1MA216, Partial Differential Equations

Code: \qquad

Problem 1.

1) Describe, in your own words, the method of parallelograms for the boundary/initial value problem for the wave equation.
2) Solve the IVP

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x}+u_{y y}+u_{z z}, \\
u(x, y, z, 0)=x^{2}+y^{2}
\end{array}\right.
$$

First using the Kirchhoff's formula in 3D, and second using the method of descent to 2 D from 3D.

Problem 2.

1) Give the definition of a weak solution for differential operator L.
2) State the Cauchy-Kovalevskaya theorem.
3) What is the principle symbol of an operator?
4) Define what is a hyperbolic PDE using the notion of a characteristic surface.

Problem 3.

Find the potential generated by an infinitely long charged wire with linear charge density ρ.

Problem 4.

1) What is the difference between Lax-Milgram and Riesz representation theorems?
2) For a bounded domain $\Omega \subset \mathbb{R}^{n}$, let

$$
\lambda_{1}=\inf _{u \in C_{0}^{1}(\Omega)} \frac{\left[\int_{\Omega}|\nabla u|^{2}\right]^{\frac{1}{2}}}{\left[\int_{\Omega}|u|^{2}\right]^{\frac{1}{2}}} .
$$

- Prove that $\lambda_{1}>0$.
- Prove that for every $f \in L^{2}(\Omega)$ and constant $c<\lambda_{1}$, the Dirichlet problem

$$
\left\{\begin{array}{c}
\Delta u+c u=f
\end{array} \quad \text { in } \Omega\right.
$$

has a weak solution in $H_{0}^{1,2}(\Omega)$.

Problem 5.

Consider the functional

$$
F(u)=\int_{\Omega} L(\nabla u, x) d x
$$

where the Lagrangian $L(p, x) \in C^{1,1}\left(\mathbb{R}^{n}, \Omega\right), \Omega \in \mathbb{R}^{n}$ - bounded. Assume a uniform Legendre convexity condition:

$$
\sum_{i, j}^{n} L_{p_{i} p_{j}}(p, x) \xi_{i} \xi_{j} \geq \epsilon|\xi|^{2}
$$

for all $p \in \mathbb{R}^{n}, x \in \Omega, \xi \in \mathbb{R}^{2}$. Here, $\epsilon>0$.
Show that F is strictly convex in

$$
A=\left\{u \in H^{1,2}(\Omega): u-\left.u\right|_{\partial \Omega} \in H_{0}^{1,2}(\Omega)\right\}
$$

