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Periodicity versus Chaos in
One-Dimensional Dynamics∗

Hans Thunberg†

Abstract. We survey recent results in one-dimensional dynamics and, as an application, we derive
rigorous basic dynamical facts for two standard models in population dynamics, the Ricker
and the Hassell families. We also informally discuss the concept of chaos in the context of
one-dimensional discrete time models.

First we use the model case of the quadratic family for an informal exposition. We
then review precise generic results before turning to the population models.

Our focus is on typical asymptotic behavior, seen for most initial conditions and
for large sets of maps. Parameter sets corresponding to different types of attractors are
described. In particular it is shown that maps with strong chaotic properties appear
with positive frequency in parameter space in our population models. Natural measures
(asymptotic distributions) and their stability properties are considered.
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Part I. An Informal Overview
1. Introduction. The object of this paper is to survey some aspects of what is

presently known about the asymptotic dynamics of interval mappings and also to
give applications to two standard models in population dynamics. We consider one-
dimensional systems whose state space is an interval I, with a discrete time evolution
given by a mapping f : I → I; if the system is in state xn at time n, it will be
in state xn+1 = f(xn) at time n + 1. Our main theme is, What is the typical long-
time behavior for such a system? Here, typical means something that is seen for many
initial conditions and many parameters. The requirements on f will vary from theorem
to theorem in order to avoid being unnecessarily restrictive, but our main concern is
unimodal (one-humped) mappings with some smoothness and parameterized families
of such mappings. A particularly well understood case is the quadratic (alias the
logistic) family

Qλ(x) = λx(1− x), 0 < λ ≤ 4,(1.1)

mapping the interval [0, 1] into itself.
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In population dynamics one often considers the Ricker family [Ric54]

Rλ,β(x) = λxe−βx, λ > 1, β > 0,(1.2)

and the Hassell family [Has74]

Hλ,β(x) =
λx

(1 + x)β
, λ > 1, β > 1.(1.3)

Both these models have [0,∞) as state space, but all nontransient dynamics takes
place on a bounded interval.

Robert May’s famous article [May76] was one of the first to call broad attention
to the complexity of the dynamics produced by systems such as these. Background on
the use of these models in population dynamics can be found in the above-mentioned
sources and in [HLM74] and [MO76]. Surveys also appear in the books by Renshaw
[Ren91] and Murray [Mur93]. A discussion of chaos in ecological modeling with an
extensive bibliography can be found in [HHE+93]. Recent work includes [Mor90],
where problems with fitting models to real data was discussed; [GHK94] and [HV97]
considered the case of stochastically varying parameters; in [GHL97] certain models
were studied that combine discrete and continuous time modeling. Nice introductions
to the mathematical aspects of unimodal dynamics can be found in [CE80] and in
[Dev89].

The present article is an attempt to complement, update, and refine the above-
mentioned expositions. The case of deterministic one-dimensional dynamics is today
fairly well understood, and even though there is a considerable technical machinery
involved, many theorems that are relevant for applications can be stated and under-
stood in a standard context.

We will discuss attractors (there is a unique one for each of the systems above)
and so-called natural measures which describe the asymptotic distributions on the
attractors. A strong form of chaotic maps, which are characterized by a natural
measure with an integrable density and exponential sensitivity to initial conditions, is
recognized, and it is shown that such maps appear with positive probability in typical
families.

We particularly want to stress that the parameter dependence is much more subtle
and complicated (and interesting) than the much oversimplified picture sometimes put
forth of a sequence of period-doubling bifurcations leading to a “chaotic regime.” This
“chaotic regime” is in fact densely interspersed with “periodic regimes,” some corre-
sponding to short cycles, where typical orbits are absorbed into one single periodic
motion. Also, asymptotic distributions depend in a nontrivial way on the parameter.
We consider both deterministic and stochastic perturbations.

This paper is divided into three parts. Part I continues with a few remarks on
one-dimensional models and on the concept of chaos. Next follows an informal survey
of what can be expected in one-parameter families of systems, using (1.1) as a model
case. Then in Part II follow a few sections containing precisely formulated theorems.
In Part III this theory is applied to the Ricker and Hassell models.

This is a survey. Of the theorems stated in Part II, only parts of Theorem 20 on the
parameter dependence of natural measures are original to the author. The conclusions
for the population models in Part III are in most cases easy consequences of the
theorems of Part II, requiring only routine calculations. The proof of Theorems 28 and
29 (abundance of chaotic maps) is the least trivial part. Most of the statements of Part
III have been part of the working assumptions in population dynamics for many years,
but only recently have tools become available to back them up with rigorous results.
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1.1. The Visible versus the Invisible: Period Three versus Chaos. When mod-
eling with dynamical systems, one is primarily interested in phenomena that are
visible, numerically and in real life. This means focusing on dynamics that are stable
under perturbations and that are realized for large sets of initial conditions and pa-
rameters. Catchy as it might be, the title “Period Three Implies Chaos” of the often
cited paper [LY75] by Li and Yorke causes confusion when this dichotomy between
visible and invisible dynamics is neglected. Sometimes chaos is declared to exist in a
certain system, because a period-3 orbit has been detected. But the chaos alluded to
in the theorem of Li and Yorke might very well take place on a set of Lebesgue measure
zero and thus be completely invisible. For example, there is an open set of parameters
for which the quadratic maps Qλ have a globally attracting 3-cycle, attracting almost
all (in the sense of Lebesgue measure) initial conditions. So these maps will model a
highly regular behavior, even though there is some weak type of chaos taking place
on an invisible set. The same is true for the families (1.2) and (1.3): For each fixed
β there is an open interval of λ values such that the corresponding map has a 3-cycle
attracting almost all initial conditions. See Figure 1 for an example, taken from the
Hassell family. These period-3 windows in parameter space are clearly visible in Fig-
ures 2 (logistic), 3 (Hassell), and 5 (Ricker). Note that this is deep into “the chaotic
regime.” (This coexistence of period-3 chaos and a global periodic attractor in fact
persists on a dense set of λ values to the right of these period-3 windows, since maps
with periodic attractors are dense in parameter space and the period-3 orbit persists
as an unstable one.)

1.2. Long-Periodic Motions versus Chaos. In real phenomena, a long stable
cycle will be indistinguishable from nonperiodic motion, simply because one never
observes more than a finite number of generations. Whether or not an attractor is
truly nonperiodic is probably of purely academic interest; in this respect, the asymp-
totic theory of dynamical systems might not seem very relevant. But for the overall
picture, theory is important. For example, we will see that the asymptotic distribu-
tion of orbits, though almost independent of initial conditions, will be very sensitive
to perturbations in parameter space when we are close to certain chaotic systems.
One should also be aware of the following scenario, which could be realized in any of
the models above.

Suppose we are given a system f , which has stable cycle of length p, but this has
not been revealed to us. We choose an initial condition x0 and observe its orbit for,
say, p − 1 steps. So far we have not detected any periodic motion, and furthermore
it can happen that small perturbations of x0 grow rapidly during these first p − 1
iterates. If p is large we may then be tempted to declare the motion to be chaotic,
but following the system for one more step we see the orbit closing, and the sensitivity
to perturbations is killed by a small derivative in this last step of the cycle. Using the
word chaos for a possibly longer-than-observed stable periodic motion could thus be
very misleading.

It is true that the transient phase could be long and complicated before settling
into a (possibly short) periodic cycle. In the presence of a 3-cycle, stable or unstable,
Šarkovsḱĭı’s theorem [Šar64] implies that there are cycles of all orders and that these
will influence the transient dynamics. But to avoid verbal inflation, we suggest sticking
to the word complicated, and saving chaos for systems that are truly and visibly
chaotic in the sense hinted at above and to be described below.

Unfortunately, in a parameterized model it is almost never possible to pinpoint a
truly chaotic parameter, even though one knows that they are there (in great abun-
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Fig. 1 Two orbits, xn versus n, of the Hassell map H31,20.914 of (1.3), which has an attracting
3-cycle 0.0017 �→ 0.0485 �→ 0.5584 �→ 0.0017, attracting almost all orbits.
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dance), and it is not always true that a chaotic map and nearby maps with long
stable cycles have the same asymptotics even on a coarse-grained level. But on the
other hand, we will see that small random perturbations of a chaotic map often
roughly preserve the asymptotics and that strongly chaotic maps typically occupy a
positive measure set in parameter space. In this sense, chaotic maps are visible and
stochastically robust.

1.3. Deterministic One-Dimensional Models in Population Dynamics. There
are several motivations to study deterministic time-discrete one-dimensional models
in the context of population dynamics:

1. Such models are indeed used in population dynamics; see, for example, [Ric54],
[May76], [HLM74], [Ren91], [Mur93], and references therein.

2. Higher dimensional systems can sometimes be approximated by, or reduced
to, one-dimensional systems. This could be through different scales of relax-
ation times, or by considering return maps for continuous time systems to
some lower dimensional subset. How models like (1.2) could be derived from
models with structured competition is discussed in [GHL97] and in the refer-
ences therein. See also [BS99] for an example of a Ricker-like map as a first
return map for amplitudes in a certain continuous-time predator-prey model.

3. For many of the results described in this paper there are analogous state-
ments about more complex systems, some of them proven and some of them
expected to be true in generic situations. So the fairly well understood one-
dimensional case (and in particular the quadratic family) can be seen as a
model of models, exhibiting various features one could expect to find in more
complicated (realistic) systems.

4. Even when a stochastic model is preferred, the study of such a model is of-
ten facilitated by a good understanding of its deterministic counterpart. See,
for example, [Hög97], where Ricker maps and their asymptotic distributions
appear as a limiting case of certain stochastic branching models.

2. An Informal Summary. We now give an informal summary, using the quad-
ratic family (1.1) as an example. We will give signposts to the full theorems appearing
in the following sections, where the reader can see in which situations the various
properties are rigorously known. When we say that a set is “large” we mean that it
has positive Lebesgue measure; “almost all” means full Lebesgue measure. fn will as
usual denote the nth iterate of f .

2.1. The Attractor. Let us imagine the following experiment. For each parame-
ter λ we pick a random initial point x0 ∈ [0, 1] and start to compute its orbit

{xn(λ)}∞n=0, where xn(λ) := Qn
λ(x0).

What is the long-time behavior of this sequence? Denote by ωλ(x0) the set of accu-
mulation points of the orbit of x0 under Qλ, that is, the set where the orbit tends to
settle down once transients have died out. It is conceivable that the different initial
points x0 will have different asymptotic orbits, but it turns out that this is typically
not the case. For each λ there exists a unique set Ωλ ⊂ [0, 1], the metric attractor
(Definition 1) of Qλ, such that ωλ(x0) = Ωλ for almost all x0. In other words, if we
choose x0 from a uniform distribution on [0, 1], the orbit of x0 will be attracted to
and fill out Ωλ with full probability. For different λ values we see different attractors.
If we plot Ωλ versus λ we obtain the well-known bifurcation diagram of Figure 2.
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Fig. 2 The attractor Ωλ versus λ for the logistic map Qλ(x) = λx(1− x) of (1.1). For 400 equally
spaced λ values we have computed 900 iterates of x0 = 0.5. For each λ, iterates x301–x900, an
approximation of Ωλ, are shown. For a dense set of parameters, Ωλ is a (possibly very long)
periodic cycle. Notice the parameter interval around λ ≈ 3.85, where we see an attractive
3-cycle followed by a cascade of attractive (3 · 2n)-cycles.

The attractor Ωλ comes in only three different flavors (see Theorem 6):
(1) a periodic cycle,
(2) an attracting Cantor set of zero Lebesgue measure, and
(3) a finite union of intervals;

all of them do appear. Chaos in almost any sense (except for “period-3 chaos”) is
only possible when we have an interval attractor.

2.2. The Structure in Parameter Space. A natural task is to describe the set
of parameters corresponding to these three different types. In the quadratic case the
following is true.

(1) P := {λ | Ωλ is a periodic cycle} is dense in parameter space (see Theo-
rems 14 and 17) and consists of countably infinitely many nontrivial inter-
vals. Moving the parameter inside one connected component of P, we see
the period-doubling scenario, with universal scaling in parameter space (see
section 2.6).

(2) C := {λ | Ωλ is a Cantor set} is a completely disconnected set of Lebesgue
measure zero (see Theorem 10).

(3) I := {λ | Ωλ is a union of intervals} is a completely disconnected set of posi-
tive Lebesgue measure (see Theorems 9 and 18).
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So the type of attractor we are likely to find depends on how we restrict our parameter.
Any nontrivial parameter interval will contain maps with stable cycles, and inside one
of the components of P we find stable periodic maps with full probability. But close to
a λ ∈ I we are likely to find interval attractors. Recall that this is a general property of
a set of positive Lebesgue measure: almost all points of the set are so-called Lebesgue
density points, where measure accumulates.

2.3. The Distribution of Orbits. Knowing that for a given system Qλ almost
all orbits tend to the same attractor, we might ask how different orbits distribute
themselves on the attractor. Except for when Ωλ is a periodic cycle, it is not a priori
clear that they have the same distribution. We put point masses along the orbits and
normalize in order to obtain a probability measure: we form the Birkhoff sums

µλ,n(x0) =
1
n

n−1∑
k=0

δxk(λ).

Hoping for convergence, we take the limit (in the weak* sense1)

µλ(x0) = lim
n→∞

µλ,n(x0)

in order to obtain a probability measure describing the asymptotic distribution of the
orbit of x0 under Qλ. For an interval J , µλ(x0)(J) is then the asymptotic frequency
with which the orbit of x0 under Qλ visits J . Note that µλ(x0) will be invariant :

µλ(x0)(Q−1
λ E) = µλ(x0)(E) for any measurable set E.

Our hope is that µλ(x0) should exist and also be essentially independent of x0, so that
we can speak of a common invariant measure µλ describing the asymptotics for a large
set of initial conditions. In this case µλ is called a natural (physical, observable, SRB,
SBR, etc.2) measure (see Definition 8). This is indeed true for almost all quadratic
maps (but fails for uncountably many parameters λ). More precisely, we have the
following (see Theorems 9 and 10):

(1) If λ ∈ P, there exists a natural measure µλ and µλ = µλ(x0) for almost all
x0. µλ consists of normalized point masses on the periodic cycle Ωλ.

(2) If λ ∈ C, there exists a natural measure µλ and µλ = µλ(x0) for almost all
x0. The support of µλ equals the Cantor attractor Ωλ, and so µλ is singular
with respect to Lebesgue measure.

(3) (a) There is a full-measure subset S ⊂ I such that for all λ ∈ S, there exists
a natural measure µλ that equals µλ(x0) for almost all x0. Furthermore,
µλ is absolutely continuous with respect to Lebesgue measure; that is,
µλ has an integrable density, and the support of µλ equals the interval
attractor Ωλ.

(b) There are uncountably many parameters in I\S. For these maps various
singular phenomena can occur: Qλ may lack a finite natural measure al-
together, or the distribution on the interval attractor could be extremely
nonuniform, leading to a measure with a nonintegrable density.

If we start off with a distribution of initial conditions rather than a single initial
point, then the natural measures are attracting stationary states. This point of view
is suitable when comparing with stochastic models.

1Recall that µ is the weak* limit of µn if
∫
I fdµ = limn→∞

∫
I fdµn for any function f continuous

on I.
2This concept was introduced by Ya. G. Sinai in the context of so-called Anosov systems and

was applied by D. Ruelle and R. Bowen in the setting of Axiom A systems.
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2.4. Periodic Cycles or Chaos. We have just seen that for almost all parameters
λ, Qλ has a unique natural measure µλ describing the asymptotics of almost all orbits
under Qλ, where µλ is either

• [the periodic case P] a finite union of point masses sitting on a periodic
attractor, or
• [the chaotic case S] a finite measure absolutely continuous with respect to

Lebesgue measure, supported on an interval attractor.
Cases (2) and (3b) above are avoided with full probability in parameter space.

We call the second case chaotic for the following reason: not only do orbits
distribute themselves in a seemingly random way, but these maps also have positive
Lyapunov exponents almost everywhere; that is, there are constants γ > 0 and C > 0
such that

|DxQ
n
λ(x0)| ≥ Ceγn

for almost all x0 when λ ∈ S (Theorem 12). The map will have a strong form of
sensitive dependence on initial conditions, with nearby orbits separating at a uniform
exponential speed. Any uncertainty in the observed initial state will make long-
time predictions of the orbit impossible, but the statistics of the orbit are accessible.
Orbits distributes themselves stochastically according to µλ. Figures 7 and 8 show
the Lyapunov exponent and the natural measure for R16.999,2.0.

2.5. Parameter Dependence of Asymptotic Distributions. We now address
the question of how the natural measure varies with the parameter. First observe
that a stable periodic attractor persists and moves continuously with the parameter
in any smooth family, so µλ will depend (weak*) continuously on λ at points in the
interior of P.

For chaotic maps the situation is much more complicated. Recall that P, the set
of parameters corresponding to maps with periodic attractors, is dense in parameter
space, so arbitrarily small perturbations of a chaotic map can lead to a map with a
periodic attractor. The natural measure also exhibits a sensitive dependence on the
parameter. In, say, the logistic family, it is known that there is a set A ⊂ S of positive
measure such that for any λ∗ ∈ A,

• λ �→ µλ is discontinuous at λ = λ∗. Any measure consisting of point masses
on an unstable periodic orbit of Qλ∗ , as well as the natural measure µλ∗ , can
be approximated with measures supported on periodic attractors of nearby
maps. To avoid this discontinuity, either open intervals ⊂ P or the entire set
A must be deleted.

Still there are some continuity properties:
• As mentioned, µλ∗ can be approximated with natural measures for certain

nearby maps with periodic attractors;
• λ �→ µλ restricted to A is continuous;
• µλ∗ is stochastically stable: if we add a stochastic perturbation after each

iteration we get a Markov chain with an equilibrium measure. When the
size of the perturbation goes to zero, this equilibrium measure tends to the
measure µλ∗ .

See Theorems 20 and 21. In this context we would like to stress the first and the
last of these properties: typically, the natural measure of a chaotic map may be
destroyed under arbitrarily small deterministic perturbations, but it will be approxi-
mately preserved under small stochastic perturbations. Noise is in this way a savior
when modeling in the chaotic regime. We now give a simple example of this idea.
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Example. The map Q4(x) = 4x(1 − x) is known to be of interval attractor type
with an absolutely continuous natural measure µ = µ4. This is one of the rare
instances when such a measure can be computed explicitly, and µ turns out to have
a density symmetric with respect to the critical point c = 1/2.

For λ = 4, we have that

1/2
Q4−→ 1

Q4−→ 0
Q4� .

So for λ close to 4, the critical orbit will first move close to 1 and then spend a long
time on the left-hand side of the interval climbing up from 0. By tuning λ we can
arrange for the critical orbit to finally land on the critical point c = 1/2. We thus find
a sequence {λn}, limn→∞ λn = 4, such that Qλn has a periodic attractor of length n
containing the critical point and such that each of these periodic attractors has just
one point in the right half of the interval [0, 1].

Thus µ(1/2, 1] = 1/2 but µλn(1/2, 1] = 1/n, so limn→∞ µλn(0, 1] = 0. By con-
tinuity on P the same holds for parameter sequences {γn}, when γn is sufficiently
close to λn and, in particular, in the same periodic window. So arbitrarily small
deterministic perturbations of λ = 4 can lead to completely different asymptotics.

However, the probability of this is small. It is known that the set A, within
which measures do vary continuously, has a Lebesgue density point at λ = 4. So if
we add small random perturbations at each iteration step, we are most likely to end
up composing a chain of maps in which most maps belong to the set A. Intuitively
at least, this explains why stochastic perturbations roughly preserve the asymptotic
distribution.

We remark that by changing coordinates, the quadratic family can be written in
the form

x �→ x2 + c.

In this form perturbations in the parameter c are the same as perturbations in phase
space.

2.6. Period Doubling at Universal Rates. For completeness we end this over-
view with a few words on the period-doubling scenario, even though we will not go
into any details.

As can be seen from Figure 2, for λ < λ1 = 3, the attractor Ωλ is a fixed point.
When λ increases beyond 3, the attractor bifurcates into a 2-cycle, followed by a
4-cycle, and then through the whole sequence of 2n-cycles. Let λn be the parameter
where the 2n-cycle is created. If one studies the rate of change of the distance in
parameter space between successive bifurcations one finds that

lim
n→∞

λn − λn−1

λn+1 − λn
= δ ≈ 4.669.(2.1)

In other words, the distances between successive bifurcation points scale asymptoti-
cally in a geometric way, as λn increase to the finite limit λ∞. (The attractor Ωλ∞ is
a Cantor attractor.)

As mentioned, the set P is dense in parameter space. In fact it consists of intervals
[λ̃, λ̃∞), where a periodic attractor of length, say, k is born when λ passes λ̃, and period
doubling to (k · 2n)-cycles occurs as λ passes certain λ̃n. Once again the sequence
{λ̃n} accumulates at some finite λ̃∞, corresponding to a Cantor attractor, with the
same asymptotic geometric rate δ.

In fact, this is independent of the actual analytic form of the function family. The
same scaling with the same δ is found in any one-humped family, where the critical
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point c is nondegenerate (f ′′(c) �= 0), and the hump moves monotonically (in the
vertical direction) with the parameter. For families with critical point of higher but
finite order, there are other universal rates.

A key feature of this is that from observations of a few period-doubling bifurca-
tions one can predict successive bifurcation values and their accumulation point. This
can be done for real-life systems, assuming nothing about the underlying model other
than a one-humped transition function with nondegenerate critical point.

One of the first researchers to observe this phenomenon and provide a mathemati-
cal explanation was Mitchel Feigenbaum [Fei79]. (The number δ = 4.669 . . . is known
as Feigenbaum’s constant.) This scenario has been rigorously verified in a number of
cases, including the logistic family [Lan82]. See also [CE80], [EE90], [EW87], [Sul88],
Chapter VI in [MS93], [McM96], [Lyu97], [Mar98], and ongoing work by de Melo,
Pinto, and de Faria.

Period doubling has also been observed in numerical experiments in higher dimen-
sions with both discrete and continuous time systems, as well as in physical systems.

Part II. Rigorous Results

We will now introduce some concepts and theorems that give the scenario above
for the logistic family (1.1), and which to a large extent are applicable to the Ricker
family (1.2) and the Hassell family (1.3).

We consider continuous maps of an interval I into itself. fn will denote the nth
iterate of f , and by the (forward) orbit of x (under f) we mean the set {fk(x)}∞k=0.

3. Attractors for S-Unimodal Maps. The asymptotic behavior of the orbit of
point x under f is described by the set of accumulation points, the ω-limit set of x,
ω(x), defined by

ω(x) = ωf (x) =
{
y ∈ I | ∃{nj}∞j=1 such that y = lim

j→∞
fnj (x)

}
.

A point x is periodic with period p if fp(x) = x, and p is the smallest positive
integer with this property. A periodic orbit P is attracting if there is a neighborhood
U of P such that ω(y) = P for all y ∈ U . If f is C1, we may define the multiplier
λ(P ) of a periodic orbit P : by the chain rule, (fp)′ is constant on a periodic orbit of
length p. Let λ(P ) = (fp)′(x0), where x0 ∈ P . We then classify periodic orbits as
follows:

• P is superstable if λ(P ) = 0. This is equivalent to the condition that P
contains a critical point.
• P is stable if 0 < |λ(P )| < 1.
• P is neutral if |λ(P )| = 1.
• P is unstable if |λ(P )| > 1.

It is clear that stable and superstable periodic orbits are attracting. A neutral periodic
orbit may or may not be attracting.

A set Γ is called forward invariant if f(Γ) = Γ.
Let B(Γ) denote the basin of attraction of a forward invariant set Γ, that is,

B(Γ) = {x | ω(x) ⊂ Γ}.
In other words, B(Γ) consists of all points that asymptotically end up in Γ.

By an attractor we mean a set that has a large basin, such that all parts of the
attractor attract something substantial.
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Definition 1 (metric attractor [Mil85]). A forward invariant set Ω is called a
metric attractor if B(Ω) satisfies

(1) B(Ω) has positive Lebesgue measure;
(2) if Ω′ is another forward invariant set, strictly contained in Ω, then B(Ω) \

B(Ω′) has positive measure.
An attracting fixed point or an attracting periodic cycle are of course attractors

in this sense.
We will mainly consider unimodal (one-humped) maps.
Definition 2 (unimodal). A continuous interval map f : I = [a, b] → I is

unimodal if there is a unique maximum c in the interior of I such that f is strictly
increasing on [a, c) and strictly decreasing on (c, b]. For simplicity, unimodal will
also require that either a be a fixed point with b as its other preimage, or that I =[
f2(c), f(c)

]
.

Remark. The conditions on the boundary behavior guarantee uniqueness of at-
tractors for the class of maps we are about to study. See Theorem 4, Corollary 5, and
Theorem 6.

For the maps we have in mind, f(c) ≤ c will always imply the existence of a
globally attracting fixed point. If c ≤ f2(c) < f(c), then there is a globally attracting
fixed point or 2-cycle in (c, f(c)). These cases need not be unimodal according to our
definition, although they have the right shape, but on the other hand there is not
much to say about the dynamics.

If f2(c) < c < f(c), we can often reduce the study to the so-called dynamical core
[f2(c), f1(c)], which is mapped onto itself and absorbs all initial conditions (except
x0 = a when a ∈ ∂I is a fixed point).

We consider differentiable maps; in particular the turning point will be a critical
point, f ′(c) = 0.

If f ′′(c) = 0, we say that the critical point c is degenerate. If the nth derivative
vanishes at c, f (n)(c) = 0 for all n > 0, we say that c is a flat critical point. Here we
will always assume at least nonflatness.

Definition 3 (negative Schwarzian). An interval map f : I → I has negative
Schwarzian derivative if f is of class C3 and

Sf(x) :=
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

< 0 for all x ∈ I \ {c | f ′(c) = 0}.

A unimodal map with negative Schwarzian will be referred to as an S-unimodal map.
The importance of the Schwarzian derivative in interval dynamics comes from the

following theorem.
Theorem 4 (Singer’s theorem [Sin78]). Let f : I → I be a C3 interval map

with negative Schwarzian derivative. Then each attracting periodic orbit attracts at
least one critical point or boundary point. Furthermore, each neutral periodic point is
attracting.

Corollary 5. An S-unimodal map can have at most one periodic attractor, and
it will attract the critical point.

Unimodal maps with negative Schwarzian and nonflat critical point come in only
a few different flavors according to the next theorem, due to Blokh and Lyubich.

Theorem 6 (see [BL91]). Let f : I → I be an S-unimodal map with nonflat
critical point. Then f has a unique metric attractor Ω, such that ω(x) = Ω for
Lebesgue almost all x ∈ I. The attractor Ω is of one of the following types:
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(1) an attracting periodic orbit;
(2) a Cantor set of measure zero;
(3) a finite union of intervals with a dense orbit.

In the first two cases, Ω = ω(c).
We will also need the following concept.
Definition 7 (Misiurewicz map). A map f is called a Misiurewicz map if it has

no periodic attractors and if critical orbits do not accumulate on critical points, that
is, if

C ∩ ωf (C) = ∅,
where C denotes the set of critical points of f .

Example. Consider Q4(x) = 4x(1 − x). One verifies that this is an S-unimodal
map on [0, 1] and that Q4(0) = Q4(1) = 0. Furthermore, we know that for the critical
point c = 1/2 we have

1/2
Q4−→ 1

Q4−→ 0
Q4� .

Since 0 is a repelling fixed point, we apply Singer’s theorem and conclude that Q4
has no periodic attractors. We thus see that Q4 is a Misiurewicz map, and from this
it follows that Q4 has strong chaotic properties (see below).

4. Natural Measures. A Borel measure µ is invariant for f : I → I if µ(f−1(E)) =
µ(E) for every measurable set E ⊂ I. One looks for invariant measures that describe
the asymptotic distribution under iteration for a large set of initial points.

Definition 8 (natural measure). An invariant measure µ is called a natural
measure for f if

µ = lim
n→∞

1
n

n−1∑
k=0

δfk(x)(4.1)

for all x in a set of positive Lebesgue measure. (Here δx denotes a Dirac mass in x,
and the limit is in the weak* sense.)

Natural measures are also known by the names physical measures and Sinai–
Ruelle–Bowen (SRB) measures. One could think of them as absorbing stationary
distributions. In many cases, as we will see, such measures exist and describe almost
all orbits so that they are unique.

For a map with a periodic attractor, point masses of equal weight on the points
of the attractor constitute a natural measure.

We will also be interested in the case when the natural measure has a density;
this we interpret as a sign of chaos. The following abbreviations will be used:

• acim stands for absolutely continuous (with respect to Lebesgue measure)
invariant measure;
• acip stands for absolutely continuous invariant probability measure, a finite

and normalized acim.
The following theorem (see Chapter V.1 in [MS93]) will be relevant for our dis-

cussion.
Theorem 9. Let f be an S-unimodal map with nonflat critical point. If f has

a periodic attractor, or a Cantor attractor, then f admits a unique natural measure
supported on the attractor.

If f admits an acip µ, then
(1) µ is a natural measure;
(2) the attractor Ω of f is an interval attractor;
(3) supp(µ) = Ω, in particular, µ is equivalent to the Lebesgue measure on Ω.
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In all these cases the natural measure describes the distribution for almost all initial
conditions.

Remark. Observe that the theorem does not guarantee the existence of a natural
measure in the case of an interval attractor. Indeed there are uncountably many
parameters in the logistic family, for which the corresponding maps have interval
attractors and lack natural measures altogether, or have natural measures with weird
properties. See [Joh87] and [HK90].

But, at least in the logistic family, both such singular phenomena and Cantor
attractors are rare in the sense of Lebesgue measure.

Theorem 10 (Lyubich [Lyu97], [Lyu98]). For almost all λ ∈ (0, 4], the logistic
map Qλ has either a periodic attractor or an interval attractor supporting an acip.

A generalization of this theorem to unimodal, real-analytic families with quadratic
critical point has recently been announced by Ávila, Lyubich, and de Melo.

5. Chaos. In [Guc79], Guckenheimer made the following definition.
Definition 11 (sensitive dependence). An interval map f has sensitive depen-

dence on initial conditions if there exists a set K of positive Lebesgue measure with
the property that there exists a δ > 0 such that for every x ∈ K and every interval
neighborhood J of x, there is an n such that fn(J) has length larger than δ.

This means that with positive probability we find points with arbitrarily small
neighborhoods which sooner or later expand to macroscopic scale.

If f is as in Theorem 6, Guckenheimer proved that
• if f has a periodic attractor, then f does not have sensitive dependence;
• if f has an interval attractor, then f has sensitive dependence.

Remark. Cantor attractors can be of two types. In [Lyu94], Lyubich showed
that an S-unimodal map with nondegenerate critical point that also has a Cantor
attractor has to be what is called infinitely renormalizable. Guckenheimer’s work
implies that there is no sensitive dependence in this case. So for S-unimodal maps with
nondegenerate critical point, sensitive dependence on initial conditions is equivalent
to the presence of an interval attractor.

In families of unimodal maps with critical point of sufficiently high order, there
also exist attractors worthy of the name strange attractors: Cantor attractors with
sensitive dependence on initial conditions. This was proved by Bruin et al. in
[BKNvS96].

There are several definitions in use for what it means for a map to be chaotic,
where sensitive dependence is one of the weakest. Even weaker is the type of chaos
implied by the existence of a 3-cycle [LY75]; in this case we have sensitive dependence
on an invariant uncountable set, which could be of measure zero. As mentioned in
the introduction, such “period-3 chaos” could peacefully coexist with a stable periodic
attractor whose basin of attraction has full measure.

One other possibility is to say that f is chaotic if f admits an acip. In the
case of nonflat S-unimodal maps, almost all orbits distribute themselves according
to this measure over entire intervals. This follows from Theorem 9 and is intimately
connected with strong expansion properties. In fact it is equivalent to having a positive
Lyapunov exponent almost everywhere.

Theorem 12 (Keller [Kel90]). Let f : I → I be an S-unimodal map with nonflat
critical point. Then f admits an acip if and only if

lim
n→∞

1
n

log |Dfn(x)| = κ > 0

for almost all x ∈ I.
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Refer to Figures 7 and 8 for an illustration using a certain Ricker map of Misi-
urewicz type.

For nonflat S-unimodal maps, some weak expansion along the critical orbit of f
is a sufficient condition for f to admit an acip. This is sometimes a good way to prove
that f is chaotic.

Theorem 13 (Nowicki and van Strien [NvS91]). Let f be an S-unimodal map
with nonflat critical point c of order %; i.e., assume that there are constants C1 and
C2 such that

C1 |x− c|
−1 ≤ Df(x) ≤ C2 |x− c|
−1
.

Also assume that
∞∑
n=0

1

|Dfn (f(c))|1/

<∞.

Then f admits an acip, with a density that belongs to Lp for all p < 


−1 .

Remark. Typically one would expect exponential growth of the derivative to be
associated with an acip, but not even the weak condition in the theorem above is
necessary [Bru94a], [Bru94b].

It is easy to see that an acip will have singularities along the critical orbit
{c1, c2, . . . } and that these will imply that the density of the acip is not in Lp for
p ≥ %/(%− 1), whenever the critical point is of order %. These singularities are clearly
visible in Figure 8.

Any Misiurewicz map with negative Schwarzian admits an acip under mild non-
flatness conditions. See [Mis81] and [BM89]. In generic one-parameter families, there
are uncountably many Misiurewicz maps, but they form a set of measure zero in pa-
rameter space [San98]. But as we will see in the next section, Misiurewicz parameters
are Lebesgue density points of parameters corresponding to acips. In particular we
find maps admitting acips for a positive measure set of parameters.

6. The Structure in Parameter Space. For S-unimodal maps with nonflat crit-
ical point, Theorem 6 gives three possible different types of asymptotic behavior. A
fundamental problem presents itself: Describe the subsets in parameter space corre-
sponding to different types of attractors.

6.1. Periodic Maps Are Dense. For the quadratic family we have the following
theorem.

Theorem 14. The set of parameters λ such that Qλ has a stable periodic attractor
is dense and open in (0, 4].

This theorem was first announced by Świa̧tek in [Sa92], and a complete proof
was given in [GŚ99]. In his thesis, Kozlovski [Koz97] solved the famous problem of
structural stability and Axiom A for unimodal maps, and he generalized the theorem
above to real-analytic families.

Definition 15 (Axiom A). An interval map f satisfies Axiom A if
(1) f has finitely many period attractors, and
(2) Dfn is uniformly exponentially large in n outside the basins of the periodic

attractors.
Note that an S-unimodal map satisfies Axiom A iff it has a stable periodic at-

tractor.
Theorem 16 (Kozlovski [Koz97]). Axiom A maps are dense in the space of all

Ck unimodal maps in the Ck topology, k = 1, 2, . . . ,∞, ω.
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Theorem 17 (Kozlovski [Koz97]). If fλ1,...,λl is an l-parameter family of real-
analytic unimodal maps of an interval, depending in a real-analytic fashion on the
parameter(s), such that the family contains at least one Axiom A map and at least
two nonconjugated maps, then the Axiom A maps are dense in the set of parameters
{(λ1, . . . , λl)}.

6.2. Chaotic Maps Are Common in the Sense of Measure. Maps with periodic
attractors are thus predominant from a topological point of view. On the other hand,
one knows that chaotic maps are common in the sense of Lebesgue measure. This is
a theorem that exists in many versions. The first result in this direction is due to
Jakobson [Jak81]. The formulation below is taken from [MS93]. A slightly different
version of Theorem 18 below was first presented in [TTY92]. The proof in [TTY94],
as well as the proof in [MS93], uses the techniques introduced by Benedicks and
Carleson in [BC85] and [BC91], where they proved an abundance of chaotic maps in
the quadratic family.

The setup is as follows:
H1: fλ is a one-parameter family of C2 unimodal maps of an interval I.
H2: Each fλ has a nondegenerate critical point c (we assume c is independent of

λ; this could always be achieved by a smooth change of coordinates).
H3: Each fλ has a repelling fixed point on the boundary of I.
H4: The map (x, λ) �→ (

fλ(x), Dxfλ(x), D2
xfλ(x)

)
is C1.

H5: λ∗ is a parameter value such that fλ∗ is a Misiurewicz map; for simplicity we
assume that the critical orbit is mapped onto an unstable periodic cycle P ∗

in a finite number of steps.
By general theory, an unstable periodic orbit (in fact any hyperbolic set) persists

and moves smoothly under small perturbations of the map; for λ sufficiently close to
λ∗ we can find a point x(λ) ∈ I and an unstable periodic orbit P (λ) such that

• λ �→ x(λ) is differentiable;
• x(λ∗) = fλ∗(c);
• P (λ) moves continuously with λ and P (λ∗) = P ∗;
• x(λ) is mapped onto P (λ) in the same number of steps as x(λ∗), and onto

the corresponding point of P (λ).
One needs to know that the map really moves with the parameter at λ = λ∗ in the
following sense:

H6: d
dλ (x(λ)− fλ(c))

∣∣
λ=λ∗ �= 0.

Theorem 18. If fλ satisfies H1–H6, there exist constants γ > 0 and C > 0 and
a positive measure set E of parameters with λ∗ as a Lebesgue density point, such that

|Dxf
n
λ (fλ(c))| ≥ Ceγn for all λ ∈ E and all n ≥ 1.

Using Theorems 9, 12, and 13 one also immediately obtains the following corollary.
Corollary 19. If fλ is also an S-unimodal family, then for all λ ∈ E one also

has that
(1) fλ admits an acip µλ, with a density that is in Lp for any p < 2;
(2) µλ is a natural measure describing asymptotics for almost all orbits;
(3) fλ has positive Lyapunov exponent almost everywhere.
Other papers with similar results and/or different proofs include [CE80], [Ryc88],

[BY92], and [Luz00]. Following his paper [Tsu93b], Tsujii gave a generalization to
polymodal families in [Tsu93a]. The hypothesis H2 can be relaxed to a nonflat crit-
ical point. Under some extra conditions the theorem in fact generalizes to certain
families with flat critical point [Thu99]. We mention that one of the key points in the
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construction of the good parameter set E is that for λ ∈ E, the critical orbit should
not accumulate too fast on the critical point c. For some small positive number α one
requires that

|fnλ (c)− c| ≥ e−αn for all λ ∈ E and all n ≥ 1.(6.1)

We summarize the picture in parameter space for real-analytic one-parameter
families of maps satisfying H1–H6. Stable periodic attractors are found for a dense
and open set of parameters, and acips for a nowhere dense set of positive measure.
These two cases (acips and period attractors) have full measure in parameter space.
For this last property, nondegenerate critical point H2 is essential to the best of our
knowledge; cf. Theorem 10 and its generalization to real-analytic unimodal families.

7. Parameter Dependence and Stochastic Perturbations. According to The-
orem 10, the mapping

Ψ : λ �→ µλ =: the natural measure of the logistic map Qλ

is well defined for almost all λ in (0, 4]. Of course, Ψ is continuous on the interior of
P, the set of parameters for which Qλ has a stable periodic orbit. In what follows we
discuss the structure in parameter space and the parameter dependence of µλ near
certain maps admitting an acip. From Theorem 18 and its corollary, we get a positive
measure set A, such that for λ ∈ A, Qλ admits an acip µλ. Combining the results
from several papers, we see that we can choose A to have several other features,
which we believe are typical for maps with an acip. In particular one finds that the
parameter dependence of natural measures has severe singularities at any parameter
in A.

Theorem 20. There is a set of parameters A of positive measure, such that for
each λ ∈ A, one has the following properties.

(1) Qλ fulfills the conclusions of Theorem 18 and Corollary 19. In particular Qλ

admits a natural acip µλ.
(2) There is an open set O ⊂ P of parameters accumulating on λ, such that if
O � λn → λ, then µλn → µλ; i.e., the acip µλ is the weak* limit of certain
measures on periodic attractors of nearby maps [Thu96], [Thu98].

(3) For any unstable periodic orbit P of Qλ, there is an open set OP ⊂ P of
parameters accumulating on λ, such that if OP � λn → λ, then µλn → µsing

P ,
where µsing

P is the equidistributed singular measure on P ; i.e., any invariant
measure of Qλ sitting on an unstable periodic orbit can be approximated in
the weak* sense by measures on periodic attractors of certain nearby maps
[Thu98].

(4) It follows that Ψ : λ �→ µλ is discontinuous at any point of A; to recover
continuity open intervals of periodic maps, or the entire set A, must be deleted.
Ψ is thus not continuous on any set of parameters of full measure [Thu98].

(5) Ψ restricted to A is weak* continuous; in fact the densities vary continuously
in Lp for p < 2 [RS92]. See also [Tsu96].

(6) µλ is strongly stochastically stable in the sense of Baladi and Viana (see below)
[BV96].

Properties 3 and 4 of Theorem 20 hold for generic families satisfying H1–H6. For
Property 2 one also needs to know that the critical orbit is distributed according to
the acip for maps in A. That this is the case for quadratic maps was shown in [BC85].

We comment on the notion of stochastic stability. Let f be an interval map with
a natural acip µ and let {Θε}ε>0 be a family of probability densities such that Θε is



PERIODICITY VERSUS CHAOS IN ONE-DIMENSIONAL DYNAMICS 19

supported on [−ε, ε]. The idea is to replace the nth iterate fn of f by

(f + tn) ◦ · · · ◦ (f + t1),

where ti are random numbers chosen independently according to the common distri-
bution Θε. One thus obtains a discrete time Markov chain χε on the interval. This
Markov chain has a unique stationary probability measure mε.

We say that f is weakly stochastically stable under χε if mε → µ in the weak*
sense, when ε → 0. In [BY92], Benedicks and Young proved that there exists a set
of parameters of positive measure such that the corresponding quadratic maps admit
an acip that is weakly stochastically stable under a certain class of perturbations.

f is strongly stochastically stable under χε if

lim
ε→0

∥∥∥∥dµ

dx
− dmε

dx

∥∥∥∥
L1(dx)

= 0.

Baladi and Viana in [BV96] considered perturbations Θε as above with some extra,
mild technical assumptions and proved the following theorem.

Theorem 21. Let f be an S-unimodal interval map with nondegenerate critical
point c. Assume there are constants h0 ≥ 1, γ > 0, and 0 < α < γ/4, such that

(1) |fn(c)− c| ≥ e−αn for all n ≥ h0;
(2)

∣∣(fn)′ (f(c))
∣∣ ≥ eγn for all n ≥ h0;

(3) f is topologically mixing on the interval bounded by f(c) and f2(c).
Then f has an invariant measure with an integrable density, which is strongly stochas-
tically stable.

The first condition is built into the construction of the set E of Theorem 18,
whose existence is implied by conditions H1–H6; see (6.1). The second is of course
the property given by Theorem 18, and the third assumption always holds for S-
unimodal maps with an acip µ: there is a full measure set of initial points whose orbits
are distributed according to µ; in particular these orbits will be dense on the unique
interval attractor. Thus any open set will contain a point with a dense orbit, and so
the map is topologically mixing. From all this it follows that Theorem 21 is applicable
to all maps in the set E of Theorem 18 and Corollary 19 in the S-unimodal case.

Remark. Note that the notions of weak and strong stochastic stability defined
above should not be confused with stochastic stability in the sense of Högnäs and
Vellekoop [HV97]. They studied generalizations of the Ricker models and the Has-
sell models where the “environmental” parameter β is a stochastic variable. They
called such a Markov chain stochastically stable if it has an attracting, stationary
distribution.

Part III. Applications to Population Dynamics

8. Uniqueness of Attractors in Population Dynamics. We now focus on the
Ricker and Hassell families, defined in (1.2) and (1.3), and begin with some elementary
but useful facts.

Lemma 22. Each map in the Ricker family has negative Schwarzian derivative.
Proof. Calculating the Schwarzian derivative of Rλ,β we find that

SRλ,β(x) = −1
2

β4

(1− βx)2

(
x2 − 4x/β + 6β2) .

This is readily shown to be negative for all x �= c = 1/β.
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Lemma 23. Each map in the Hassell family with β ≥ 2 has negative Schwarzian
derivative.

Proof. Straightforward but somewhat tedious calculations give

SHλ,β(x) =

{
− β(β − 1)

2(1 + x)2 ((β − 1)x− 1)2

}{
(β − 1)(β − 2)x2 − 4(β − 2)x + 6

}
.

The first factor is obviously negative for x �= c = 1/(1−β), and the second is positive
when β ≥ 2.

Lemma 24. Each map in the Hassell family with 1 < β < 2 has a unique and
globally attracting fixed point, regardless of the size of λ.

Proof. The fixed point at x = 0 is globally attracting iff λ ≤ 1. For λ > 1 there
is an interior fixed point z = λ1/β − 1, and calculating the derivative, one finds that

1 > H ′λ,β(z) = 1− β(1− λ−1/β) > 1− 2 = −1

if β < 2. z is easily seen to attract all initial conditions x0 �= 0.
Let f be a Ricker or a Hassell map. Then the following facts are easily checked:
• if f(c) ≤ c or if c ≤ f2(c) < f(c), then f has a globally attracting fixed point

or 2-cycle;
• if f2(c) < c < f(c), then I = [f2(c), f(c)] absorbs all initial conditions x0 �= 0,

and f restricted to I is unimodal.
Combining these observations with Lemmas 22–24 and Theorem 6, we obtain our

first main result on Hassell and Ricker maps.
Theorem 25. Each Ricker or Hassell map has a unique metric attractor at-

tracting almost all initial conditions. The attractor is a periodic cycle, an attracting
Cantor set, or a finite union of intervals with a dense orbit.

9. Structure in Parameter Space. Figures 3–6 show one-parameter bifurcation
diagrams for our population models. We immediately notice that the λ dependence
for each of the families and the β dependence for the Hassell family seem much the
same as the parameter-dependence in the logistic family. In this section we will prove
some results along these lines.

9.1. Maps with Periodic Attractors. As a corollary to Theorem 17 we immedi-
ately obtain the following theorem.

Theorem 26. Maps with a stable periodic attractor form a dense subset:
(1) in (λ, β)-space, for both the Ricker family {Rλ,β}(λ,β) and the Hassell family,
{Hλ,β}(λ,β);

(2) in λ-space for each of the families {Rλ,β0}λ and {Hλ,β0}λ obtained when
β = β0 is fixed;

(3) in β-space for the one-parameter families {Hλ0,β}β, obtained when λ = λ0 is
fixed.

Proof. All we have to do to apply Theorem 17 is to find an Axiom A map (a map
with a stable cycle) and two nonconjugated maps within each of the families. The first
statement in the theorem in fact follows from the second, which is easily proved since
the interior fixed point starts out as a stable fixed point absorbing all initial conditions
x0 �= 0 for small λ, and loses its stability for some λ̂(β) when a 2-cycle is born.

For the third statement we argue as follows. For λ0 ≤ 1, x = 0 is a globally
attracting fixed point for all β, so this case is trivial. The interior fixed point z =
λ

1/β
0 − 1 exists for λ0 > 1 and has multiplier

M(β) := H ′λ0,β(z) = 1− β
(
1− λ

−1/β
0

)
.
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Fig. 3 Bifurcation diagram Ωλ,β versus λ as in Figure 2 but for the Hassell family of (1.3) with
fixed β = 20. (We have also performed this experiment with the parameterization and the
parameter values used in [HV97] and obtained the same type of picture as seen here. We
have not been able to reproduce the bifurcation diagram in [HV97].)

Fig. 4 Bifurcation diagram Ωλ,β versus β for the Hassell family with fixed λ = 21.5. Note the
logarithmic vertical scale.
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Fig. 5 Bifurcation diagram Ωλ,β versus λ for the Ricker family of (1.2) with fixed β = 2.

One readily shows that M is decreasing in β and that

lim
β→∞

M(β) = 1− lnλ0.

Thus for 1 < λ0 ≤ e2, z is stable and globally attracting for Hλ0,β for all β. Once
again statement (3) is trivial. For λ0 > e2, z will lose its stability for β large enough.
This can only happen when a 2-cycle is born, and a map with a 2-cycle can of course
not be conjugated to a map without a 2-cycle, so we may apply Theorem 17.

Remark. Note that the corresponding statement for one-dimensional sections
{Rλ0,β}β of Ricker maps fails. This is so simply because β is a pure scaling parameter.
For any λ > 1 and any β1, β2 > 0, Rλ,β1 and Rλ,β2 are conjugated via a linear change
of coordinates, independent of λ. Moving β just moves the map inside a conjugacy
class determined by λ. This is illustrated in Figure 6.

This should be an important qualitative difference between Hassell maps and
Ricker maps, which in particular suggests that they should behave differently under
stochastic perturbations in the β-parameter (sometimes called environmental stochas-
ticity).

9.2. Abundance of Strongly Chaotic Maps. Finally we use Theorem 18 and
Corollary 19 to show that genuinely chaotic maps, with positive Lyapunov exponents
almost everywhere and an invariant absolutely continuous probability measure, appear
with positive frequency in both families. We do this by verifying the conditions H1–
H4 and proving the existence of a Misiurewicz parameter λ∗(β) satisfying H5 and
H6 for all β in an open interval. The choice of Misiurewicz parameter is dictated



PERIODICITY VERSUS CHAOS IN ONE-DIMENSIONAL DYNAMICS 23

Fig. 6 For the Ricker family, β is a pure scaling parameter. This figure shows Ωλ,β versus β for
three fixed values of λ. The qualitative type does not change with β. For λ̂ ≈ 16.999 and any
β > 0, we know that Rλ̂,β is a Misiurewicz map of type c �→ c1 �→ c2 �→ c3 �, and thus has
strong chaotic properties.
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by computing convenience. The reader can, using the same techniques, go hunting
for Misiurewicz parameters with the right properties in his or her favorite part of
parameter space. We stress the following facts:

• Conditions H1–H4 are easily checked for entire families, and for each fixed
β = β0 they hold for the one-parameter families Rλ,β0 and Hλ,β0 .
• Misiurewicz maps exists in great abundance in generic families by kneading

theory, and condition H6 is of course completely generic.
Proposition 27. There exists a β0 ≈ 20.914 such that for each fixed β suffi-

ciently close to β0, there exists a λ∗(β), λ∗(β0) = 21.5, such that Hλ = Hλ,β is a
one-parameter family with a Misiurewicz map Hλ∗ fulfilling conditions H1–H6.

Proof. First H1–H4 are easily checked for any fixed β > 1 and λ > 1. Then one
verifies that the critical point c = 1/(β−1) is mapped onto the interior (unstable) fixed
point z = λ1/β − 1 in exactly three iterates for λ = λ0 = 21.5 and β = β0 ≈ 20.914:

c �→ c1 �→ c2 �→ c3 = z �→ z.

To do this, one shows numerically that

β �→ {
z(λ0, β)−H3

λ0,β (c (β))
}

changes sign for β = β0 ≈ 20.914. One also verifies that z is a repeller for these
parameter values. Thus the critical orbit does not accumulate on the critical point
for Hλ0,β0 , and there are no stable or neutral cycles, since for unimodal maps with
negative Schwarzian, these would attract the critical orbit. So we have a Misiurewicz
map.

Finally we verify H6 numerically for λ = λ0 = 21.5 and β = β0 ≈ 20.914. Here
we think of Hλ = H(λ, β0) as a one-parameter family. Define

F (x;λ) := Hλ(x),

Fn(x;λ) := F
(
Fn−1(x;λ);λ

)
= Hn

λ (x) for n > 1.

For λ close to λ0 we may define ζ(λ) by{
ζ(λ0) = Hλ0(c),
F 2 (ζ(λ);λ) = z (λ, β0) .

ζ(λ) will be a point close to Hλ(c), with the same type of forward orbit as Hλ0(c).
Finally, we also write

ζ1(λ) := F (ζ(λ);λ) .

Condition H6 now reads

d

dλ
(ζ(λ)− F (c;λ))

∣∣∣∣
λ=λ0

�= 0.

From the definition of ζ we get

z′(λ) =
d

dλ
F (F (ζ;λ) ;λ)

=
∂F

∂x
(ζ1;λ)

d

dλ
F (ζ;λ) +

∂F

∂λ
(ζ1;λ)

=
∂F

∂x
(ζ1;λ)

{
∂F

∂x
(ζ;λ)

dζ

dλ
+

∂F

∂λ
(ζ;λ)

}
+

∂F

∂λ
(ζ1;λ).
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Solving for dζ/dλ, we obtain

dζ

dλ
=

(
∂F

∂x
(ζ;λ)

)−1
{(

∂F

∂x
(ζ1;λ)

)−1 (
dz

dλ
− ∂F

∂λ
(ζ1;λ)

)
− ∂F

∂λ
(ζ;λ)

}
.

This expression can easily be evaluated at λ = λ0, since by definition ζ(λ0) = Hλ0(c)
and ζ1(λ0) = H2

λ0
(c), and all other quantities are explicit. H6 can now be verified

numerically with rigorous estimates.
Finally, using the implicit function theorem and the fact that condition H6

is open, we conclude that for any β close to β0, there is a λ∗(β) with the desired
properties.

Combining Theorem 18, Corollary 19, Theorem 21 and the discussion thereafter,
Lemma 23, Theorem 25, and Proposition 27, we obtain the following theorem.

Theorem 28. Hassell maps are strongly chaotic with positive probability: There
exists a nonempty, open set B such that for each β ∈ B, there exists a positive measure
set Λβ such that if λ ∈ Λβ, then

(1) Hλ,β has no periodic attractor and the unique metric attractor is a transitive
interval attractor;

(2) Hλ,β admits an absolutely continuous invariant probability measure µλ,β with
the following properties:
(a) µλ,β describes the asymptotic distribution of almost all orbits under

Hλ,β;
(b) µλ,β has density in Lp, 1 ≤ p < 2;
(c) µλ,β is strongly stochastically stable in the sense of Baladi and Viana

[BV96];
(3) Hλ,β has positive Lyapunov exponent almost everywhere, in particular at the

critical value.
The corresponding result also holds for the Ricker maps, by the same type of

arguments. Here we find a map of the type

c �→ c1 �→ c2 �→ c3 = z �
for any β > 0 and λ = λ0 ≈ 16.999 (independent of β). These maps will be Misi-
urewicz maps, since the fixed point z = ln(λ0)/β has multiplier R′λ0,β

(z) = 1− lnλ0 <
−1 and thus is unstable. We have checked condition H6 numerically for 0 < β ≤ 200.
We remind the reader that this particular choice of Misiurewicz map is only chosen
as a convenient example.

Theorem 29. Ricker maps are strongly chaotic with positive frequency in pa-
rameter space: for any β > 0, there exists a positive measure set Λ(R)

β such that if

λ ∈ Λ(R)
β , then

(1) Rλ,β has no periodic attractor and the unique attractor is a transitive interval
attractor;

(2) Rλ,β admits an absolutely continuous invariant probability measure µλ,β with
the following properties:
(a) µλ,β describes the asymptotic distribution of almost all orbits of Rλ,β;
(b) µλ,β has density in Lp for any 1 ≤ p < 2;
(c) µλ,β is strongly stochastically stable in the sense of Baladi and Viana

[BV96];
(3) Rλ,β has positive Lyapunov exponent almost everywhere, in particular at the

critical value.
Figures 7 and 8 show the Lyapunov exponent and the natural measure for R16.999,2.0.
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Fig. 7 Positive Lyapunov exponent. For the Ricker map Rλ,β with λ = 16.999 and β = 2, the figure
shows log |(Rnλ,β)′(x0)| versus n for two different initial conditions x0 = 0.3 and x0 = 1.2.
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Fig. 8 Histograms of the distributions of two different orbits for the Ricker map Rλ,β , again with
λ ≈ 16.999 and β = 2. These are approximately the same and are approximated by the
natural acip of Rλ,β . This is a Misiurewicz map with finite critical orbit c = 0.5 �→ c1 ≈
3.13 �→ c2 ≈ 0.10 �→ c3 ≈ 1.42 �. Notice the (square-root) singularities building up on the
forward images of the critical point. We have computed 10,000 points on each orbit and
divided the interval into 50 subintervals of equal length.
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Remark. One would also expect the natural measures of the chaotic maps in
Theorems 28 and 29 to have the sensitive type of λ dependence described in parts
(2)–(4) of Theorem 20. Using the methods of [Thu98] we can in fact prove these
properties at the special Misiurewicz maps Hλ∗(β),β (or Rλ∗(β),β defined in the same
way) used in the proofs above. To get the full analogue of parts (3) and (4) of
Theorem 20, one would need to know that all, or at least most, Misiurewicz maps in
the closure of the sets Λβ satisfy the generic condition H6. This is of course what one
expects, but we have no rigorous results to back this up.

10. Concluding Remarks. Using recent results in one-dimensional dynamics,
one can harvest a lot of results on basic dynamical properties for explicit families of
systems. Here we considered two well-known, and much studied, models in popula-
tion dynamics, the Ricker family (1.2) and the Hassell family (1.3), and verified the
following commonly assumed properties:

• each system has a unique metric attractor, being either a periodic cycle, a
Cantor set, or a finite union of intervals;
• periodic attractors appear for a dense subset of parameter space.

We also proved that
• maps with strong chaotic properties, stable under stochastic perturbations,

appear with positive frequency in parameter space.
Since we also expect asymptotic distributions (natural measures) as a function of
the parameter to behave in a singular way close to chaotic maps, we have a slightly
awkward situation when using these families to model real-life observables. If our
estimated parameters put us close to the set of strongly chaotic maps, the asymptotic
motion will behave in an extremely sensitive way on the parameter, making even
statistical predictions of the long-time behavior impossible. This should not be viewed
as weakness of the models; it may be an unavoidable difficulty. It is the way these
systems, and maybe nature herself, behave.
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133 (1991), pp. 73–169.

[BKNvS96] H. Bruin, G. Keller, T. Nowicki, and S. van Strien,Wild Cantor attractors exist,
Ann. of Math., 143 (1996), pp. 97–130.

[BL91] A. M. Blokh and M. Yu. Lyubich, Measurable dynamics of S-unimodal maps of the
interval, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4, 24 (1991), pp. 545–573.

[BM89] M. Benedicks and M. Misiurewicz, Absolutely continuous invariant measures for
maps with flat tops, Inst. Hautes Études Sci. Publ. Math., 69 (1989), pp. 203–213.

[Bru94a] H. Bruin, Invariant Measures of Interval Maps, Ph.D. Thesis, Technische Universitet,
Delft, the Netherlands, 1994.

[Bru94b] H. Bruin, Topological conditions for the existence of invariant measures for unimodal
maps, Ergodic Theory Dynam. Systems, 14 (1994), pp. 433–452.

[BS99] B. Blasius and L. Stone, UPCA dynamics and phase synchronization in ecological
systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., to appear.



PERIODICITY VERSUS CHAOS IN ONE-DIMENSIONAL DYNAMICS 29

[BV96] V. Baladi and M. Viana, Strong stochastic stability and rate of mixing for unimodal
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