FINAL EXAMINATION

1MA052 Ordinary Differential Equations II

Code/Name:

Problem 1. (Method of Frobenius)

Use the method of Frobenius to find the two solutions (for x > 0) of

$$2xy''(x) - y'(x) - y(x) = 0$$

(it is sufficient to find the recursion relations for the coefficients and write out several first terms of the solution).

Problem 2. (Sturm-Liouville problems)

Consider the following boundary value problem:

$$y'' + 2y' + \lambda y = 0$$
, $y(0) = 0$, $y'(1) = 0$.

- 1) Show that all eigenvalues are positive, and the n-th positive eigenvalue is $\lambda_n = \alpha_n^2 + 1$, where α_n is the n-th root of the $\tan z = z$.
- 2) Find eigenfunctions associated with λ_n .

Problem 3. (Limit sets, Stability)

Consider the system

$$x'(t) = y(t),$$

 $y'(t) = \sin^2\left(\frac{\pi}{x(t)^2 + y(t)^2}\right)y(t) - x(t).$

- 1) Show that the origin is a fixed point. Is it stable or unstable?
- 2) Show that the circles $x(t)^2 + y(t)^2 = \frac{1}{n}$, for integer $n \ge 1$, are periodic orbits.

- 3) Draw the phase portrait.
- 4) Determine all α and ω -limit sets.

Problem 4. (Poincaré-Bendixson, Limit cycles)

Consider the system

$$x'(t) = -y(t) + x(t)(1 - x(t)^{2} - y(t)^{2}),$$

$$y'(t) = x(t) + y(t)(1 - x(t)^{2} - y(t)^{2}).$$

- 1) Use the fact that $r^2 = x^2 + y^2$ to find the derivative r'(t).
- 2) Prove that all trajectories eventually enter the region r < C for some constant C.
- 3) Use the Poincaré-Bendixson theorem to prove that the system has a limit cycle.