Suggested problems. Set 1.

- Section 1.1: 5 (a); 6 (b); 7 (a); 8.
- Find a solution of the equation

$$
u_{x}+2 u_{y}=0
$$

such that the graph of this solution passes through the curve

$$
x=s+s^{2}, \quad y=2 s^{2}, \quad z=s^{2} .
$$

- Section 1.2: 1, 7.
- Proof that the only solutions to the equation

$$
u^{3} u_{x}+u_{y}=0
$$

in all of \mathbb{R}^{2} are constants.

- Proof that the initial value problem

$$
x u_{x}+t u_{t}=u^{3}, \quad u(x, 0)=x,
$$

has no solution.

- Solve the initial value problem

$$
u^{2} u_{x}+t u_{t}=u, \quad u(x, 0)=x .
$$

- Section 1.3: 2, 4, 6, 7, 10 .
- Solve the initial value problem

$$
x u_{x}+y u_{y}+u_{x} u_{y}=u, \quad u(s, 0)=s^{2} .
$$

Try both characteristic strips and envelopes of affine solutions. Which method is easier in this case?

