1. Hyperbolic sets and shadowing

1.1. Hyperbolic sets

Let M be a C^{1} Riemannian manifold, $U \subset M$ a non-empty open subset, $f: U \mapsto f(U)$ - a C^{1} diffeomorphism.

A compact f-invariant subset Λ is hyperbolic if $\exists \lambda \in(0,1)$ and families of subspaces $E^{ \pm}(x) \subset T_{x} M, x \in \Lambda$, s.t. for every $x \in \Lambda$:

- $T_{x} M=E^{+}(x) \oplus E^{-}(x)$;
- $\left\|\left.D\left(f^{n}\right)(x)\right|_{E^{+}(x)}\right\| \leq C \lambda^{n}$ and $n \geq 0$;
- $\left\|\left.D\left(f^{-n}\right)(x)\right|_{E^{-}(x)}\right\| \leq C \lambda^{n}$ and $n \geq 0$;
- $D f(x) E^{ \pm}(x)=E^{ \pm}(f(x))$.
1.2. Horseshoe: an example of a hyperbolic set

Figure 1. Generating a horseshoe.

A rectangle in \mathbb{R}^{k+l} will mean a set of the form $D_{1} \times D_{2} \subset$ where D_{i} are disks, $\pi_{1}: \mathbb{R}^{k+l} \mapsto \mathbb{R}^{k}$ and $\pi_{2}: \mathbb{R}^{k+l} \mapsto \mathbb{R}^{l}$ will be two orthogonal projections. \mathbb{R}^{k} will be called the "horizontal" direction, \mathbb{R}^{l} - the vertical.
Definition 1. (Full component) Suppose $\Delta \subset U \subset \mathbb{R}^{k+l}$ is a rectangle and $f: U \mapsto \mathbb{R}^{k+l}$ is a diffeo. A connected component $\Delta_{0}=f\left(\Delta_{0}^{\prime}\right)$ of $\Delta \cap f(\Delta)$ is called full, if

1) $\pi_{2}\left(\Delta_{0}^{\prime}\right)=D_{2}$;
2) for any $z \in \Delta_{0}^{\prime},\left.\pi_{1}\right|_{f\left(\Delta_{0}^{\prime} \cap\left(D_{1} \times \pi_{2}(z)\right)\right)}$ is a bijection onto D_{1}.

Figure 2. Two horizontal rectangles Δ_{0} and Δ_{1}.

Definition 2. (Horseshoe) If $U \subset \mathbb{R}^{k+l}$ is open then a rectangle $\Delta=D_{1} \times D_{2} \subset U \subset$ $\mathbb{R}^{k} \oplus \mathbb{R}^{l}$ is called a horseshoe for a diffeo $f: U \mapsto \mathbb{R}^{k+l}$ if $\Delta \cap f(\Delta)$ contains at least two full components Δ_{0} and Δ_{1} such that for $\Delta^{\prime}=\Delta_{0} \cap \Delta_{1}$..

1) $\pi_{2}\left(\Delta^{\prime}\right) \subset \operatorname{int} D_{2}, \quad \pi_{1}\left(f^{-1}\left(\Delta^{\prime}\right)\right) \subset \operatorname{int} D_{1}$;
2) $D\left(\left.f\right|_{f^{-1}\left(\Delta^{\prime}\right)}\right)$ preserves and expands a horizontal cone family on $f^{-1}\left(\Delta^{\prime}\right)$;
3) $D\left(\left.f^{-1}\right|_{\Delta^{\prime}}\right)$ preserves and expands a vertical cone family on $f^{-1}\left(\Delta^{\prime}\right)$.

- Let us study the maximal invariant subset of Δ. Denote $\Delta_{\omega_{1}}, \omega_{1}=0,1$, the two full components of $\Delta \cap f^{1}(\Delta)$, and $\Delta^{\omega_{1}}=f^{-1}\left(\Delta_{\omega_{1}}\right), \omega_{1}=0,1$.
- The intersection $\Delta \cap f(\Delta) \cap f^{2}(\Delta)$ consists of four horizontal rectangles:

$$
\Delta_{\omega_{1} \omega 2}=\Delta_{\omega_{1}} \bigcap f\left(\Delta_{\omega_{2}}\right)=f\left(\Delta^{\omega_{1}}\right) \bigcap f^{2}\left(\Delta^{\omega_{2}}\right)
$$

$\omega_{i} \in\{0,1\}$.

- Inductively, the set $\cap_{i=1}^{n} f^{i}(\Delta)$ consists of 2^{n} disjoint horizontal rectangles of exponentially decreasing heights.

$$
\Delta_{\omega_{1} \ldots \omega_{n}}:=\bigcap_{i=1}^{n} f^{i}\left(\Delta^{\omega_{i}}\right), \omega_{i} \in\{0,1\}
$$

Each infinite intersection

$$
\Delta_{\omega}:=\bigcap_{i=0}^{n} f^{i}\left(\Delta^{\omega_{i}}\right), \omega=\left(\omega_{1} \ldots, \omega_{n}, \ldots\right) \in \Sigma_{2}^{+}
$$

is a horizontal fiber (a curve connecting the left and the right sides of Δ, such that the projection π_{1} on the disk D_{1} is a bijection).

Figure 3. A vertical rectangle is a preimage of the horizontal $\Delta^{1}=f^{-1}\left(\Delta_{1}\right)$. Therefore, it gets mapped into the horizontal Δ_{1} by f..

- Similarly, the sets

$$
\Delta^{\omega_{-n} \ldots \omega_{0}}:=\bigcap_{i=0}^{n} f^{-i}\left(\Delta^{\omega_{-i}}\right), \omega_{-i} \in\{0,1\},
$$

are vertical rectangles, the sets

$$
\Delta^{\omega}:=\bigcap_{i=0}^{n} f^{-i}\left(\Delta^{\omega_{-i}}\right), \omega=\left(\ldots, \omega_{-n}, \ldots, \omega_{-1}, \omega_{0}\right) \in \Sigma_{2}^{+}
$$

are vertical fibers.

- The intersection of any vertical fiber with the set of horizontal fibers projects to a Cantor set Λ_{2} in D_{2}, while the intersection of any horizontal fiber with the vertical ones projects to a Cantor set Λ_{1} in D_{1} :

$$
\begin{aligned}
& \Lambda_{2}:=\Delta^{\ldots \omega_{-n} \ldots \omega_{-1}, \omega_{0}} \bigcap\left(\bigcap_{i=1}^{\infty} f^{i}(\Delta)\right), \\
& \Lambda_{1}:=\Delta_{\omega_{1} \ldots \omega_{n} \ldots} \bigcap\left(\bigcap_{i=0}^{\infty} f^{-i}(\Delta)\right) .
\end{aligned}
$$

- Finally, the set

$$
\Lambda:=\bigcap_{i=-\infty}^{\infty} f^{-i}(\Delta)
$$

Figure 4. An approximation of the invariant hyperbolic set.
is an invariant set, equal to the product of two Cantor sets Λ_{1} and Λ_{2}, hence a Cantor set itself. The map $h: \Sigma_{2} \mapsto \Lambda$, given by

$$
h(\omega)=\bigcap_{i=-\infty}^{\infty} f^{-i}\left(\Delta^{\omega_{i}}\right)
$$

is the homeomorphism conjugating the shift $\left.\sigma\right|_{\Sigma_{2}}$ to $\left.f\right|_{\Lambda}$.
Corollary 3. The horseshoe is a hyperbolic set. $\left.f\right|_{\Lambda}$ is topologically conjugate to $\left.\sigma\right|_{\Sigma_{2}}$.
Proof. Hyperbolicity follows from the invariance of the cone families and stretching of the vectors inside the cones.

Corollary 4. $\left.f\right|_{\Lambda}$ is topologically mixing. Periodic points of f are dense in Λ, and the number of periodic points of period p is 2^{p}.

For stable/unstable manifolds, horseshoe, the attractor, etc for the Hénon family check this applet,

1.3. Homoclinic and heteroclinic intersections

Definition 5. (Homoclinic points) Let p be a hyperbolic periodic point of a diffeo $f: U \mapsto M$. A point q is homoclinic to p if $q \neq p$ and $q \in W^{s}(p) \cap W^{u}(p)$. It is transverse homoclinic if, additionally, $W^{s}(p)$ and $W^{u}(p)$ intersect transversely at q.
Definition 6. (Heteroclinic points) Suppose p_{1}, \ldots, p_{k} be periodic points (of possibly different periods) of $f: U \mapsto M$. Suppose $W^{u}\left(p_{i}\right)$ intersects $W^{s}\left(p_{i+1}\right.$ at $q_{i}, i=1, \ldots, k$ ($p_{k+1}=p_{1} . q_{i}$ are called heteroclinic points.

Figure 5. Horseshoe for a Hénon map, taken from this applet.

Figure 6. Some possible configurations of homoclinic/heteroclinic intersections

Theorem 7. Let p be a hyperbolic periodic point of a diffeo $f: U \mapsto M$ and let q be a transverse homoclinic point to p. Then for every $\epsilon>0$ the union of ϵ-neighborhoods of the orbits of p and q contains a horseshoe of f.

Figure 7. A heteroclinic connection in a pendulum

1.4. Shadowing

An ϵ-orbit (a pseudo-orbit) if $f: U \mapsto M$ is a finite or infinite set $\left\{x_{n}\right\}$ s.t. s to

Question: When are orbits of a perturbed dynamical system are ϵ-orbits of the original one? This might give a us a way to conjugate the perturbed and the original systems.

The following theorem answers this question.
Theorem 8. Shadowing Theorem Let $\Lambda \subseteq M$ be a hyperbolic set for a C^{1}-diffeo $f: M \mapsto M$ of a smooth manifold M. Then there exists a nbhd. V of Λ and a neighborhood W of f in $C^{1}(M, M)$ such that for all $\delta>0$ there exists $\epsilon>0$ s. t. for all topological spaces X, homeos $g: X \mapsto X$ and continuous maps $h_{0}: X \mapsto X$ the following holds.

If $\tilde{f} \in W$ is such that $d_{C^{0}}\left(h_{0} \circ g, \tilde{f} \circ h_{0}\right)<\epsilon$ then

1) (existence of a conjugacy) there is a continuous $h_{1}: X \mapsto V$ s.t.

$$
h_{1} \circ g=\tilde{f} \circ h_{1}, \text { and } d_{C^{0}}\left(h_{0}, h_{1}\right)<\delta ;
$$

2) (uniqueness of the conjugacy) $\exists \delta_{0}=\delta_{0}(\Lambda, f)>0$, s.t. if $h_{1}^{\prime}: X \mapsto V$ is a cont. map satisfying $h_{1}^{\prime} \circ g=\tilde{f} \circ h_{1}^{\prime}$ and $d_{C^{0}}\left(h_{1}^{\prime}, h_{1}\right)<\delta_{0}$ then $h_{1}^{\prime}=h_{1}$;
3) (continuity of the conjugacy) h_{1} depends continuously on \tilde{f}

Proof. The proof will be based on the Contraction Mapping Principle.

1) Set

$$
\Gamma\left(X, h_{0}^{*} T M\right)=\left\{\xi \in C^{0}(X, T M): \xi(x) \in T_{h_{0}(x)} M\right\}
$$

the space of continous vector fields field "along" h_{0}, endowed with the sup. norm. Now, let V_{1} be any relatively compact nbhd. of Λ.

There is $\theta=\theta\left(V_{1}, M\right)>0$ such that $\mathcal{A}: B_{\theta}\left(h_{0}\right) \mapsto \Gamma\left(X, h_{0}^{*} T M\right) \subset C^{0}\left(X, V_{1}\right)$

Definition 9. Let (X, f) be a dyn. sys. on a metric space X. An ϵ-psedu-orbit $\left\{x_{k}\right\}_{k \in \mathbb{Z}}$ is δ-shadowed by an orbit of of $x \in X$ under f if $d_{X}\left(x_{k}, f^{k}(x)\right)<\delta$ for all $k \in \mathbb{Z}$.

Orbits of a hyperbolic dynamical system shadow pseudo-orbits:

Corollary 10. (Shadowing Lemma) Let Λ be a hyperbolic set for $f: U \mapsto M$. Then \exists an open nbhd $V \supset \Lambda$ s.t. for every $\delta>0$ there is $\epsilon>0$ so that every ϵ-pseudo-orbit in V is δ-shadowed by an orbit of f.

Furthermore, there is $\delta_{0} s$. t. if $\delta<\delta_{0}$ then the orbit of f shadowing the given pseudo-orbit is unique.

Proof. Take $X=\mathbb{Z}$ (with discrete topology); $g: X \mapsto X$ given by $g(k)=k+1$; $h_{0}: X \mapsto V$ given by $h_{0}(k)=x_{k}$; and $\tilde{f}=f$. By the Shadowing Theorem $\exists h_{1}: X \mapsto V$ such that $h_{1} \circ g=f \circ h_{1}$ and $d_{C^{0}}\left(h_{0}, h_{1}\right)<\delta$, i.e.

$$
h_{1}(k+1)=f\left(h_{1}(k)\right), \text { for all } k \in \mathbb{Z} \text { or } h_{1}(k)=f^{k}(x),
$$

where $x=h_{1}(0)$, and $d\left(x_{k} f^{k}(x)\right)<\delta$ for all $k \in \mathbb{Z}$ as requested.

Periodic orbits of a hyperbolic dynamical system shadow pseudo-orbits "uniformly":

Corollary 11. (Anosov Closing Lemma) Let Λ be a hyperbolic set for $f: U \mapsto M$. Then
 $\left(x_{0}, x_{1}, \ldots, x_{m}\right) \subset V$, there is a point $y \in U$ s. $t . f^{m}(y)=y$ and $\operatorname{dist}\left(f^{k}(y), x_{k}\right)<C \epsilon$ for $k=0,1, \ldots, m-1$.

Proof. Choose $X=\mathbb{Z}_{m}, g(k)=k+1 \operatorname{modm}, h_{0}(k)=x_{k}$ and $\tilde{f}=f$ in the Shadowing Theorem.

Remark 12. In particular, consider an almost periodic orbit, i.e. an orbit segment s. t. $\operatorname{dist}\left(f^{m}\left(x_{0}\right), x_{0}\right)<\epsilon$ (this is a pseudo-orbit). Thus Anosov Closing Lemma implies that close to any orbit in a hyperbolic set Λ that "almost" returns to itself, there is a true periodic orbit (but not necessarily in Λ).

Finally, the Shadowing Theorem leads to the structural stability of hyperbolic sets:
Theorem 13. (Persistence of hyperbolic sets) Let $\Lambda \subseteq M$ be a hyperbolic set for a C^{1} diffeo $f: M \mapsto M$ Then there exists an open nbhd. $V \supset \Lambda$ s.t. for any C^{1} diffeo $g: M \mapsto M$ sufficiently C^{1}-close to f, the completely invariant set

$$
\Lambda_{V}^{g}=\bigcap_{m \in \mathbb{Z}} g^{m}(\bar{V})
$$

is hyperbolic for g, if not empty. In particular, $\Lambda_{V}^{f} \supseteq \Lambda$ is hyperbolic.
Proof. 1) Extend the invariant splitting $T_{x} M=E_{x}^{+} \oplus E_{x}^{-}$defined for $x \in \Lambda$ to a continuous (but not nec. invariant splitting) on an open $V_{1} \supset \Lambda$. Given $\gamma>0$, let

$$
H_{x}^{\gamma}:=\left\{u+v \in T_{x} M I u \in E_{x}^{+}, v \in E_{x}^{-},\|v\| \leq \gamma\| \| u \|\right\}
$$

be the corresponding horizontal cone in $T_{x} M$, and let V_{x}^{g} be the complimentary vertical cone.
2) $\exists(\lambda, \mu)$-splitting on $\Lambda \Longrightarrow$

$$
\begin{array}{ll}
D f[x]\left(H_{x}^{\gamma}\right) & \subseteq H_{f(x)}^{\gamma \lambda / \mu} \subset \operatorname{int} H_{f(x)}^{\gamma} \cap\{0\}, \\
(D f[x])^{-1}\left(V_{f(x)}^{\gamma}\right) & \subseteq V_{x}^{\gamma \lambda / \mu} \subset \operatorname{int} V_{x}^{\gamma} \cap\{0\},
\end{array}
$$

and

$$
\begin{align*}
& u+v \in H_{x}^{\gamma} \Longrightarrow\|D f[x](u+v)\| \geq \frac{\mu-\lambda \gamma}{1+\gamma}\|u+v\| \tag{1.1}\\
& u+v \in(D f[x])^{-1}\left(V_{f(x)}^{\gamma}\right) \Longrightarrow\|D f[x](u+v)\| \leq(1+\gamma) \lambda\|u+v\| \tag{1.2}
\end{align*}
$$

Now, by continuity, for any $\delta>0$ we can find a rel. compact nbhd $V \subseteq V_{1}$ of Λ and a nbhd f in C^{1}-topology s.t. 7.14 and 7.15 remain valid with μ substituted by $\mu-\delta$ and λ by $\lambda+\delta$ for all $x \in V$ and $g \in W$.

The sequence of differentials $D g\left(g^{m}(x)\right)$ admits a $\left(\lambda^{\prime}, \mu^{\prime}\right)$ splitting with

$$
\begin{aligned}
& \lambda^{\prime}=(1+\gamma)(\lambda+\delta) \\
& \mu^{\prime}=\frac{\mu-\lambda \gamma-(1+\gamma) \delta}{1+\gamma}
\end{aligned}
$$

and if δ and γ are small, we still have $\lambda^{\prime}<1<\mu^{\prime}$, the set Λ_{V}^{g} is hyperbolic for g.

Theorem 14. (Structural stability of hyperbolic sets) Let $\Lambda \subseteq M$ be a hyperbolic set for C^{1} diffeomorphism $f: M \mapsto M$ of a smooth manifold M. Then for every open nbhd. V of Λ and every $\eta>0$ there exists a nbhd. W of f in $C^{1}(M, M)$ such that for all diffeomorphisms $\tilde{f} \in W$ there is a hyperbolic set $\tilde{\Lambda} \subset V$, and a homeomorphism $H: \Lambda \mapsto \tilde{\Lambda}$ with

$$
h \circ f=\tilde{f} \circ h
$$

on Λ and $d_{C^{0}}(\mathrm{id}, h)+d_{C^{0}}\left(\mathrm{id}, h^{-1}\right)<\eta$. Furthermore, h is unique if δ is small enough.
Proof.
i) Apply the Shadowing Theorem taking $\delta<\min \left\{\delta_{0}, \eta / 2\right\}, X=\Lambda, h_{0}=\mathrm{id}_{\Lambda}$ and $g=f$. Get a nbhd $V_{1} \subset V$ of Λ, and a nbhd W_{1} of f, such that $d_{C^{0}}(\tilde{f}, f)<\epsilon$ for all $\tilde{f} \in W_{1}$, and a unique $h_{1}: \Lambda \mapsto V_{1}$ such that $h_{1} \circ f=\tilde{f} \circ h_{1}$ and $d_{C^{0}}\left(\mathrm{id}_{\Lambda}, h_{1}\right)<\delta$.

In particular, $\tilde{\Lambda}=h_{1}(\Lambda)$ is completely \tilde{f}-invariant and hyperbolic by Theorem 48 (after, possibly, a shrinking of W_{1}).
ii) To prove that h_{1} is injective, we apply the Shadowing Theorem again taking δ as before, $X=\tilde{\Lambda}$ and $h_{0}:=\operatorname{id}_{\tilde{\Lambda}}^{\tilde{\Lambda}}$ and $g=\tilde{f}$, we get the same nbhd W_{1} as soon as ϵ is small. Then we have a unique $h_{2}: \tilde{\Lambda} \mapsto V$ s.t. $h_{2} \circ \tilde{f}=f \circ h_{2}$ and $d_{C^{0}}\left(\mathrm{id}_{\tilde{\Lambda}}, h_{2}\right)<\delta$.
iii) To end the proof, it is sufficient to show that $h_{2} \circ h_{1}=\mathrm{id}_{\Lambda}$. We apply again the Shadowing Theorem with $X=\Lambda, h_{0}=\operatorname{id}_{\tilde{\Lambda}}$ and $g=\tilde{f}=f$. Since
$d_{C^{0}}\left(\mathrm{id}_{\Lambda}, h_{2} \circ h_{1}\right) \leq d_{C^{0}}\left(\mathrm{id}_{\Lambda}, h_{1}\right)+d_{C^{0}}\left(h_{1}, h_{2} \circ h_{1}\right)=d_{C^{0}}\left(\mathrm{id}_{\Lambda}, h_{1}\right)+d_{C^{0}}\left(\mathrm{id}_{\tilde{\Lambda}}, h_{2}\right)<2 \delta<\delta_{0}$,
we can apply the uniqueness statement in the Shadowing Theorem to get

$$
h_{2} \circ h_{1}=\mathrm{id}_{\Lambda},
$$

because they both commute with f and are close to h_{1}.

