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FINAL EXAMINATION

1MA208 Ordinary Differential Equations II

Code/Name:

Problem 1. (Continuity of solutions)

Suppose that f : R×R 7→ R and g : R×R 7→ R are continuous and each are Lipschitz

with respect to the second argument.

Suppose that x(t) is the global solution to x′ = f(t, x), x(t0) = a, and y(t) is the

global solution to y′ = g(t, y), y(t0) = b.

1) If f(t, p) < g(t, p) for every (t, p) ∈ R2 and a < b, show that x(t) < y(t) for every

t ≥ t0.

2) If f(t, p) ≤ g(t, p) for every (t, p) ∈ R2 and a ≤ b, show that x(t) ≤ y(t) for every

t ≥ t0.

Problem 2. (Hartman-Grobman and conjugacies)

Let a and b be distinct constants and consider the equations x′ = ax and x′ = bx for

x ∈ R. Under what conditions on a and b does their exist a topological conjugacy h

taking solutions of one equation to solution of the other?

Let f(x) ≡ ax, g(x) ≡ bx. The equation for the topological conjugacy

φft (h(x)) = h(φgt (x)), φft (x) = xeat, φgt (x) = xebt

tells us that

h(x)eat = h(xebt).

Try a power function h(x) = C|x|r, r > 0 (we want this to be defined for both

positive and negative x, that is why x comes with the absolute values sign):

C|x|reat = C|x|rerbt) =⇒ r = a/b.
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However, for a fixed C, h(x) is not a topological conjugacy (it is not injective). But

we do not need to fix C: choose C = 1 for x > 0, C = 0 for x = 0 and C = −1 for

x < 0, i.e., take

h(x) =

{
x|x|ab−1, x 6= 0

x = 0.

This is a conjugating homeomorphism if a/b > 0.

Problem 3. (Limit sets, Stability)

Consider the system

x′(t) = y(t),

y′(t) = sin2

(
π

x(t)2 + y(t)2

)
y(t)− x(t).

1) Show that the origin is a fixed point. Is it stable or unstable?

We have

y = 0 =⇒ x′ = 0,

at the origin, while

lim
r→0

sin2
( π
r2

)
y = 0,

hence

lim
r→0

sin2
( π
r2

)
y − x = 0,

and y′ = 0 at the origin.

2) Show that the circles x(t)2 + y(t)2 = 1
n

, for integer n ≥ 1, are periodic orbits.

(r2)′ = 2 sin2
( π
r2

)
y2 ≥ 0,

and at r2 = 1/n,

(r2)′ = 2 sin2 (nπ) y2 = 0.

At the same time

x′(t) = y(t) =⇒ r′(t) cos(θ(t))− r(t) sin(θ(t))θ′(t) = r(t) sin(t),

y′(t) = − x(t) =⇒ r′(t) sin(θ(t)) + r(t) cos(θ(t))θ′(t) = −r(t) cos(t),
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multiplying the first equation by sin, the second by cos and subtracting:

r(t)θ′(t) = −r(t) =⇒ θ′(t) = −1, if r 6= 0,

and the system has no equilibria other than the origin. Hence, every level set

r2 = 1/n is a closed orbit (of period 2π).

3) Draw the phase portrait.

Trajectories spiral clockwise from {r2 = 1/(n+ 1)} to {r2 = 1/n}, n ∈ N.

4) Determine all α and ω-limit sets.

The origin is the ω/α-limit set of itself only, since any trajectory with a non-zero

initial condition will be separated from the origin by an invariant curve {r2 = 1/n}
for some n ∈ N.

Circles {r2 = 1/n} are ω-limit sets of points in {1/(n + 1) < r2 ≤ 1/n}, n ∈ N,

and α-limit sets of points {1/n ≤ r2 < 1/(n − 1)}, n ∈ N (here, by convention,

1/0 =∞: this happens for n = 1).

Problem 4. (Poincaré-Bendixson, Limit cycles)

Consider the system

x′(t) = − y(t) + x(t)(1− x(t)2 − y(t)2),

y′(t) = x(t) + y(t)(1− x(t)2 − y(t)2).

2) Prove that all trajectories eventually enter the region r < C for some constant C.

rr′ = xx′ + yy′ = r2(1− r2),

For all r > 1, r′ = r(1 − r2) < 0. Hence, given any C > 1, any trajectory with

r(0) > C enters {r < C}.
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3) Use the Poincaré-Bendixson theorem to prove that the system has a limit cycle.

The origin is unstable: for small r0, r(t) = r0e
t+O(r20), hence there is an open disk

Dε of radius ε, such that φτ (R2 \Dε) ⊂ R2 \Dε.

Let A = {(x, y) ∈ R : ε ≤ r ≤ C}. This is an invariant compact set, thus it contains

an equilibrium or a closed orbit by Corollary 2 of PB. We now verify that the only

equilibrium of the system is at zero: suppose r is non-zero (we can divide by it),

then

xy′ − yx′ = r2 =⇒ r2
(
cos(θ(t))2θ′(t) + sin(θ(t))2θ′(t)

)
= r2 =⇒ θ′(t) = 1.

Thus the angular projection of the vector field is never 0 if r 6= 0.

By Corollary 2 of PB, there is a closed orbit in A.

One of these orbits is at r = 1 (this is the only one, but we will not prove that),

and since r′ < 0 for r > 1 and r′ > 0 for r < 1, this orbit is a double-sided ω-limit

cycle.

Problem 4. (Lyapunov function)

Consider the system

x′ = x(a+ bx+ cy),

y′ = y(d+ ex+ fy).

Suppose that this “two species Lotka-Volterra” system has a unique equilibrium point

(x∗, y∗) in the first quadrant R2
>0. Thus bf − ce 6= 0.

Show that

L(x, y) = α
(
x− x∗

(
1− ln

x

x∗

))
+ β

(
y − y∗

(
1− ln

y

y∗

))
,

is a Lyapunov function for the system with an appropriate choice of α > 0 and β > 0.

Find the conditions on a, b, c, d, e, f so that the equilibrium would be asymptotically

stable.

L(x∗, y∗) = 0 and L(x, y) > 0 for all (x, y) 6= (x∗, y∗) (proved by using the fact that

ln(t) < t− 1 for all positive t 6= 1).

Moreover, in the first quadrant

L̂ = Lx(x, y)x′ + Ly(x, y)y′ =

= α

(
1− x∗

x

)
x(a+ bx+ cy) + β

(
1− y∗

y

)
y(d+ ex+ fy)

= α [x− x∗] (a+ bx+ cy) + β [y − y∗] (d+ ex+ fy).
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Subtract in the first parenthesis a + bx∗ + cy∗ = 0 and d + ex∗ + fy∗ = 0, and rename

x− x∗ = ξ, y − y∗ = η. Then

L̂ = αξ(bξ+cη)+β(eξ+fη) = αbξ2+βfη+(αc+βe)ξη = [ξ η]

[
b c

e f

]T [
α 0

0 β

] [
ξ

η

]
.

Denote A =
[
b c
e f

]
, D =

[
α 0
0 β

]
. The transpose of a scalar is the scalar itself:

L̂ = [ξ η]ATD
[
ξ
η

]
= [ξ η]DTA

[
ξ
η

]
, therefore, ATD = DA and

L̂ =
1

2
[ξ η]

(
ATD +DTA

) [ξ
η

]
.

Hence if we can choose the parameters b, c, d, e such that the symmetric matrix

ATD + DA is negative definite, we will have L̂ ≤ 0 with equality if and only if

(ξ, η) = (0, 0), i.e. x = x∗, y = y∗. Therefore we require that

M = ATD +DA =

[
2bα cβ + eα

cβ + eα 2fβ

]
.

has negative eigenvalues. This is the case if trace(M) < 0 and det(M) > 0. That is

bα + fβ < 0, 4fbαβ − (cβ + eα)2 > 0.


