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1. Hyperbolic sets and shadowing

1.1. Hyperbolic sets

Let M be a C1 Riemannian manifold, U ⊂M a non-empty open subset, f : U 7→ f(U)

- a C1 diffeomorphism.

A compact f -invariant subset Λ is hyperbolic if ∃ λ ∈ (0, 1) and families of subspaces

E±(x) ⊂ TxM , x ∈ Λ, s.t. for every x ∈ Λ:

• TxM = E+(x)⊕ E−(x);

• ‖D(fn)(x)|E+(x)‖ ≤ Cλn and n ≥ 0;

• ‖D(f−n)(x)|E−(x)‖ ≤ Cλn and n ≥ 0;

• Df(x)E±(x) = E±(f(x)).

1.2. Horseshoe: an example of a hyperbolic set

Figure 1. Generating a horseshoe.

A rectangle in Rk+l will mean a set of the form D1 × D2 ⊂ where Di are disks,

π1 : Rk+l 7→ Rk and π2 : Rk+l 7→ Rl will be two orthogonal projections. Rk will be called

the “horizontal” direction, Rl - the vertical.

Definition 1. (Full component) Suppose ∆ ⊂ U ⊂ Rk+l is a rectangle and f : U 7→ Rk+l

is a diffeo. A connected component ∆0 = f(∆′0) of ∆ ∩ f(∆) is called full, if

1) π2(∆′0) = D2;

2) for any z ∈ ∆′0, π1|f(∆′0∩(D1×π2(z))) is a bijection onto D1.
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Figure 2. Two horizontal rectangles ∆0 and ∆1.

Definition 2. (Horseshoe) If U ⊂ Rk+l is open then a rectangle ∆ = D1 ×D2 ⊂ U ⊂
Rk⊕Rl is called a horseshoe for a diffeo f : U 7→ Rk+l if ∆∩ f(∆) contains at least two

full components ∆0 and ∆1 such that for ∆′ = ∆0 ∩∆1..

1) π2(∆′) ⊂ intD2, π1(f−1(∆′)) ⊂ intD1;

2) D
(
f |f−1(∆′)

)
preserves and expands a horizontal cone family on f−1(∆′);

3) D (f−1|∆′) preserves and expands a vertical cone family on f−1(∆′).

• Let us study the maximal invariant subset of ∆. Denote ∆ω1 , ω1 = 0, 1, the two full

components of ∆ ∩ f 1(∆), and ∆ω1 = f−1(∆ω1), ω1 = 0, 1.

• The intersection ∆ ∩ f(∆) ∩ f 2(∆) consists of four horizontal rectangles:

∆ω1ω2 = ∆ω1

⋂
f(∆ω2) = f(∆ω1)

⋂
f 2(∆ω2),

ωi ∈ {0, 1}.

• Inductively, the set ∩ni=1f
i(∆) consists of 2n disjoint horizontal rectangles of

exponentially decreasing heights.

∆ω1...ωn :=
n⋂
i=1

f i(∆ωi), ωi ∈ {0, 1}.

Each infinite intersection

∆ω :=
n⋂
i=0

f i(∆ωi), ω = (ω1 . . . , ωn, . . .) ∈ Σ+
2 ,

is a horizontal fiber (a curve connecting the left and the right sides of ∆, such that the

projection π1 on the disk D1 is a bijection).
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Figure 3. A vertical rectangle is a preimage of the horizontal ∆1 = f−1(∆1).

Therefore, it gets mapped into the horizontal ∆1 by f ..

• Similarly, the sets

∆ω−n...ω0 :=
n⋂
i=0

f−i(∆ω−i), ω−i ∈ {0, 1},

are vertical rectangles, the sets

∆ω :=
n⋂
i=0

f−i(∆ω−i), ω = (. . . , ω−n, . . . , ω−1, ω0) ∈ Σ+
2 ,

are vertical fibers.

• The intersection of any vertical fiber with the set of horizontal fibers projects to a

Cantor set Λ2 in D2, while the intersection of any horizontal fiber with the vertical ones

projects to a Cantor set Λ1 in D1:

Λ2 := ∆...ω−n...ω−1,ω0

⋂(
∞⋂
i=1

f i(∆)

)
,

Λ1 := ∆ω1...ωn...

⋂(
∞⋂
i=0

f−i(∆)

)
.

• Finally, the set

Λ :=
∞⋂

i=−∞

f−i(∆)
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Figure 4. An approximation of the invariant hyperbolic set.

is an invariant set, equal to the product of two Cantor sets Λ1 and Λ2, hence a Cantor

set itself. The map h : Σ2 7→ Λ, given by

h(ω) =
∞⋂

i=−∞

f−i(∆ωi)

is the homeomorphism conjugating the shift σ|Σ2 to f |Λ.

Corollary 3. The horseshoe is a hyperbolic set. f |Λ is topologically conjugate to σ|Σ2.

Proof. Hyperbolicity follows from the invariance of the cone families and stretching of

the vectors inside the cones.

Corollary 4. f |Λ is topologically mixing. Periodic points of f are dense in Λ, and the

number of periodic points of period p is 2p.

For stable/unstable manifolds, horseshoe, the attractor, etc for the Hénon family

check this applet.

1.3. Homoclinic and heteroclinic intersections

Definition 5. (Homoclinic points) Let p be a hyperbolic periodic point of a diffeo

f : U 7→ M . A point q is homoclinic to p if q 6= p and q ∈ W s(p) ∩ W u(p). It is

transverse homoclinic if, additionally, W s(p) and W u(p) intersect transversely at q.

Definition 6. (Heteroclinic points) Suppose p1, . . . , pk be periodic points (of possibly

different periods) of f : U 7→ M . Suppose W u(pi) intersects W s(pi+1 at qi, i = 1, . . . , k

(pk+1 = p1. qi are called heteroclinic points.

http://www.ibiblio.org/e-notes/Chaos/homoclinic.htm
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Figure 5. Horseshoe for a Hénon map, taken from this applet.

Figure 6. Some possible configurations of homoclinic/heteroclinic intersections

Theorem 7. Let p be a hyperbolic periodic point of a diffeo f : U 7→ M and let q be a

transverse homoclinic point to p. Then for every ε > 0 the union of ε-neighborhoods of

the orbits of p and q contains a horseshoe of f .

http://www.ibiblio.org/e-notes/Chaos/homoclinic.htm
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Figure 7. A heteroclinic connection in a pendulum

1.4. Shadowing

An ε-orbit (a pseudo-orbit) if f : U 7→ M is a finite or infinite set {xn} s.t. s to

dist(f(xn), xn+1) < ε for all n.

Question: When are orbits of a perturbed dynamical system are ε-orbits of the

original one? This might give a us a way to conjugate the perturbed and the original

systems.

The following theorem answers this question.

Theorem 8. Shadowing Theorem Let Λ ⊆ M be a hyperbolic set for a C1-diffeo

f : M 7→ M of a smooth manifold M . Then there exists a nbhd. V of Λ and a

neighborhood W of f in C1(M,M) such that for all δ > 0 there exists ε > 0 s. t. for

all topological spaces X, homeos g : X 7→ X and continuous maps h0 : X 7→ X the

following holds.

If f̃ ∈ W is such that dC0(h0 ◦ g, f̃ ◦ h0) < ε then

1) (existence of a conjugacy) there is a continuous h1 : X 7→ V s.t.

h1 ◦ g = f̃ ◦ h1, and dC0(h0, h1) < δ;

2) (uniqueness of the conjugacy) ∃ δ0 = δ0(Λ, f) > 0, s.t. if h′1 : X 7→ V is a cont.

map satisfying h′1 ◦ g = f̃ ◦ h′1 and dC0(h′1, h1) < δ0 then h′1 = h1;

3) (continuity of the conjugacy) h1 depends continuously on f̃

Proof. The proof will be based on the Contraction Mapping Principle.

1) Set

Γ(X, h∗0TM) =
{
ξ ∈ C0(X,TM) : ξ(x) ∈ Th0(x)M

}
,
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the space of continous vector fields field “along” h0, endowed with the sup. norm. Now,

let V1 be any relatively compact nbhd. of Λ.

There is θ = θ(V1,M) > 0 such that A : Bθ(h0) 7→ Γ(X, h∗0TM) ⊂ C0(X, V1)

Definition 9. Let (X, f) be a dyn. sys. on a metric space X. An ε-psedu-orbit {xk}k∈Z
is δ-shadowed by an orbit of of x ∈ X under f if dX(xk, f

k(x)) < δ for all k ∈ Z.

Orbits of a hyperbolic dynamical system shadow pseudo-orbits:

Corollary 10. (Shadowing Lemma) Let Λ be a hyperbolic set for f : U 7→ M . Then ∃
an open nbhd V ⊃ Λ s.t. for every δ > 0 there is ε > 0 so that every ε-pseudo-orbit in

V is δ-shadowed by an orbit of f .

Furthermore, there is δ0 s. t. if δ < δ0 then the orbit of f shadowing the given

pseudo-orbit is unique.

Proof. Take X = Z (with discrete topology); g : X 7→ X given by g(k) = k + 1;

h0 : X 7→ V given by h0(k) = xk; and f̃ = f . By the Shadowing Theorem ∃ h1 : X 7→ V

such that h1 ◦ g = f ◦ h1 and dC0(h0, h1) < δ, i.e.

h1(k + 1) = f(h1(k)), for all k ∈ Z or h1(k) = fk(x),

where x = h1(0), and d(xkf
k(x)) < δ for all k ∈ Z as requested.

Periodic orbits of a hyperbolic dynamical system shadow pseudo-orbits

“uniformly”:

Corollary 11. (Anosov Closing Lemma) Let Λ be a hyperbolic set for f : U 7→M . Then

∃ an open nbhd V ⊃ Λ and C, ε0 > 0, s.t. for every ε < ε0 and any periodic ε-orbit

(x0, x1, . . . , xm) ⊂ V , there is a point y ∈ U s. t. fm(y) = y and dist(fk(y), xk) < Cε

for k = 0, 1, . . . ,m− 1.

Proof. Choose X = Zm, g(k) = k + 1modm, h0(k) = xk and f̃ = f in the Shadowing

Theorem.
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Remark 12. In particular, consider an almost periodic orbit, i.e. an orbit segment s.

t. dist(fm(x0), x0) < ε (this is a pseudo-orbit). Thus Anosov Closing Lemma implies

that close to any orbit in a hyperbolic set Λ that “almost” returns to itself, there is a

true periodic orbit (but not necessarily in Λ).

Finally, the Shadowing Theorem leads to the structural stability of hyperbolic sets:

Theorem 13. (Persistence of hyperbolic sets) Let Λ ⊆M be a hyperbolic set for a C1-

diffeo f : M 7→ M Then there exists an open nbhd. V ⊃ Λ s.t. for any C1 diffeo

g : M 7→M sufficiently C1-close to f , the completely invariant set

Λg
V =

⋂
m∈Z

gm(V̄ )

is hyperbolic for g, if not empty. In particular, Λf
V ⊇ Λ is hyperbolic.

Proof. 1) Extend the invariant splitting TxM = E+
x ⊕ E−x defined for x ∈ Λ to a

continuous (but not nec. invariant splitting ) on an open V1 ⊃ Λ. Given γ > 0, let

Hγ
x :=

{
u+ v ∈ TxMIu ∈ E+

x , v ∈ E−x , ‖v‖ ≤ γ‖‖u‖
}

be the corresponding horizontal cone in TxM , and let V g
x be the complimentary vertical

cone.

2) ∃ (λ, µ)-splitting on Λ =⇒

Df [x] (Hγ
x ) ⊆ H

γλ/µ
f(x) ⊂ intHγ

f(x) ∩ {0},

(Df [x])−1
(
V γ
f(x)

)
⊆ V γλ/µ

x ⊂ intV γ
x ∩ {0},

and

u+ v ∈ Hγ
x =⇒ ‖Df [x](u+ v)‖ ≥ µ− λγ

1 + γ
‖u+ v‖, (1.1)

u+ v ∈ (Df [x])−1
(
V γ
f(x)

)
=⇒ ‖Df [x](u+ v)‖ ≤ (1 + γ)λ‖u+ v‖. (1.2)

Now, by continuity, for any δ > 0 we can find a rel. compact nbhd V ⊆ V1 of Λ

and a nbhd f in C1-topology s.t. (7.14) and (7.15) remain valid with µ substituted by

µ− δ and λ by λ+ δ for all x ∈ V and g ∈ W .

The sequence of differentials Dg(gm(x)) admits a (λ′, µ′) splitting with

λ′ = (1 + γ)(λ+ δ),

µ′ =
µ− λγ − (1 + γ)δ

1 + γ
,

and if δ and γ are small, we still have λ′ < 1 < µ′, the set Λg
V is hyperbolic for g.
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Theorem 14. (Structural stability of hyperbolic sets) Let Λ ⊆ M be a hyperbolic set

for C1 diffeomorphism f : M 7→ M of a smooth manifold M . Then for every open

nbhd. V of Λ and every η > 0 there exists a nbhd. W of f in C1(M,M) such that

for all diffeomorphisms f̃ ∈ W there is a hyperbolic set Λ̃ ⊂ V , and a homeomorphism

H : Λ 7→ Λ̃ with

h ◦ f = f̃ ◦ h

on Λ and dC0(id, h) + dC0(id, h−1) < η. Furthermore, h is unique if δ is small enough.

Proof.

i) Apply the Shadowing Theorem taking δ < min{δ0, η/2}, X = Λ, h0 = idΛ and g = f .

Get a nbhd V1 ⊂ V of Λ, and a nbhd W1 of f , such that dC0(f̃ , f) < ε for all f̃ ∈ W1,

and a unique h1 : Λ 7→ V1 such that h1 ◦ f = f̃ ◦ h1 and dC0(idΛ, h1) < δ.

In particular, Λ̃ = h1(Λ) is completely f̃ -invariant and hyperbolic by Theorem 48

(after, possibly, a shrinking of W1).

ii) To prove that h1 is injective, we apply the Shadowing Theorem again taking δ as

before, X = Λ̃ and h0 := idΛ̃ and g = f̃ , we get the same nbhd W1 as soon as ε is small.

Then we have a unique h2 : Λ̃ 7→ V s.t. h2 ◦ f̃ = f ◦ h2 and dC0(idΛ̃, h2) < δ.

iii) To end the proof, it is sufficient to show that h2 ◦ h1 = idΛ. We apply again the

Shadowing Theorem with X = Λ, h0 = idΛ̃ and g = f̃ = f . Since

dC0(idΛ, h2 ◦h1) ≤ dC0(idΛ, h1)+dC0(h1, h2 ◦h1) = dC0(idΛ, h1)+dC0(idΛ̃, h2) < 2δ < δ0,

we can apply the uniqueness statement in the Shadowing Theorem to get

h2 ◦ h1 = idΛ,

because they both commute with f and are close to h1.
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