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FINAL EXAMINATION

1MA208 Ordinary Differential Equations II

Problem 1. (Sturm-Liouville problems)

Consider the SLP:

−(xu′)′ = λx−1u, 1 < x < e, u(1) = 0, u′(e) = 0.

a) Find all eigenvalues and eigenfunctions.

i) First, consider the case λ > 0, write λ = ω2, ω > 0:

x2u′′ + xu′ + ω2u = 0.

This is the Euler equation (also sometimes called the equidimensional equation). It is

known to possess solutions of the form u = xr. Substituting this into the equation we

obtain

x2r(r − 1)xr−2 + xrxr−1 + ω2xr = 0

Upon simplifying this becomes

(r2 + ω2)xr = 0

so that we must have r = ±iω, and the corresponding solutions are

u = x±iω = e±iω lnx = cos(ω lnx)± i sin(ω lnx).

Consequently the general solution is given by

u = A cos(ω lnx) +B sin(ω lnx).

Next we need to satisfy the boundary conditions. At x = 1 we have 0 = u(1) = A and

at x = e we have

0 = u′(e) = ωBe−1 cos(ω ln e).
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This can only be true if either ω = 0 or if ω is an odd multiple of π/2. But if ω = 0 then

u = 0 which can not be an eigenfunction. We therefore arrive at the following collection

of eigenpairs:

(λk, uk) = (ω2
k, sin(ωk lnx)),

where

ωk =
(2k − 1)π

2
, k = 1, 2, . . .

ii) The cases λ = 0 and λ = −
√
ν2 < 0 to show that A = B = 0. Hence there are no

non-positive eigenvalues.

b) Expand the constant function f(x) = 1 in terms of the eigenfunctions.

f =
∞∑
k=1

ckuk, where ck =
< ρf, uk >

< ρuk, uk >
,

ρ being the weight in the SL problem. In order to compute the generalized Fourier

coefficient we obtain

< ρuk, uk >=

∫ e

1

x−1 sin2(ωk lnx)dx

If we make the substitution z = ωk lnx this integral becomes

ω−1k

∫ ωk

0

sin2 zdz = (2ωk)
−1
∫ ωk

0

[1−cos(2z)]dz =
1

(2k − 1)π

[
z − 1

2
sin(2z)

](2k−1)π/2
0

=
1

2
.

Therefore

ck =

∫ e

1

x−1 sin(ωk lnx)dx = 2ω−1
∫ ωk

0

sin zdz =
4

(2k − 1)π
[− cos z)]

(2k−1)π/2
0 =

4

(2k − 1)π
.

So we have the generalized Fourier series

1 =
∞∑
k=1

4

(2k − 1)π
sin

(
(2k − 1)π

2
lnx

)
.

c) Discuss the convergence of the series obtained in b).

Since the function f = 1 does not satisfy the boundary conditions while each of uk
does, we do not have uniform convergence on the interval [1, e] (any truncation of the

series for 1 satisfies the boundary condition), however we do have pointwise convergence
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to 1 for all x on the interval 1 < x < e. Also, we have uniform convergence on any

closed subinterval [a, b] with 1 < a < b < e.

d) Use b) and c) to determine the value of

1 + 1/3− 1/5− 1/7 + 1/9 + 1/11− 1/13− 1/15 + 1/17 + . . .

Since 1 <
√
e < e, we see that the above series converges to 1 at x =

√
e. This tells

us that

1 =
∞∑
k=1

4

(2k − 1)π
sin

(
(2k − 1)π

4

)
,

or

π

4
=

∞∑
k=1

1

(2k − 1)
sin

(
(2k − 1)π

4

)
=

1√
2

(1 + 1/3− 1/5− 1/7 + 1/9 + 1/11− 1/13− 1/15 + 1/17 + . . .) .

Hence, the series converges to π
√

2/4.

Problem 2. (Sturm-Liouville problems)

Find all the eigenvalues and eigenfunctions of the problem

−u′′ = λu 0 < x < π, u(0)− au′(0) = 0, u(π) + bu′(π) = 0,

where a, b > 0.

i) First one show that in the cases λ = 0 and λ < 0 the solution is trivial and thus is

not an eigenfunction.

ii) Case λ = ω2 with ω > 0, and the equation becomes −u′′ = ω2u, which has the

general solution

u = A cos(ωx) +B sin(ωx), ω > 0.

u′(x) = −ωA sin(ωx) +Bω cos(ωx)

so that the boundary conditions read A − aωB = 0, A cos(ωπ) + B sin(ωπ) +

b[−ωA sin(ωπ) + ωB cos(ωπ)] = 0, which may be written as[
1 − aω

[cos(ωπ)− bω sin(ωπ)] [sin(ωπ) + bω cos(ωπ)]

] [
A

B

]
=

[
0

0

]
.
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In order for this equation to have a nontrivial solution (i.e. a solution besides the

solution A = B = 0) the determinant of the coefficient matrix must be zero:

sin(ωπ) + bω cos(ωπ) + aω cos(ωπ)− abω2 sin(ωπ) = 0. (0.1)

Let us assume that cos(ωπ) 6= 0 and let us divide the above equation by cos(ωπ). After

rearranging terms we then obtain

tan(ωπ) =
(a+ b)ω

abω2 − 1
. (0.2)

Let us define ω∗ = (ab)−1/2. The solutions ω > 0 of equation (0.2) correspond to the

intersections of the curves y = tan(πω) and y = (a + b)ω/(abω2 − 1) in the half plane

ω > 0. We label the first coordinates of the intersections with subscripts: ω1 < ω2 < . . ..

These values may be obtained by some numerical method such as Newton’s Method. As

far as we are concerned we will consider the problem of finding the eigenvalues completed

at this point. We have λk = ω2
k

The corresponding eigenfunctions have the form uk(x) = A cos(ωkx) + B sin(ωkx),

however we saw from our boundary conditions that A = aωkB so that we may write

uk(x) = B[aωk cos(ωkx) + sin(ωkx)]. Finally, since we only need one eigenfunction per

eigenvalue, we may set B = 1, so that

uk(x) = aωk cos(ωkx) + sin(ωkx).

The previous arguments are based on the assumption that cos(ωπ) 6= 0. Is it

possible to have solutions ω of equation for the zero determinant (0.1) for which

cos(ωπ) = 0. Clearly this would imply ωπ = (2m − 1)π/2 for some positive integer

m. Equation (0.1) then implies that sin(ωπ) = abω2 sin(ωπ), where sin(ωπ) = ±1,

and hence may be canceled to yield abω2 = 1, so that also ω = ω∗. To summarize, in

the exceptional case that (ab)−1/2 = m − 1/2 for some positive integer m there will be

another eigenpair

(λ∗, u∗) =
(
(m− 1/2)2, aω∗ cos(ω∗x) + sin(ω∗x)

)
.

Remark: whenever you divide by cos or sin of something to get an

equation for tan or cot make sure to justify the division!


