Homework 2. Due Dec. 1st

Problem 1.

The Bessel function J_{ν} is one of the solutions to the Bessel equation

$$x^2y'' + xy' + (x^2 - 1)y = 0$$

Use the method of Frobenius to obtain the second linearly independent solution.

Problem 2. Find a Green's function for the system

$$y'' = f$$
, $y(0) = y(1) = 0$.

Check your answer by verifying that it gives x(x-1) s the solution when f=2. Evaluate the eigenvalues and eigenfunctions of

$$y'' = \lambda y$$
, $y(0) = y(1) = 0$,

and consequently find an orthonormal basis of $L^2[0,1]$.

Problem 8.1 (i) through (iv) from HSD (page 184) For each of the following systems

- a) Find all of the equilibrium points and describe the behaviour of the assiciated liniear system.
- b) Describe the phase portrait of the nonliner system.
- c) Does the linearized system accurately describe the local behavior near the equilibrium points?

$$(i) x' = \sin x, y' = \cos y,$$

(ii)
$$x' = x(x^2 + y^2), \quad y' = y(x^2 + y^2),$$

(iii)
$$x' = x + y^2$$
, $y' = 2y$,

$$(iv) \quad x' = y^2, \quad y' = y$$