FINAL EXAMINATION

1MA208 Ordinary Differential Equations II

Problem 1. (Continuity of solutions)

Suppose that $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are continous and each are Lipschitz with respect to the seconf argument.

Suppose that x(t) is the global solution to x' = f(t, x), $x(t_0) = a$, and y(t) is the global solution to y' = g(t, y), $y(t_0) = b$.

- 1) If f(t,p) < g(t,p) for every $(t,p) \in \mathbb{R}^2$ and a < b, show that x(t) < y(t) for every $t \ge t_0$.
- 2) If $f(t,p) \leq g(t,p)$ for every $(t,p) \in \mathbb{R}^2$ and $a \leq b$, show that $x(t) \leq y(t)$ for every $t \geq t_0$.

Problem 2. (Hartman-Grobman and conjugacies)

Let a and b be distinct constants and consider the equations x' = ax and x' = bx for $x \in \mathbb{R}$. Under what conditions on a and b does their exist a topological conjugacy h taking solutions of one equation to solution of the other?

Problem 3. (Limit sets, Stability)

Consider the system

$$x'(t) = y(t),$$

 $y'(t) = \sin^2\left(\frac{\pi}{x(t)^2 + y(t)^2}\right)y(t) - x(t).$

- 1) Show that the origin is a fixed point. Is it stable or unstable?
- 2) Show that the circles $x(t)^2 + y(t)^2 = \frac{1}{n}$, for integer $n \ge 1$, are periodic orbits.
- 3) Draw the phase portrait.
- 4) Determine all α and ω -limit sets.

Problem 4. (Poincaré-Bendixson, Limit cycles)

Consider the system

$$x'(t) = -y(t) + x(t)(1 - x(t)^{2} - y(t)^{2}),$$

$$y'(t) = x(t) + y(t)(1 - x(t)^{2} - y(t)^{2}).$$

- 1) Use the fact that $r^2 = x^2 + y^2$ to find the derivative r'(t).
- 2) Prove that all trajectories eventually enter the region r < C for some constant C.
- 3) Use the Poincaré-Bendixson theorem to prove that the system has a limit cycle.

Problem 4. (Lyapunov function)

Consider the system

$$x' = x(a + bx + cy),$$

$$y' = y(d + ex + fy).$$

Suppose that this "two species Lotka-Volterra" system has a unique equilibrium point (x^*, y^*) in the first quadrant $\mathbb{R}^2_{>0}$. Thus $bf - ce \neq 0$.

Show that

$$L(x,y) = \alpha \left(x - x^* \left(1 - \ln \frac{x}{x^*} \right) \right) + \beta \left(y - y^* \left(1 - \ln \frac{y}{y^*} \right) \right),$$

is a Lyapunov function for the system with an appropriate choice of $\alpha > 0$ and $\beta > 0$. Find the conditions on a, b, c, d, e, f so that the equilibrium would be asymptotically stable.