defined the Fourier transform of a distribution as a functional on D̂. See also
Ehrenpreis [1954, 1956]. Hörmander [1955] announced a very general theory
of this nature.
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In my work of 1961, I kept the symmetry Φ̂ = Φ and instead relaxed the
condition (5.7) that Φ contain D. In this work I defined a space W of test
functions consisting of all entire functions ϕ on Cn such that the norms

‖ϕ‖m = sup
‖Imz‖6m

|ϕ(z)|em‖Rez‖, m ∈ N,

are all finite; W is equipped with the topology defined by these norms. The
Fourier transformation is an isomorphism ofW onto itself, and the same is true
of the dual space W ′. I studied the Fourier transformation and convolution
in these spaces and developed several of their properties but my work was
not published. Kelly McKennon independently discovered the same space
and published his results in [1976]; he was kind enough to mention my work
(McKennon [1976:178]).

Hörmander [1998] gives a full account of the ideas he presented in his
short note [1955].

6 Sato

Mikio Sato presented his theory of hyperfunctions in [1958a,b,c, 1959, 1960].
Boundary values of holomorphic functions (without any growth condition) are
the basic objects of his theory; in particular, all distributions in one variable
are represented as the difference of such boundary values from the upper and
lower half planes. The Fourier transform in one variable is defined for pairs of
functions with infra-exponential growth, generalizing Carleman’s conditions.

The theory of Fourier hyperfunctions in several variables is a theme out-
side the scope of this article. Let us only mention that it was developed by
Kawai [1970a,b] and further developed by Morimoto [1973, 1978] and Saburi
[1985].

7 On Carleman’s Fourier transformation

In this section we shall comment on Carleman’s theory and also show how
Carleman pairs can be constructed.

Carleman’s theory does not lend itself easily to calculations. For the pair
of functions representing the Dirac measure placed at the origin one has to
take β = 1 in (4.2), (4.3) and so has to use m > 1 in (4.5), (4.6). It is
easy to calculate explicitly the functions G′ and H ′ in (4.5), (4.6), and the
jump in H − G is found to be the constant 1√

2π
as expected. For the Dirac

measure placed at a point a 6= 0 we may take β = 0; it is, however, difficult to
calculate G and H from (4.4), although their difference H −G can be easily
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found. For a > 0, H − G is 0 in the upper half plane and − 1√
2π
e−iza in the

lower, so that the jump is 1√
2π
e−iza as we should expect. One even receives

the impression that Carleman avoids examples and applications of his theory
to simple generalized functions.

We note that if (f1, f2) is a Carleman pair of class (α, β), then the pair
(zf1, zf2), which is of class (α+ 1, β − 1), has a Carleman transform which is
just i times the derivative of the transform of (f1, f2). Similarly, the derivative
of (f1, f2), which is a pair of class (α− 1, β + 1), has a transform which is iz
times the transform of (f1, f2). Thus the usual rules hold. However, Carleman
does not mention these simple rules.

Bremermann & Durand [1961:241] write that Carleman’s work is limited
to L2 and Lp functions. As we have seen, this is not so: the Carleman pairs
are much more general. Along the rays through the origin Carleman assumes
that the fj have a temperate behavior (see (4.2) and (4.3)), but there is no
restriction in the growth of A0(θ0) or A1(θ0) when θ0 tends to zero. If we
impose a temperate growth also on A0(θ0), then the condition can be written
as |fj(z)| 6 C|Imz|−γ(|z|α + |z|−β), which means temperate growth both at
infinity and at the real axis, and we get exactly the temperate distributions.
Thus Carleman’s classes are more general than the temperate distributions.
On the other hand, the hyperfunctions are even more general, because for
them we do not impose temperate growth at infinity or the origin.

To make the last remark clearer we may map the upper half plane onto
the unit disk by a Möbius mapping, with the origin going to the point 1 and
infinity going to −1, say. Then the temperate distributions correspond to
pairs of holomorphic functions of temperate growth at the boundary of the
disk, which means that |f(z)| 6 C(1 − |z|)−α, |z| < 1, for some constants α
and C, while the hyperfunctions impose no restriction on the growth at all.
The intermediate Carleman pairs have a temperate behavior along all circles
through 1 and −1.

To define (g1, g2) it would actually be enough to assume that f1 and f2
grow slower than eε|z| for every positive ε along every ray (infra-exponential
growth). This, however, would allow for a faster growth of (g1, g2) at the
origin, and it would then not be possible to attenuate the singularity simply
by multiplying with a power of y as in (4.5), (4.6); another definition of the
transform would be needed. Although Carleman does not offer any comment
on this problem, I would surmise that this is the reason why he limited the
admissible growth to powers of |z| along the rays.

Given an integrable function we have seen how its Fourier transform is
the difference between the boundary values of two holomorphic functions, each
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defined in a half plane. But how do we represent the function itself as such
a difference? The answer is: by forming its convolution with 1/z. It follows
from Plemelj’s formulas

lim
y→0
±y>0

1
x+ iy

= vp

(
1
x

)
∓ πiδ,

that the difference between the limits from the upper and lower half planes of
1/z is −2πiδ. So, apart from a factor, 1/z represents the Dirac measure, the
most fundamental distribution.

Let us define a function E(z) = i/(2πz) for z ∈ C r {0} and convolution
with E by

(E∗f)(z) =
∫
R

E(z−t)f(t)dt =
∫
R

E(t+iy)f(x−t)dt, z = x+iy ∈ CrR,

whenever the integral has a sense, e.g., if f(x)/(1+ |x|) is integrable. We may
also form the convolution E ∗ u for any distribution u with compact support;
it is holomorphic in Crsuppu, where we consider the support of u as a subset
of the complex plane.

Let us now see when the two holomorphic functions have a limit at the
real axis in the classical sense.

Proposition 7.1. If f ∈ C1(R) and f(x)/(1+ |x|) is integrable, then h(z) =
(E ∗ f)(z), Imz > 0, is the restriction of a continuous function defined in the
closed upper half plane.

Proof. Any function of class C1 can be written as

f(x+ t) = f(x) + t

∫ 1

0

f ′(x+ ts)ds = f(x) + tg(x, t), x, t ∈ R,

where g(x, t) =
∫ 1

0
f ′(x + ts)ds is a continuous function of (x, t) ∈ R2. We

shall study the behavior of (E ∗f)(z) when Rez belongs to a bounded interval
[−a, a].

We assume first that f has compact support. We choose a positive number
b which is so large that f(x − t) vanishes when x ∈ [−a, a] and t /∈ [−b, b].
Then for x = Rez ∈ [−a, a] and y = Imz > 0,

h(z) =
i

2π

∫ b

−b

f(x− t)
t+ iy

dt =
if(x)
2π

∫ b

−b

dt

t+ iy
− i

2π

∫ b

−b

t

t+ iy
g(x,−t)dt.

The first integral in the last expression can be evaluated, and it is easily
seen that it tends to 1

2f(x0) as x + iy → x0 with y > 0. In the second
integral we note that t/(t + iy) tends to 1 almost everywhere as y → 0 and
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that |t/(t + iy)| 6 1. Lebesgue’s theorem on dominated convergence can be
applied and we see that the second integral tends to a limit too. The extension
to R is therefore given by

lim
x+iy→x0

y>0

h(x+ iy) =
1
2
f(x0)−

i

2π

∫ b

−b

g(x0,−t)dt

=
1
2
f(x0)−

i

2π

∫ b

−b

dt

∫ 1

0

f ′(x0 − ts)ds, x0 ∈ [−a, a].

Next we consider the general case and write f =
∑

j∈Z fj using a partition of
unity, where fj has its support in the interval [j−1, j+1], say. The argument
just presented applies to any finite sum of the E ∗ fj . For indices j > a + 1
and points z satisfying Rez 6 a < j − 1 we have the estimate

|(E ∗ fj)(z)| =
∣∣∣∣∫ j+1

j−1

E(z − t)fj(t)dt
∣∣∣∣ 6

1
2π(j − 1− a)

∫ j+1

j−1

|fj(t)|dt.

Therefore the sum
∑

j>a+1E ∗ fj converges uniformly for Rez 6 a in view of
our hypethesis that f(t)/(1 + |t|) is integrable. The terms with j < −a − 1
can be estimated in the same way, and we are done.

Tillmann [1961a,b] and Martineau [1964] studied systematically the
boundary values in the sense of distributions of holomorphic functions.

In the framework of Proposition 7.1 we can form the difference of the
extensions from the upper and lower half planes. We see that h(x + iy) −
h(x− iy) tends to f(x0) as x+ iy → x0 while y > 0. However, this conclusion
holds even if we assume only that f is continuous as the next result shows.

Proposition 7.2. If f ∈ C0(R) and f(x)/(1 + |x|) is integrable, then

(E ∗ f)(x+ iy)− (E ∗ f)(x− iy) → f(x0)

locally uniformly as x+ iy → x0 while y is positive.

Proof. We have

h(z) = (E ∗ f)(z) =
i

2π

∫
R

f(x− t)
t+ iy

dt, z = x+ iy ∈ C r R,

so that

h(z)− h(z) =
i

2π

∫
R

f(x− t)
t− iy − (t+ iy)

t2 + y2
dt =

1
π

∫
R

f(x− t)
y

t2 + y2
dt

for positive y. This is the Poisson integral of f ; 1
π

y
x2+y2 is a well-known

approximate identity, so the integral tends to f(x0) as x + iy → x0 while
y > 0, even locally uniformly.
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Thus the difference H(z) = h(z) − h(z), a harmonic function, is much
easier to work with than each of the terms when it comes to passage to the
limit. (However, there are of course other difficulties connected with the
harmonic functions: for instance, they do not form an algebra as do the
holomorphic functions.) This transform H is mentioned by Arne Beurling
in his note [1949:10]; he called it la transformée harmonique and used it to
define the spectrum of f . In his book [1983], Hörmander chose this as the
main definition of hyperfunctions. A systematic development of the theory of
hyperfunctions as boundary values of harmonic functions was undertaken by
Komatsu [1991, 1992].

8 Lützen’s first question

In his book Jesper Lützen wrote [1982:192]:
I do not know whether Carleman’s function pairs under the conditions (42)
always represent distributions. Tillmann’s growth condition in [1961b] sug-
gests that this is not the case.

The conditions (42) that Lützen refers to are the conditions (4.2), (4.3) of the
present paper.

We shall confirm Lützen’s conjecture. In doing so we shall allow ourselves
to use freely the language of the later theories of distributions and hyperfunc-
tions.

Fix a point a ∈ R, a 6= 0, and define

f(z) = exp
( 1
z − a

)
, z ∈ C r {a}.

Since f is bounded in a neighborhood of 0 as well as in a neighborhood of
∞, the pair of functions obtained by taking the restriction of f to the upper
and lower half planes is a Carleman pair of class (α, β) = (0, 0), but it does
not represent a Schwartz distribution. Indeed, if it did, then this distribution
would have its support contained in the singleton set {a}, and so would be a
finite linear combination of the Dirac measure at a and its derivatives. Since
(x−a)δa = 0, and similarly (x−a)mu = 0 when u is a derivative of δa if only
m is large enough, the pair representing u would be entire after multiplication
by (z−a)m for some m. Now this is obviously not the case with exp(1/(z−a));
the singularity at a is essential and cannot be removed just by multiplying
with some power of z − a.

We use here the fact, well known since the work of Sato, that all distribu-
tions, in particular all distributions with compact support, can be represented
by pairs of functions holomorphic in the upper and lower half plane, and that

ws-p8-50x6-00: submitted to World Scientific on May 6, 2002 13



this representation is unique up to adding an entire function to both functions
in the pair. So the zero distribution is only represented by a pair (f1, f2) where
the fj are restrictions of the same entire function.

9 Lützen’s second question

Lützen writes in his book [1982:192]
I have not been able to rigorously prove that Carleman’s and Schwartz’s
Fourier transforms of a tempered distribution are equal; but formal calcula-
tions strongly suggest that this is the case.

We can confirm Lützen’s suggestion:

Theorem 9.1. For any temperate distribution u ∈ S ′(R), Carleman’s Fourier
transform agrees with Schwartz’s Fourier transform; more precisely, u is rep-
resented by a Carleman pair (f1, f2) and the difference between the boundary
values, taken in the sense of distributions, from the upper and lower half planes
of Carleman’s Fourier transform CF(f1, f2) is equal to Schwartz’s Fourier
transform SF(u) of u.

Writing as before E(z) = i/(2πz), defined for z ∈ C r {0}, we know that
a distribution u ∈ E ′(R) is the difference between the boundary values of
the holomorphic function (E ∗ u)(z), z ∈ C r R. In fact, it is not necessary
that u have compact support; it is enough that u is so small at infinity that
the convolution has a good sense. In particular we may assume that u is a
continuous function which satisfies |u(x)| 6 C(1 + |x|)−α, x ∈ R, for some
positive α.

If f is a function in C1(R)∩L1(R), we may form by convolution a Carle-
man pair (f1, f2) to represent it (Proposition 7.1). We then know (Proposition
7.2) that the Carleman Fourier transform of this pair is a Carleman pair rep-
resenting the classical Fourier transform f̂ of f .

We also know that the Schwartz Fourier transform SF(f) of a function
f ∈ L1(R) agrees with the classical Fourier transform. When comparing the
definitions, we must agree on a definition of the classical Fourier transform.
Let us use in the sequel Carleman’s definition

F(f)(ξ) = f̂(ξ) =
1√
2π

∫
R

f(x)e−ixξdx, ξ ∈ R.

Modifying Schwartz’s definition accordingly, we can say that B(CF(f1, f2)) =
f̂ and SF(f) = [f̂ ] for f ∈ C1(R) ∩ L1(R). We express this fact by saying
that CF and SF agree on these functions.
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To go from these special functions to distributions we shall use the rules
F(xf) = iF(f)′ and F(f ′) = iξF(f), which hold for both Carleman’s and
Schwartz’s definitions. By applying them twice we see that

F
(
(1−∆)f

)
= (1 + ξ2)F(f) and F

(
(1 + x2)f

)
= (1−∆)F(f).

This yields, for functions f ∈ C1(R) ∩ L1(R),

SF
(
(1 + x2)f

)
= (1−∆)SF(f) = (1−∆)CF(f) = CF

(
(1 + x2)f

)
and

SF
(
(1−∆)f

)
= (1 + ξ2)SF(f) = (1 + ξ2)CF(f) = CF

(
(1−∆)f

)
.

Repeated use of these rules proves that the Schwartz and Carleman transfor-
mations agree on all generalized functions of the form (Ps ◦ Ps−1 ◦ · · · ◦ P1)f
for some f ∈ C1(R) ∩ L1(R), where each Pj is one of the operators 1 + x2,
1−∆. But this class of generalized functions is equal to all of S ′(R) as shown
by Theorem 9.4 below. (We will actually need that result only for k = 1 and
m = 0.)

The mapping 1 −∆ has an inverse, which in one variable is convolution
with the function w(x) = 1

2e
−|x|, x ∈ R. This is an integrable function,

and its derivative in the sense of distributions is w′(x) = w(x) for x < 0
and w′(x) = −w(x) for x > 0, which is also an integrable function, and
‖w‖1 = ‖w′‖1 = 1. Its second derivative in the sense of distributions is the
measure w′′ = w − δ, whose total mass is 2. We thus have three well-defined
convolution operators ϕ 7→ w∗ϕ, w′∗ϕ, w′′∗ϕ, satisfying inequalities ‖w∗ϕ‖∞,
‖w′ ∗ ϕ‖∞ 6 ‖ϕ‖∞ and ‖w′′ ∗ ϕ‖∞ 6 2‖ϕ‖∞.

Lemma 9.2. When u is any of the distributions w, w′, w′′ defined above,
then for all p > 0,

‖(1 + x2)p(u ∗ ϕ)‖∞ 6 Cp‖(1 + x2)pϕ‖∞, ϕ ∈ S(R).

Proof. Writing ψ(x) = (1 + x2)pϕ(x) we see that we have to prove that∣∣∣∣u ∗ ψ

(1 + x2)p

∣∣∣∣ 6
Cp

(1 + x2)p

when ‖ψ‖∞ 6 1. For u = δ this is clear; for u = w,w′ it suffices by symmetry
to prove that ∫ ∞

0

e−y

(1 + (x− y)2)p
dy 6

Cp

(1 + x2)p
, x ∈ R.
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This is easy when x 6 0, for then 1/(1 + (x − y)2)p 6 1/(1 + x2)p. When
x > 0 we consider two integrals. First∫ ∞

x/2

e−y

(1 + (x− y)2)p
dy 6

∫ ∞

x/2

e−ydy = e−x/2 6
Cp

(1 + x2)p
, x > 0.

Over the interval [0, x/2] we may estimate as follows:∫ x/2

0

e−y

(1 + (x− y)2)p
dy 6

∫ x/2

0

e−y

(1 + (x/2)2)p
dy

6
1

(1 + x2/4)p

∫ ∞

0

e−ydy 6
Cp

(1 + x2)p
.

Proposition 9.3. The topology of the space S(R) is the weakest topology
such that all norms

ϕ 7→ ‖ϕ‖p,q = sup
x∈Rn

|(1 + x2)p(1−∆)qϕ|, p, q ∈ N,

are continuous. More explicitly,

‖xjDkϕ‖∞ 6 C‖(1 + x2)p(1−∆)qϕ‖∞, ϕ ∈ S(R),

where p = j/2 and q = k/2 when k ∈ 2N; q = (k + 1)/2 when k ∈ 2N + 1.
The norms are essentially increasing in their indices: ‖ϕ‖p,q 6 C‖ϕ‖p′,q′ if
p 6 p′, q 6 q′. (Hence it suffices to use the norms ‖ϕ‖p,p.)

This implies that the continuity of a temperate distribution is conveniently
expressed by an estimate

(9.1) |u(ϕ)| 6 C‖ϕ‖p,q, ϕ ∈ S(Rn).

Proof. When k is even we have to prove that

‖(1 + x2)pD2qϕ‖∞ 6 C‖(1 + x2)p(1−∆)qϕ‖∞,

which may be written as

‖(1 + x2)p(w′′)∗q ∗ ψ‖∞ 6 C‖(1 + x2)pψ‖∞.

To prove this we use the lemma q times with u = w′′.
When k is odd we have to prove that

‖(1 + x2)pD2q−1ϕ‖∞ 6 C‖(1 + x2)p(1−∆)qϕ‖∞,

which may be written as

‖(1 + x2)p(w′′)∗(q−1) ∗ w′ ∗ ψ‖∞ 6 C‖(1 + x2)pψ‖∞.
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Here we use the lemma q − 1 times with u = w′′ and once with u = w′.
Finally, the inequality ‖ϕ‖p,q 6 C‖ϕ‖p,q′ , where q 6 q′, follows from q′−q

applications of the lemma with u = w.

Theorem 9.4. Given any temperate distribution u ∈ S ′(R) and any numbers
k,m ∈ N, there exist a number s ∈ N and a function f ∈ Ck(R) satisfying
(1 + x2)mf ∈ L1(R) such that u = (Ps ◦ Ps−1 ◦ · · · ◦ P1)f , where each Pj is
equal either to 1−∆ or to multiplication by 1 + x2.

This theorem is similar to that of Schwartz [1966:239]; however, it is adapted
to the operator 1−∆ and its proof is more direct.

Proof. If u is a temperate distribution, we know that

|u(ϕ)| 6 C‖ϕ‖p,q = C sup
x∈R

∣∣(1 + x2)p(1−∆)qϕ(x)
∣∣ ϕ ∈ S(R),

for some constants C, p, and q; see (9.1). There is a distribution v such that

(1−∆)q(1 + x2)pv = u,

for the mappings (1 − ∆)q and (1 + x2)p are isomorphisms. We see that
|v(ψ)| 6 C‖ψ‖0,0, if ψ is of the form (1 + x2)p(1−∆)qϕ for some ϕ ∈ S(R).
But this means that the estimate holds for all ψ ∈ S(R), and thus v is a
measure of finite total mass. The convolution product g = (1−∆)−1v = w ∗v
is a bounded continuous function. We can then form h = (1−∆)−rg, which
is a bounded function of class Ck if 2r > k. Indeed, (1−∆)−1 maps Cj ∩L∞
into Cj+2 ∩ L∞, j ∈ N, so (1−∆)−r maps C0 ∩ L∞ into C2r ∩ L∞. Finally
f = (1 + x2)−m−1h is such that (1 + x2)mf ∈ L1(R).

Collecting what we have done we see that

u = (1−∆)q(1 + x2)p(1−∆)r+1(1 + x2)m+1f.

10 Conclusion

In his lectures in 1935, Torsten Carleman represented the Fourier transform of
a function of temperate growth as a pair of functions defined in the upper and
lower half planes, respectively. He also extended the Fourier transformation
to be defined on such pairs. In modern parlance, he defined the Fourier
transformation of a class of hyperfunctions, but only in one variable. Although
very different in nature, his definition agrees with the one given later by
Laurent Schwartz for temperate distributions. His calculus, however, is valid
for a class of hyperfunctions strictly larger than the temperate distributions.
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Carleman’s monograph [1944] was probably not well-known; the same
goes for the proceedings article [1949]. However, a pirate edition of Carle-
man’s book [1944] was published in Japan after the war (Professor Hikosa-
buro Komatsu, personal communication, November 28, 2001). Nevertheless,
it seems that the work of Carleman did not play a role in the early develop-
ment of the theory of hyperfunctions in Japan. Lützen [1982:191] writes that
the connection was pointed out only by Bremermann & Durand in [1961].
Indeed they quote both Carleman [1944] and Sato [1958a].
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