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1. Properties of rotations number

Proposition 1. ρ(f) is continuous in C0 topology.

Proof. Let ρ = ρ(f), p, q, p′, q′ be such that p′/q′ < ρ < p/q. Pick a lift F of f , for which

−1 < F q(x)− x− p ≤ 0

for some x ∈ R. Then F q(x) < x + p for all x ∈ R (otherwise F q(y) = y + p for some

y ∈ R). The function F q − id is periodic and continuous, attains its maximum: ∃ δ > 0

such that

F q(x)− x− p− δ < 0

for all x ∈ R. If F̃ is sufficiently close to F in C0 topology then the same is true for F̃ :

∃ ε > 0 s.t. |F (x)− F̃ (x)| < ε for all x ∈ R =⇒

F̃ q(x)− x− p < 0 =⇒ ρ(F̃ ) <
p

q
.

Similarly, ∃ ε > 0 s.t. |F (x)− F̃ (x)| < ε for all x ∈ R =⇒ ρ(F̃ ) > p′

q′
. Hence, for

any ε > 0 ∃ ε > 0 s. t. supx∈T f̃(x)− f(x)| < ε =⇒ |ρ(f̃)− ρ(f)| < ε.

Define an ordering on a family of OP (orientation preserving) homeos of T. If

fti : T 7→ T, i = 1, 2, then set

ft =
(t2 − t)ft1 + (t− t1)ft1
‖(t2 − t)ft1 + (t− t1)ft2‖

,

here, ‖ · ‖ is a distance function in R2. This straight line homotopy between ft1 and ft2
is an OP circle homeo (prove!). Lift to R, to get Ft. This specifies a “canonical” choice

of two lifts Fti of fti , i = 1, 2.

We says that ft1 < ft2 if Ft1(x) < Ft2(x) for all x in R. This ordering is not

transitive.

By the definition of the rotation number we have

Proposition 2. ρ is monotone: f1 < f2 =⇒ ρ(f1) ≤ ρ(f2).

Proposition 3. If f1 < f2 and ρ(f1) ∈ R \Q then ρ(f1) < ρ(f2).

Proof. By def. f1 < f2 =⇒ F2(x)−F1(x) > 0 for the two canonical lifts and all x ∈ R.

Fi − id are periodic with the same period, then so is F2 − F1, also, continuous, then ∃
δ > 0 such that F2(x)− F1(x) > δ for all x ∈ R. Take p, q s. t.

p− δ
q

< ρ(F1) <
p

q
.
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Then, ∃ x0 ∈ R, s.t.

F q
1 (x0)− x0 > p− δ

(otherwise ρ(F1) = limn→∞
Fnq1 (x)−x

nq
≤ limn→∞

n(p−δ)
nq

= p−δ
q

).

Next,

F q
2 (x0) = F2(F q−1

2 (x0)) > F1(F q−1
2 (x0)) + δ > F1(F q−1

1 (x0)) + δ = F q
1 (x0) + δ > x0 + p.

Now we have two cases:

• F q
2 (x) > x+ p for all x ∈ R - we are done, ρ(F2) ≥ p/q;

• if not, by continuity ∃ x1 ∈ R s.t. F q
2 (x1) = x1 + p and ρ(F2) = p/q.

In either case

ρ(F2) ≥ p

q
> ρ(F1).

The Proposition above shows that the property of having an irrational rotation

number is not stable under perturbations in an ordered family. However, the rational

rotation numbers persist under perturbations, as the next Proposition demonstrates.

Proposition 4. Let ft an ordered family of OP homeo of the circle, and suppose that for

some t∗, ρ(ft∗) = p
q
, p, q ∈ N, and some non-periodic points. Then all sufficiently small

perturbations ft∗+ε or all sufficiently small perturbations ft∗−ε have the same rotation

number p
q
.

Proof. F q
t∗ − id− p does not vanish identically for any lift Ft∗ of ft∗ .

1) Suppose ∃ x ∈ R s.t. F q
t∗(x) − x − p > 0 =⇒ for small ε > 0, ft∗−ε the periodic

function F q
t∗−ε − id− p, where Ft∗−ε is compatible with Ft∗ , is also positive at the same

x

F q
t∗−ε(x)− x− p > 0 =⇒ ρ(ft∗−ε) ≥

p

q
.

But by monotonicity of the rotation number: ρ(ft∗−ε) ≤ ρ(ft∗) = p
q
, and therefore

ρ(ft∗−ε) =
p

q
.

2) Otherwise, ∃ x ∈ R s.t. F q
t∗(x)−x− p < 0. Repeat the argument for ft∗+ε, ε > 0 and

small.
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Figure 1. The rotation number (called W (Ω) here) as a function of parameter Ω in

the Arnold family f(x) = x+ Ω + 1
2π sin 2πx mod 1.

Definition 5. ρ : [0, 1] 7→ R is called devil’s staircase if there is a family {Iα},
α ∈ A ⊂ R, of disjoint and open subintervals of [0, 1] with a dense union in [0, 1]

s. t. ρ assumes distinct constant values on these subintervals.

An example of a devil’s staircase is Cantor’s function.

Let’s us denote, for brevity, Q′ = Q ∩ [0, 1].

Theorem 6. Let ft, t ∈ [0, 1] be a monotone continuous family of OP circle homeos,

s.t. ρ : t 7→ ρ(ft) is non-constant.

If ∃ a dense subset S ⊂ Q′ such that no map ft is topologically conjugate to Rα

with α ∈ S, then ρ is a devil’s staircase.

Proof. (Proof for S = Q′)

1) By the above propositions t 7→ ρ(ft) is monotone and continuous.

2) Since the rational rotation number of a map which is not topologically conjugate to

a rigid rotation persists under perturbations, ρ−1(Q′) is a disjoint union of closed

intervals of positive length. We need to show that ρ−1(Q′) is dense.

3) ρ is strictly monotone at T = ρ−1([0, 1] \ Q′). If t ∈ T ′ = ρ−1([0, 1) \ Q′) then

ρ(ft) 6= ρ(ft+ε) for any ε > 0. by continuity of ρ, density of Q′ in [0, 1], and the

Intermediate Value Theorem (all values between ρ(ft) and ρ(ft+ε) are attained, in

particular, some rational value in (ρ(ft), ρ(ft+ε))), ∃ t1 ∈ ρ−1(Q′) ∩ [t, t+ ε].

http://en.wikipedia.org/wiki/Cantor_function
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Figure 2. The regions of the constant rotation number in a two-parameter Arnold

family f(x) = x+α+ ε
2π sin 2πx mod 1. The values of the rotation number is marked

at the tips of the tongues.

Remark 7. Consider the two parameter family

f(x) = x+ α +
ε

2π
sin 2πx mod 1,

called the Arnold family (Vladimir Arnold, 1937− 2010, an outstanding Soviet/Russian

dynamicist). For a fixed values of the parameter ε = const, the slice ε = const of the

diagram 1 is a collection of intervals on which the rotation number assume different

rational constant values. Notice, that the slice ε = 0 produces a collection of points, as

it should be for the rigid rotations Rα, while the section ε = 1 corresponds to the devil’s

staircase of picture 1. It is only in that case of ε = 1, that the collection of intervals is

dense in [0, 1].

2. Period-doubling in the quadratic family and renormalization

2.1. Period-doubling bifurcations

Proposition 8. Let U ⊂ Rm and v ⊂ Rn , open, and fµ 7→ Rm, µ ∈ V be a family of

C1 maps such that

1) the maps (x, µ) 7→ fµ(x) is a C1-map;

2) fµ0(x0) = x0 for some x0 ∈ U and µ0 ∈ V ;

3) 1 is not an eigenvalue of Dfµ0(x0),

then there are open subsets U ′ ⊂ U and V ′ ⊂ V , (x0, µ0) ∈ U ′ × V ′, and a C1-curve

γ : V ′ 7→ U ′, such that fµ(γ(µ)) = γ(mu), γ(mu) is the unique f.p. in U ′.

Proof. Apply the Implicit Function Theorem to g = fµ0 − id.
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Proposition 9. Let fµ : I 7→ I, I ⊂ R -open, be a family of C3 maps, µ ∈ J , J ⊂ R
s.t.

1) f(x0)µ0 = x0 and f ′µ0(x0) = −1 for some x0 ∈ I and µ0 ⊂ J (in particular, the

above Prop. applies);

2) η =
∂f ′µ(γ(µ))

∂µ µ=µ0
< 0;

3) ζ = (D3
xfµ(fµ(x)))(x,µ)=(x0,µ0) < 0

Then there are ε > 0, δ > 0 an C3 functions γ : (µ0 − δ, µ0 + δ) 7→ R, γ(µ0) = x0 and

α : (x0 − ε, x0 + ε) 7→ R, α(x0) = µ0, α′(x0) = 0 and α′′(x0) = −2η/zeta > 0, such that

1) Prop. 8 applies with U = (µ0 − δ, µ0 + δ) and V = (x0 − ε, x0 + ε);

2) γ(µ) is attracting for µ ∈ (µ0 − δ, µ0) and repelling for µ ∈ (µ0, µ0 + δ)

3) for every µ ∈ (µ0, µ0 +δ) fµ has an attracting period orbit {x1, x2} in (x0−ε, x0 +ε),

xi(µ)→ x0 as µ→ µ0, i = 1, 2, and α(xi) = µ.

4) for every µ ∈ (µ0 − δ, µ0), f ◦2µ has one fixed point in (x0 − ε, x0 + ε).

2.2. Period doubling bifurcation cascade in the quadratic family

.

The quadratic family qµ(x) = µx(1 − x) undergoes a cascade of period doubling

bifurcations. Numerically, there exists a sequence of parameter values {µk}, k ∈ N, s.

t. qµ has and attracting periodic orbit of period 2k for µ ∈ (µk, µk+1), the orbit loses

its stability through a period doubling bifurcation at µk+1, and there are no 2k periodic

orbit for µ < µk in the real line.

Specifically, one observes two phenomena.

1) Universality in the parameter plane. Consider {µk}, k ∈ N. First, limk→∞ µk
exists and is equal to an irrational number 3.5699.... Furthermore, the following limit

exists

γ = lim
k→∞

µk − µk−1

µk+1 − µk
= 4.6692 . . . , (2.1)

and is, again, an irrational number.

The crucial observation is that the bifurcation cascade exists, and the ration above

is define and is equal to the same γ for C3 perturbations of the quadratic family, and

more generally, for a class of maps called “quadratic-like”.

2) Universality in the dynamic plane. Consider the parameter values µ∗k for which

the superattracting point 0.5 is in the 2k-th periodic orbit. Call the distances between
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Figure 3. Self-similarity in the dynamic plane for a “quadratic-like” map

0.5 and a neighboring periodic point ak (see Fig 2.2). Then

α = lim
k→∞

ak+1

ãk
= 0.396 . . . , (2.2)

again, an irrational number.

The ratio above is define and is equal to the same α for C3 perturbations of the

quadratic family, and more generally, for a class of maps called “quadratic-like”.

For references purposes, here the first 14 superattracting periodic points.

2.3. The Cantor attractor for the Feigenbaum function

.

Recall, that the logistic map µx(1 − x) is affinely conjugate to a quadratic

polynomial

pr(x) = 1− rx2

for r = r(µ) is uniquely defined by µ.

Pass to these coordinates. pr is a map of the interval [−1, 1] into itself for all

r ∈ [0, 2]. Assume that such pr is renormalizable. We will construct an invariant central

interval J , such that pr ◦ pr : J 7→ J . Let

a = a(pr) = −pr(1), b = b(pr) = pr(a), pr(b) = c

Assume that 0 < a < b and that pr(b) = pr(a) < a. Then

pr : [−a, a] 7→ [b, 1] 7→ [−a, c ⊂ [−a, a].

Thus the set Λ1 = [−a, c]∪ [b, 1] is mapped into itself. If pr is twice renormalizable,

that is Rpr is renormalizable, then repeat the construction for Rpr = λ ◦ pr ◦ prλ−1,

http://classes.yale.edu/fractals/chaos/Feigenbaum/SuperStBifPts.html
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Figure 4. Invariant intervals for ψ = p1.4, from P. Collet, J.-P. Eckmann and O. E.

Lanford, 1980

λ here is the affine rescaling of [−a, c] onto [1, 1]. Find a set [−a′, c′] ∪ [b′, 1] invariant

under Rpr. Its preimage under λ, λ ([−a′, c′] ∪ [b′, 1]) is in [−a, c]. Consider the set

Λ2 = λ ([−a′, c′] ∪ [b′, 1]) ∪ pr (λ ([−a′, c′] ∪ [b′, 1]))

It consists of four intervals which are mapped onto each other by pr.

Now, suppose pr is infinitely many time renormalizable. Then we can construct a

hierarchy of closed sets Λk, each consisting of 2k closed disjoint intervals. These intervals

are labeled in the following way.

• [−a, c] = Λ0
1, [b, 1] = λ1

1.

• Assume that the intervals upto order k have been labeled. From the middle of each

Λi
k, i = 0, 2k − 1, remove an open interval, the resulting two intervals are labeled

Λi
k+1 and Λi+2k

k+1 .

With this labeling

Λi
k = pir(Λ

0
k).
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Set Λ = ∩kΛk. We have the following

Theorem 10. (P. Collet, J.-P. Eckmann, O. E. Lanford, 1980) If f is a C3 unimodal

function in the renormalization stable manifold W (and, therefore, it is infinitely

renormalizable), then f admits an invariant Cantor set Λ such that the action of f on

Λ is homeomorphic to that of an “odometer” on Σ+
2 . This homeomorphism φ : Σ+

2 7→ Λ

is given by

φ((i1, i2, i3, . . .)) = ∩∞k=1Λ
j(k)
k , j(k) = i1 + i221 + i322 + . . .+ ik2

k−1

Here, the “odometer” is the following symbolic dynamical system. Consider the

formal power series, a representation of ω ∈ Σ+
2 :

ω = (ω1, ω2, . . .) 7→
∞∑
k=1

ωk2
k−1.

An “odometer” p is the operation of adding 1 in this group. The group Σ+
2 itself is the

inductive limit of the groups W n of n-tuples ω = (ω1, ω2, . . . , ωn) with the odometer

acting on elements of W n as

p

(
n∑
k=1

ωk2
k−1

)
=

(
n∑
k=1

ωk2
k−1 + 1

)
mod 2n.

Proposition 11. (P. Collet, J.-P. Eckmann, O. E. Lanford, 1980) Suppose that

f ∈ Ws, then

1) f has exactly one periodic orbit of each period 2k and no periodic orbits of other

periods. All these periodic orbits are repelling;

2) every orbit of f which is not preperiodic converges to the invariant Cantor set.

3. The Sharkovsky Theorem

Definition 12. The Sharkovsky ordering of NSh = N ∪ {2∞} is defined by

1 ≺ 2 ≺ 22 ≺ . . . ≺ 2n ≺ 2∞ ≺ . . .

. . .

≺ 2m(2n+ 1) ≺ 2m(2n− 1) ≺ . . . ≺ 2n · 7 ≺ 2m · 5 ≺ 2m · 3 ≺ . . .

. . .

≺ 2(2n+ 1) ≺ 2(2n− 1) ≺ . . . ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 ≺ . . .

≺ (2n+ 1) ≺ (2n− 1) ≺ . . . ≺ 7 ≺ 5 ≺ 3.
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• NSh has the least-upper-bound property;

• order on NSh is preserved by multiplication by 2.

Theorem 13. (Sharkovsky) Fro every continous map f : I 7→ I there is α ∈ NSh such

that MinPer(f) = S(α) := {k ∈ N,≺ or = α}. Conversely, for every α ∈ NSh there is

a continous map f : I 7→ I with MinPer(f) = S(α).

Consider a cont. map f : I 7→ I. We say that J ⊂ I f -covers K ⊂ I if K ⊂ f(J),

denoted

J 7→ K.

• If J = [a, b], then J 7→ J implies that ∃ c, d ∈ J , such that f(c) = a ≤ c and

f(d) = b ≥ d. By the Intermediate Value Theorem f(x)− x has a zero in J .

• If J 7→ K, and K is closed, then ∃ a closed interval L ⊂ J s. t. f(L) = K. Indeed,

write K = [a, b]. Set

c = max
over preimages

f−1(a), d = min
over preimages

((c,∞) ∩ f−1(b)),

if this is defined, and set L = [c, d]. Otherwise, set L = [c′, d′] with

c′ = max
over allpreimages

((−∞, c) ∩ f−1(b)), d = min
over preimages

((c′,∞) ∩ f−1(a)).

• In general, if J 7→ K, there are several Li ⊂ J with pairwise disjoint interiors, s.t.

f(Li) = K. Li’s are called full components associated to covering J 7→ K. The preimage

of K in J may contain infinitely many intervals, but by compactness there only a finite

number of full components.

Lemma 14. If I0 7→ I1 7→ I2 7→ . . . 7→ In then ∩ni=0f
−i(Ii) contains an interval ∆n such

that fn(∆n) = In

Lemma 15. (Minimal Markov model of an interval map with odd periodic points). Let

I ⊂ R be a closed interval and f : I 7→ I a cont. map. Let x ∈ I be in a periodic orbit of

odd period p > 1 s.t. there is no periodic orbit of period 1 < q < p. If xmin and xmax are

the minimum and the maximum of the orbit of x, then the Markov graph of partition C

of [xmin, xmax] induced by the orbit of x contains the following sub-graph.

One can label the intervals of the partition as {I1, . . . , Ip−1} in such a way that

I1 7→ I1 7→ I2 7→ . . . 7→ Ip−1

and

Ip−1 7→ Ik

for every odd k.
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Figure 5. The minimal Markov model of an interval map with periodic points of odd

period.

Proof. 1) Set a = max{y ∈ O(x) : f(y) > y} and I1 = [a, b] where b is the closest-on-

the-right to a point in O(x). Then f(a) ≥ b and f(b) ≤ a, hence I1 ⊂ f(I1), that is

I1 7→ I1, and the inclusion is proper since O(x) is of odd period larger than 1 (otherwise,

f(a) = b and f(b) = a implies f 2(a) = a - even period). Next, f(I1) ⊂ f(f(I1)), by

induction,

I1 ⊂ f(I1) ⊂ . . . ⊂ fp(I1).

fp(I1) contain all of the orbit of a =⇒ contains J .

2) We now show that there is an element I ′ of C \ I1 s. t. I ′ 7→ I1. Set

l = card{y ∈ O(x) : y < a} and r = card{y ∈ O(x) : y > b}. Then l + r = p − 2 ≥ 1

=⇒ l 6= r. This at least one of the components of I \ I1 has a point x′ of O(x) s.t.

f(x′) is in the same component. Also, both components I \ I1 have points x′′ in O(x)

s. t. f(x′′) is in the other component (otherwise, all of O(x) would be contained in a

single component). Therefore, there are adjacent points c and d such that exactly one

of them maps to the other component. Set I ′ = [c, d], such I ′ 7→ I1.

3) Label all other intervals in such a way that

]I1 7→ . . . 7→ Ik 7→ I1 (3.3)

is the shortest nontrivial loop that contains I1. We show that k = p− 1.

Since 1 < k ≤ p − 1 by minimality of the loop, it suffices to show that k ≥ p − 1.

Let q ∈ {k, k + 1} be odd. By Cor. ??, existence of the loop I1 7→ . . . 7→ Ik 7→ I1 and

(since I1 covers itself) of the loop I1 7→ . . . 7→ Ik 7→ I1 7→ I1 implies that there is a fixed

point y of f q (with odd q in {k, k + 1}).
We first show that q 6= 1. By Lemma 13, there exists ∆n ∈ I1∩f−1(I2)∩. . .∩f−q(I1)

such that ∆n f
q-covers I1, and, thus, y ∈ ∆n. But this y is, thus, in f−1(I2), and

f(y) ∈ I2. Suppose that y is the fixed point of f , then y ∈ I1 and y = f(y) ∈ I2 =⇒ y

is the common boundary point of I1 and I2 and is in O(x) - not a fixed point of f .
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Therefore, q > 1, and is odd by choice, thus by the hypothesis, we have q ≥ p =⇒
k ≥ p− 1.

4) We show that Ip−1 7→ Ik for odd k. For that we first show that the order of the

intervals in R is as follows:

Ip−1, Ip−3, . . . , I2, I1, I3, . . . , Ip−2. (3.4)

Since the loop (3.3) is the shortest nontrivial loop I1 7→ . . . 7→ I1, Ik 7→ Ij =⇒
j ≤ k + 1. Now I1 covers I1 and I2, hence, by connectedness, I2 is adjacent to I1, so

I2 = [e, a] and since I1 7→ I1 ∩ I2, we must have

f(a) = b, f(b) = e.

We determine f(I2). I2 does not cover I1 (since (3.3) is the shortest nontrivial) and

f(I2) lies entirely to the right of I1 (by the def. of a). It covers I3, so I3=[b, d]. It covers

I3 so I3 = [b, d]. Since I2 covers no other intervals, d = f(e) = f 2(b). Obtain inductively

the ordering (3.4).

5) Writing ai = f i(a), we have

xmin = ap−1 < ap−3 < . . . < a2 = e < a0 = a < a1 = b < a3 = d < . . . < ap−2 = xmax,

hence

Ip−1 = [ap−1, ap−3] 7→ Ik

for odd k.

Lemma 16. If f has a periodic point of even period then it has a point of period 2.

Proof. Let p be the smallest even period. Let O(x) be a period p orbit.

1) p 6= 2, then, first suppose that there is a pair c, d of adjacent points in O(x), s.t.

Ik = [c, d] 6= I1 covers I1 (I1 as in the previous Lemma). Label the intervals, such that

I1 7→ . . . 7→ Ik 7→ I1 (3.5)

is the shortest nontrivial loop I1 7→ . . . 7→ I1, then k ≤ p− 1.

Let q ∈ {k, k + 1} be even. Then q ≤ p. Since the existence of the loop (3.5) or

I1 7→ . . . 7→ Ik 7→ I1 7→ I1
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implies existence of a fixed point y of f q.

This y can not be a fixed point of f (same argument as in the proceeding Lemma).

Hence, q ≥ p and k ≥ p− 1.

As in the previous Lemma, argue that the intervals are ordered like in (3.4), hence

Ip−1 7→ Ik

for even k. Thus the loop

Ip−1 7→ Ip−2 7→ Ip−1

gives a period 2 orbit.

2) p 6= 2, and, there is no Ik = [c, d] with c and d in O(x) covering I1. We show that

[xmin, a] 7→ [b, xmax] 7→ [xmin, a].

f(x) ≥ b so f([xmin, a]) contains points to the right of I1. Our assumption in 2)

implies that [xmin, a] does not cover I1, so all of f([xmin, a]) is to the right of I1. Similarly

f([b, xmax] lies to the left of b. But since f always send a point from the left of I1 to a

point on the right and vice versa, and permutes points of O(x) , we have that

[xmin, a] 7→ [b, xmax] 7→ [xmin, a],

which implies existence of a period 2 point.

Proof. of the Sharkovsky Theorem.

(0) p = 2k. We show that there are periods 2l, l < k.

If x is a periodic period with a minimal period p, then by 14 period 1 = 20 exists

by the self-loop in Fig. 5.

Consider g = f 2l−1
it has a periodic orbit of period 2k−l+1, then by Lemma 15, g

has a periodic orbit of period 2, while f that of period 2l.

(1) p = r2k, r odd. Consider the map g = f 2k . It has an odd period.

a) q = s2k, s even. Assume that r is minimal, that is f has no periodic points of

period t2k for t < r, odd. r is the minimal odd period for f 2k . By Lemma 14 there

is a non-trivial loop of length s:

Ir−1 7→ Ir−2 7→ . . . 7→ Ir−2 7→ Ir−1

if s < r. Otherwise

I1 7→ I2 7→ . . . 7→ Ir−1 7→ I1 7→ I1 . . . 7→ I1.

Thus g = f 2k has a periodic point of minimal period s, s2k is period for f , and it is

minimal, since, otherwise, s/2 would be a period for f 2k - impossible by minimality

of s.
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b) q = 2l, l ≤ k. Apply a) with s = 2, get a periodic orbit of period 2k+1. By (0),

there are orbits of all periods 2l, l ≤ k.

c) q = s2k, s > r odd. The loop

I1 7→ I2 7→ . . . 7→ Ir−1 7→ I1 7→ I1 . . . 7→ I1

gives a point of the minimal period s for f 2k . If the minimal period for f in this

case is s2k, then we are done. Otherwise it is s2t for some t < k. But then, take

p′ = s2t and s′ = s2k−t and, by case a) get a periodic orbit of minimal period

s′2t = s2k.

4. The Hartman-Grobman Theorem

Let F be a map of a subset of A = Rn or A = C onto itself, and let ‖ · ‖ be a norm in

A.

Let C0
b (U ,A) be the Banach space of continuous functions defined on a subset U of

A.

Set

Lip(F ) = sup
x6=y∈A

‖F (x)− F (y)‖
‖x− y‖

(4.6)

This, for example, is defined on the following Banach space

C1
b = {F ∈ C1(A,A) ∩ C0

b (A,A) : sup
x∈A
‖DF (x)‖ <∞}.

The set of all functions in F ∈ C0(U ,A), U ⊂ A such that Lip(F ) <∞ is denoted

L(U ,A) - Lipschitz functions.

Theorem 17. Global Hartman-Grobman Theorem Suppose that a map F ∈ L(U ,A)

is hyperbolic and invertible. Then ∃ an ε > 0 such that for every g ∈ C1
b (U ,A) satisfying

Lip(G) < ε, there is a unique function v ∈ C0
b (U ,A) such that

G(h(x)) = h(F (x))

where

h = id+ v, G = F + g,

and h is a homeomorphisms onto the image of U .
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In particular, this theorem tells us that if G is a perturbation of a linear map F ,

then there is a linearizing coordinate h which conjugates it to its “normal form” F . We

will not proof this theorem (we will rather concentrate on a much stronger Hadamard-

Perron Theorem): the proof can be found in KH, or, in these lecture notes.

The Hartman-Grobman theorem gives us a sufficient (but not necessary) condition

for a conjugacy to exist. But it does not give a a simple way to construct the conjugacy,

nor does it tell us how smooth the conjugacy is.

5. The Hadamard-Perron Theorem

Definition 18.

• Let µ < λ. A sequence of invertible linear maps Lm : Rn 7→ Rn, m ∈ Z admits a

(µ, λ)-splitting if there exists decompositions Rn = E+
m ⊕ E−m such that LmE

±
m = E±m+1

and

‖Lm|E−m‖ ≤ µ, ‖L−1
m |E+

m+1
‖ ≤ λ−1.

• We will say that {Lm} admits an exponential splitting if µ < 1, dimE−m ≥ 1 or λ > 1,

dimE+
m ≥ 1

• {Lm} is uniformly hyperbolic if it admits a (µ, λ)-splitting with µ < 1 < λ.

Theorem 19. Let µ < λ, r ≥ 1, and for each m ∈ Z let Fm : Rn 7→ Rn be a surjective

Cr-diffeomorphism such that for (x, y) ∈ Rk ⊕ Rn−k,

Fm(x, y) = (Amx+ αm(x, y), Bmy + βm(x, y))

for some invertible linear maps Am : Rk 7→ Rk and Bm : Rn−k 7→ Rn−k with

‖A−1
m ‖ ≤ λ−1, ‖Bm‖ ≤ µ and αm(0) = 0, βm(0) = 0.

Then ∃ γ0 = γ0(µ, λ), s.t. for every 0 < γ < γ0 ∃ δ0 = δ0(µ, λ, γ0), s.t. for every

0 < δ < δ0 the following holds.

If ‖αm‖C1 < δ, ‖βm‖C1 < δ for all m ∈ Z, then there is a unique family {W+
m}m∈Z

of k-dimensional C1-manifolds

W+ = {(x, φ+
m(x)) : x ∈ Rk} = graphφ+

m

and a unique family {W−m}m∈Z of n− k-dimensional C1-manifolds

W− = {(x, φ−m(x)) : x ∈ Rk} = graphφ−m

where φ+
m;Rk 7→ Rk, φ−m;Rn−k 7→ Rk, supm∈Z ‖Dφ±m‖ < γ

http://www.math.byu.edu/~grant/courses/m634/f99/lectures.html
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• Fm(W±m) =W±m+1;

• ‖Fm(z)‖ < µ′‖z‖ for z ∈ W−m and ‖F−1
m (z)‖ < (λ′)−1‖z‖ for z ∈ W+

m where

µ < µ′ = µ′(γ, δ, µ) < λ′ = λ′(γ, δ, λ) < λ.

• If µ < 1 < λ then {W±m}m ∈ Z are Cr-manifolds.

Proof. case Fm ≡ T and n = 2

i) Existence of the local unstable manifold:

C. Liverani’s notes.

ii) C1-regularity:

We would like to show that the tangent vector to the curve γ∗ exists. The proof is

a slight modification and clarification of that in C. Liverani’s notes (in particular, the

notation has been smoothed out).

Below, the notation o(δ) means little “o”, and stands for any/some function of δ

such that limδ→0
o(δ)
δ

= 0.

1) Define the cone field

Cθ,h(x; v) :=
{
ξ ∈ Bh(x) ⊂ R2 : ξ − x = (a0, b0), a0 6= 0, |b0/a0 − v| ≤ θ

}
this is a cone at point x, symmetric around the direction (1, v), of an opening that

depends only on θ, intersected with an h-nbhd of x in R2. We also impose the conditions

that |v| < c, θ ≤ cδ and h ≤ δ.

2) Given x ∈ γ∗, the piece of the curve γ∗,

γh,x∗ := Bh(x) ∩ γ∗

lies in Cc,h(x; 0). Indeed, if x ∈ γ∗, then (a0, b0) = ξ − x = γ∗(t1) − γ∗(t2) =

(t1 − t2, u∗(t1)− u∗(t2) satisfies∣∣∣∣ b0

a0

− 0

∣∣∣∣ =

∣∣∣∣u∗(t1)− u∗(t2)

t1 − t2

∣∣∣∣ ≤ c

by the Lipschitz property of u∗ (i.e. we have that v = 0 and θ = c in Cθ,h(x; v)).

3) Apply maps T̂ and its affine approximation L(ξ) := T (x)+DT [x](ξ−x) to Cθ0,h(x; v):

T (Cθ0,h(x; v)) = {T (ξ), where ξ ∈ Cθ0,h(x; v)} , L (Cθ0,h(x; v)) = {L(ξ), where ξ ∈ Cθ0,h(x; v)}

http://www2.math.uu.se/~gaidash/1MA217_2014/Files/HP.pdf
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We notice that for ξ ∈ Cθ0,h(x; v),

(a1, b1) := T (ξ)− T (x) = DT [x](a0, b0) + o(‖a0, b0‖) = L(ξ)− L(x) + o(‖a0, b0‖,

since T is a C1 map. Therefore, sets T (Cθ0,h(x; v)) and L (Cθ0,h(x; v)) are not too far

from each other: there is a constant C1 = C1(δ) = o(δ), such that

(Bh(T (x)) ∩ T (Cθ0,h(x; v))) ⊂ (Bh(T (x)) ∩ L (Cθ0+C1,h(x; v))) . (5.7)

The second set here can be “computed”: since point x is δ-close to 0, there exist a

constant C2 = C2(δ) = o(δ), such that

‖(a′1, b′1)− (λa0, µb0)‖∞ ≤ C2,

where (a′1, b
′
1) := (L(ξ)− L(x)) and ‖ · ‖∞ is the vector l∞-norm. Therefore, denoting

the normalized action of the derivative map on the second component of a vector as

S[x]v:

Sx(v) :=
π2DT [x](1, v)

π1DT [x](1, v)
, πi − projection on the i− th component, i = 1, 2,

we get, ∣∣∣∣ b′1a′1 − Sx(v)

∣∣∣∣ =

∣∣∣∣µλ b0

a0

− µ

λ
v + o(δ)

∣∣∣∣ =
µ

λ
|b0/a0 − v + o(δ)| =⇒

=⇒
∣∣∣∣ b′1a′1 − Sx(v)

∣∣∣∣ < (µλ + C3

)
(θ0 + C1),

for some C3 = C3(δ) = o(δ). Set, inductively,

θn =
(µ
λ

+ o(δ)
)

(θn−1 + C1), n = 1, 2, 3, . . . , (5.8)

then

(Bh(T (x)) ∩ L (Cθ0+C1,h(x; v))) =

{
ξ ∈ Bh(T (x)) ⊂ R2 : ξ − x = (a′1, b

′
1), a′1 6= 0,

∣∣∣∣ b′1a′1 − Sx(v)

∣∣∣∣ ≤ θ1

}
⊂ Cθ1,h(T (x), Sx(v)).

Finally, we have by (5.7), that

(Bh(T (x)) ∩ T (Cθ0,h(x; v))) ⊂ Cθ1,h(T (x), Sx(v)). (5.9)

4) Consider

γθnh,T
−nx

∗ := Bθnh(T
−n(x)) ∩ γ∗.
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By part 2) this lies in Cc,θnh(T
−n(x); 0). Where does the piece of the stable manifold

Bθnh ∩ T n(γθnh,T
−nx

∗ ) 3 x lie? In(
Bθnh ∩ T n(γθnh,T

−nx
∗ )

)
⊂ T n

(
Cc,θnh(T

−n(x); 0)
)
,

and, by (5.9), this is contained in

Cθnc,θnh(x, ST−1(x) ◦ . . . ◦ ST−n+1(x) ◦ ST−n(x)(0))

5) Use the above machinery to show that for any point x ∈ γ∗ and a sequence ξn ∈ γ∗
such that limn→∞ ξn = x, the limit:

lim
n→∞

π2(ξn − x)

π1(ξn − x)

exist, and is a continuous function of x. The C1 property of γ∗ follows.

6. Hyperbolic sets and shadowing

6.1. Hyperbolic sets

Let M be a C1 Riemannian manifold, U ⊂M a non-empty open subset, f : U 7→ f(U)

- a C1 diffeomorphism.

A compact f -invariant subset Λ is hyperbolic if ∃ λ ∈ (0, 1) and families of subspaces

E±(x) ⊂ TxM , x ∈ Λ, s.t. for every x ∈ Λ:

• TxM = E+(x)⊕ E−(x);

• ‖D(fn)(x)|E+(x)‖ ≤ Cλn and n ≥ 0;

• ‖D(f−n)(x)|E−(x)‖ ≤ Cλn and n ≥ 0;

• Df(x)E±(x) = E±(f(x)).

Definition 20. If Λ = M then f is called an Anosov diffeomorphism.

Theorem 21. Let Λ be a hyperbolic set for f . Then the subspaces E±(x) depend

continuously on x ∈ Λ.
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Theorem 22. If Λ is a hyperbolic set of f with constant C and λ, then for every ε > 0

∃ a C1 Riemannian adapted metric ‖·‖′ in a neighborhood of Λ with respect to which the

family Df(fm(x)) is uniformly hyperbolic (i.e. C = 1) with λ′ = λ+ε and µ′ = λ−1 and

the subspaces E±(x) are ε-orthogonal, i.e. 〈v+, v−〉′ < ε for all unit vectors v± ∈ E±(x),

x ∈ Λ.

Proof. For any v, v′ ∈ E+(x), x ∈ Λ, define the following inner product on E+(x):

〈v, v′〉′ =
∑
n≥0

λ′−2n〈Dfn(x)v,Dfn(x)v′〉. (6.10)

For any v, v′ ∈ E−(x), x ∈ Λ, define the following inner product on E−(x):

〈v, v′〉′ =
∑
n≥0

λ′−2n〈Df−n(x)v,Df−n(x)v′〉. (6.11)

Both converge uniformly for ‖v±‖ ≤ 1 and x ∈ Λ. Set ‖v±‖′ =
√
〈v, v〉′, v ∈ E±(x),

and for a vector v = v+ + v−, ‖v‖′ =
√
‖v+‖2 + ‖v−‖2. Finally, for any two vectors v

and w in TxM set

〈v, w〉′ = 1

2
(‖v + w‖′ − ‖v‖′ − ‖w‖′)

6.2. Horseshoe: an example of a hyperbolic set

A rectangle in Rk+l will mean a set of the form D1 × D2 ⊂ where Di are disks,

π1 : Rk+l 7→ Rk and π2 : Rk+l 7→ Rl will be two orthogonal projections. Rk will be

called the “horizontal” direction, Rl - the vertical.

Definition 23. Full component Suppose ∆ ⊂ U ⊂ Rk+l is a rectangle and f : U 7→ Rk+l

is a diffeo. A connected component ∆0 = f(∆′0) of ∆ ∩ f(∆) is called full, if

1) π2(∆′0) = D2;

2) for any z ∈ ∆′0, π1|f(∆′0∩(D1×π2(z))) is a bijection onto D1.

Definition 24. (Horseshoe) If U ⊂ Rk+l is open then a rectangle ∆ = D1 ×D2 ⊂ U ⊂
Rk⊕Rl is called a horseshoe for a diffeo f : U 7→ Rk+l if ∆∩ f(∆) contains at least two

full components ∆0 and ∆1 such that for ∆′ = ∆0 ∩∆1..

1) π2(∆′) ⊂ intD2, π1(f−1(∆′)) ⊂ intD1;

2) D
(
f |f−1(∆′)

)
preserves and expands a horizontal cone family on f−1(∆′);

3) D (f−1|∆′) preserves and expands a vertical cone family on f−1(∆′).
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Figure 6. Generating a horseshoe.

• Let us study the maximal invariant subset of ∆. Denote ∆ω0 , ω0 = 0, 1, the two full

components of ∆ ∩ f 1(∆), and ∆ω0 = f−1(∆ω0), ω0 = 0, 1.

• The intersection ∆ ∩ f(∆) ∩ f 2(∆) consists of four horizontal rectangles:

∆ω1ω2 = ∆ω1

⋂
f(∆ω2) = f(∆ω1)

⋂
f 2(∆ω2),

ωi ∈ {0, 1}.

• Inductively, the set ∩ni=1f
i(∆) consists of 2n disjoint horizontal rectangles of

exponentially decreasing heights.

∆ω1...ωn :=
n⋂
i=1

f i(∆ωi), ωi ∈ {0, 1}.

Each infinite intersection

∆ω :=
n⋂
i=0

f i(∆ωi), ω = (ω1 . . . , ωn, . . .) ∈ Σ+
2 ,

is a horizontal fiber (a curve connecting the left and the right sides of ∆, such that the

projection π1 on the disk D1 is a bijection).

• Similarly, the sets

∆ω−n...ω0 :=
n⋂
i=0

f−i(∆ω−i), ω−i ∈ {0, 1},

are vertical rectangles, the sets

∆ω :=
n⋂
i=0

f−i(∆ω−i), ω = (. . . , ω−n, . . . , ω−1, ω0) ∈ Σ+
2 ,
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Figure 7. An approximation of the invariant hyperbolic set.

are vertical fibers.

• The intersection of any vertical fiber with the set of horizontal fibers projects to a

Cantor set Λ2 in D2, while the intersection of any horizontal fiber with the vertical ones

projects to a Cantor set Λ1 in D1:

Λ2 := ∆...ω−n...ω−1,ω0

⋂(
∞⋂
i=1

f i(∆)

)
,

Λ1 := ∆ω1...ωn...

⋂(
∞⋂
i=0

f−i(∆)

)
.

• Finally, the set

Λ :=
∞⋂

i=−∞

f−i(∆)

is an invariant set, equal to the product of two Cantor sets Λ1 and Λ2, hence a Cantor

set itself. The map h : Σ2 7→ Λ, given by

h(ω) =
∞⋂

i=−∞

f−i(∆ωi)

is the homeomorphism conjugating the shift σ|Σ2 to f |Λ.

Corollary 25. The horseshoe is a hyperbolic set. f |Λ is topologically conjugate to σ|Σ2.

Proof. Hyperbolicity follows from the invariance of the cone families and stretching of

the vectors inside the cones.
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Figure 8. Horseshoe for a Hénon map, taken from this applet.

Corollary 26. f |Λ is topologically mixing. Periodic points of f are dense in Λ, and the

number of periodic points of period p is 2p.

For stable/unstable manifolds, horseshoe, the attractor, etc for the Hénon family

check this applet.

6.3. Homoclinic and heteroclinic intersections

Definition 27. (Homoclinic points) Let p be a hyperbolic periodic point of a diffeo

f : U 7→ M . A point q is homoclinic to p if q 6= p and q ∈ W s(p) ∩ W u(p). It is

transverse homoclinic if, additionally, W s(p) and W u(p) intersect transversely at q.

Definition 28. (Heteroclinic points) Suppose p1, . . . , pk be periodic points (of possibly

different periods) of f : U 7→ M . Suppose W u(pi) intersects W s(pi+1 at qi, i = 1, . . . , k

(pk+1 = p1. qi are called heteroclinic points.

Theorem 29. Let p be a hyperbolic periodic point of a diffeo f : U 7→M and let q be a

transverse homoclinic point to p. Then for every ε > 0 the union of ε-neighborhoods of

the orbits of p and q contains a horseshoe of f .

http://www.ibiblio.org/e-notes/Chaos/homoclinic.htm
http://www.ibiblio.org/e-notes/Chaos/homoclinic.htm
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Figure 9. Some possible configurations of homoclinic/heteroclinic intersections

Figure 10. A heteroclinic connection in a pendulum

6.4. Shadowing

An ε-orbit (a pseudo-orbit) if f : U 7→ M is a finite or infinite set {xn} s.t. s to

dist(f(xn), xn+1) < ε for all n.

Question: When are orbits of a perturbed dynamical system are ε-orbits of the

original one? This might give a us a way to conjugate the perturbed and the original

systems.

The following theorem answers this question.

Theorem 30. (Shadowing Theorem) Let Λ ⊆ M be a hyperbolic set for a C1-diffeo

f : M 7→ M of a smooth manifold M . Then there exists a nbhd. U of Λ and a

neighborhood W of f in C1(M,M) such that for all δ > 0 there exists ε > 0 s. t. for

all topological spaces X, homeos g : X 7→ X and continuous maps h0 : X 7→ U the

following holds.
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If f̃ ∈ W is such that dC0(h0 ◦ g, f̃ ◦ h0) < ε then

1) (existence of a conjugacy) there is a continuous h1 : X 7→ U s.t.

h1 ◦ g = f̃ ◦ h1, and dC0(h0, h1) < δ;

2) (uniqueness of the conjugacy) ∃ δ0 = δ0(Λ, f) > 0, s.t. if h′1 : X 7→ U is a cont.

map satisfying h′1 ◦ g = f̃ ◦ h′1 and dC0(h′1, h1) < δ0 then h′1 = h1;

3) (continuity of the conjugacy) h1 depends continuously on f̃

Proof. The proof will be based on the Contraction Mapping Principle: we look for the

desired h1 as the fixed point of the operator

F : C0(X,U) 7→ C0(X,M), F (h) := f̃ ◦ h ◦ g−1.

1) Set

C0
h0

(X, h∗0TM) =
{
ξ ∈ C0(X,TM) : ξ(x) ∈ Th0(x)M,x ∈ X

}
,

the space of continous vector fields field “along” h0, endowed with the sup. norm. Now,

let U1 be any relatively compact nbhd. of Λ.

There is θ0 = θ0(U1,M) > 0 such that for all 0 < θ < θ0, the following map

A : Bθ(h0) ⊂ C0(X,U1) 7→ C0
h0

(X, h∗0TM) is defined

A(h)(x) := exp−1
h0(x)(h(x))

Sidenote: for v ∈ TxM we now denote by cv the geodesic with c(0) = x, ċ(0) := v,

the exponential map

expx(v) := cv(ε)

is an embedding of {v ∈ TxM : ‖v‖ ≤ R} into M , where ε is possibly a very small

constant, depending on R.

Lemma 31. Let c : [0, T ] 7→ M be a geodesic and τ : [0, T/a] 7→ [0, T ], t 7→ τ(t) = at.

Then c̃ = c ◦ τ is a geodesic.

Therefore, for δ = εR we obtain a smooth embedding of

expx : B(0, δ)) := {v ∈ TxM : ‖v‖ ≤ δ} 7→M, expx(v) := cv(1).

Define rx > 0 to be the supremum of those δ for which expx is injective on the δ-ball

B(0, δ), the injectivity radius.



24

2) Suppose that v is a f. p. of

F h0 := A ◦ F ◦ A−1 : Bh0
θ (0) 7→ C0

h0
(X, h∗0TM),

F h0(v)(x) := exp−1
h0(x)(f̃(exph0(g−1(x))(v(g−1(x)))).

Then A−1v is a fixed point of F .

F h0 is differentiable in v:

(DF h0 |vξ)(x) : = (D exp−1
h0(x))|f̃(exph0(g−1(x)) v(g−1(x))) ·Df̃ |exph0(g−1(x)) v(g−1(x))

· (D exph0(g−1(x)))|v(g−1(x))ξ(g
−1(x)).

Notice, for v1, v2 ∈ Bh0
θ (0)

‖(DF h0|v1ξ)(x)− (DF h0 |v2ξ)(x)‖ ≤ C‖v1 − v2‖,

for some C.

Lemma 32. There exists a neighborhood U ⊃ Λ, ε0, ε > 0, and R > 0 independent of

X, g and h0, such that

‖
(
DF h0|0 − Id

)−1 ‖ < R,

whenever dC1(f, f̃) < ε0, dC0(h0 ◦ g, f̃ ◦ h0) < ε.

F h0(v) = DF h0|0v +H(v).

A f. p. v of F h0 satisfies

((DF h0)0 − Id)v = −H(v),

or

v = −(DF h0|0 − Id)−1H(v) =: T (v).

DH is Lipschitz, since DF h0 is. This Lipschitz constant K is independent of X, g, h0.

Therefore,

‖T (v1)− T (v2)‖ < RK max(‖v1‖, ‖v2‖)‖v1 − v2‖,

and, therefore, T is a contraction near 0.

Next,

H(0)(x) = F h0(0)(x) = exp−1
h0(x)(f̃(h0(g−1(x)))),
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we have

‖H(0)‖ = dC0(h0, f̃ ◦ h0 ◦ g−1) = dC0(h0 ◦ g, f̃ ◦ h0),

and

‖T (0)‖ < R‖H(0)‖ = RdC0(h0 ◦ g, f̃ ◦ h0).

Now, take δ0 = 1/2RK, θ = min(δ, δ0), and ε < θ/2R as in the Lemma. Then

‖T (v1)− T (v2)‖ < 1

2
‖v1 − v2‖

for vi ∈ Bh0
δ0

(0) ⊂ C0
h0

(X, h∗0TM), and ‖T (0)‖ < θ/2, whenever h0 is such that

dc0(h0 ◦ g, f̃ ◦ h0) < ε.

In conclusion, T (Bh0
δ0

(0) ⊂ Bh0
δ0

(0). By CMP, T has a unique f. p. v in Bh0
δ0

(0)

and F has a unique f. p. β = A−1v ∈ Bδ0(h0), which is, in fact, in Bδ(h0) since

T (Bh0
δ0

(0) ⊂ Bh0
δ0

(0) ⊂ Bh0
δ (0).

Definition 33. Let (X, f) be a dyn. sys. on a metric space X. An ε-psedu-orbit {xk}k∈Z
is δ-shadowed by an orbit of of x ∈ X under f if dX(xk, f

k(x)) < δ for all k ∈ Z.

Orbits of a hyperbolic dynamical system shadow pseudo-orbits:

Corollary 34. (Shadowing Lemma) Let Λ be a hyperbolic set for f : U 7→ M . Then ∃
an open nbhd V ⊃ Λ s.t. for every δ > 0 there is ε > 0 so that every ε-pseudo-orbit in

V is δ-shadowed by an orbit of f .

Furthermore, there is δ0 s. t. if δ < δ0 then the orbit of f shadowing the given

pseudo-orbit is unique.

Proof. Take X = Z (with discrete topology); g : X 7→ X given by g(k) = k + 1;

h0 : X 7→ V given by h0(k) = xk; and f̃ = f . By the Shadowing Theorem ∃ h1 : X 7→ V

such that h1 ◦ g = f ◦ h1 and dC0(h0, h1) < δ, i.e.

h1(k + 1) = f(h1(k)), for all k ∈ Z or h1(k) = fk(x),

where x = h1(0), and d(xkf
k(x)) < δ for all k ∈ Z as requested.

Periodic orbits of a hyperbolic dynamical system shadow pseudo-orbits

“uniformly”:
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Corollary 35. (Anosov Closing Lemma) Let Λ be a hyperbolic set for f : U 7→M . Then

∃ an open nbhd V ⊃ Λ and C, ε0 > 0, s.t. for every ε < ε0 and any periodic ε-orbit

(x0, x1, . . . , xm) ⊂ V , there is a point y ∈ U s. t. fm(y) = y and dist(fk(y), xk) < Cε

for k = 0, 1, . . . ,m− 1.

Proof. Choose X = Zm, g(k) = k + 1 mod m, h0(k) = xk and f̃ = f in the Shadowing

Theorem.

Remark 36. In particular, consider an almost periodic orbit, i.e. an orbit segment s.

t. dist(fm(x0), x0) < ε (this is a pseudo-orbit). Thus Anosov Closing Lemma implies

that close to any orbit in a hyperbolic set Λ that “almost” returns to itself, there is a

true periodic orbit (but not necessarily in Λ).

Finally, the Shadowing Theorem leads to the structural stability of hyperbolic sets:

Theorem 37. (Persistence of hyperbolic sets) Let Λ ⊆M be a hyperbolic set for a C1-

diffeo f : M 7→ M Then there exists an open nbhd. V ⊃ Λ s.t. for any C1 diffeo

g : M 7→M sufficiently C1-close to f , the completely invariant set

Λg
V =

⋂
m∈Z

gm(V̄ )

is hyperbolic for g, if not empty. In particular, Λf
V ⊇ Λ is hyperbolic.

Proof. 1) Extend the invariant splitting TxM = E+
x ⊕ E−x defined for x ∈ Λ to a

continuous (but not nec. invariant splitting ) on an open V1 ⊃ Λ. Given γ > 0, let

Hγ
x :=

{
u+ v ∈ TxM : u ∈ E+

x , v ∈ E−x , ‖v‖ ≤ γ‖‖u‖
}

be the corresponding horizontal cone in TxM , and let V g
x be the complimentary vertical

cone.

2) ∃ (λ, µ)-splitting on Λ =⇒

Df [x] (Hγ
x ) ⊆ H

γλ/µ
f(x) ⊂ intHγ

f(x) ∩ {0},

(Df [x])−1
(
V γ
f(x)

)
⊆ V γλ/µ

x ⊂ intV γ
x ∩ {0},

and

u+ v ∈ Hγ
x =⇒ ‖Df [x](u+ v)‖ ≥ µ− λγ

1 + γ
‖u+ v‖, (6.12)

u+ v ∈ (Df [x])−1
(
V γ
f(x)

)
=⇒ ‖Df [x](u+ v)‖ ≤ (1 + γ)λ‖u+ v‖.(6.13)
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Now, by continuity, for any δ > 0 we can find a rel. compact nbhd V ⊆ V1 of Λ

and a nbhd f in C1-topology s.t. (6.12) and (6.13) remain valid with µ substituted by

µ− δ and λ by λ+ δ for all x ∈ V and g ∈ W .

3) Consider the set Λg
V .

The sequence of differentials Dg(gm(x)) admits a (λ′, µ′) splitting with

λ′ = (1 + γ)(λ+ δ),

µ′ =
µ− λγ − (1 + γ)δ

1 + γ
,

and if δ and γ are small, we still have λ′ < 1 < µ′, the set Λg
V is hyperbolic for g. In

particular, the subspaces

E+(x) := ∩n≥0 Dg
−n(gn)V γ(gn(x)), (6.14)

E−(x) := ∩n≥0 Dg
n(g−n)Hγ(g−n(x)), (6.15)

and the definition of a hyperbolic set checks with λ := max(λ′, (µ′)−1

Theorem 38. (Structural stability of hyperbolic sets) Let Λ ⊆ M be a hyperbolic set

for C1 diffeomorphism f : M 7→ M of a smooth manifold M . Then for every open

nbhd. V of Λ and every η > 0 there exists a nbhd. W of f in C1(M,M) such that

for all diffeomorphisms f̃ ∈ W there is a hyperbolic set Λ̃ ⊂ V , and a homeomorphism

H : Λ 7→ Λ̃ with

h ◦ f = f̃ ◦ h

on Λ and dC0(id, h) + dC0(id, h−1) < η. Furthermore, h is unique if δ is small enough.

Proof.

i) Apply the Shadowing Theorem taking δ < min{δ0, η/2}, X = Λ, h0 = idΛ and g = f .

Get a nbhd V1 ⊂ V of Λ, and a nbhd W1 of f , such that dC0(f̃ , f) < ε for all f̃ ∈ W1,

and a unique h1 : Λ 7→ V1 such that h1 ◦ f = f̃ ◦ h1 and dC0(idΛ, h1) < δ.

In particular, Λ̃ = h1(Λ) is completely f̃ -invariant and hyperbolic by Theorem 36

(after, possibly, a shrinking of W1).

ii) To prove that h1 is injective, we apply the Shadowing Theorem again taking δ as

before, X = Λ̃ and h0 := idΛ̃ and g = f̃ , we get the same nbhd W1 as soon as ε is small.

Then we have a unique h2 : Λ̃ 7→ V s.t. h2 ◦ f̃ = f ◦ h2 and dC0(idΛ̃, h2) < δ.

iii) To end the proof, it is sufficient to show that h2 ◦ h1 = idΛ. We apply again the

Shadowing Theorem with X = Λ, h0 = idΛ̃ and g = f̃ = f . Since

dC0(idΛ, h2 ◦h1) ≤ dC0(idΛ, h1)+dC0(h1, h2 ◦h1) = dC0(idΛ, h1)+dC0(idΛ̃, h2) < 2δ < δ0,
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we can apply the uniqueness statement in the Shadowing Theorem to get

h2 ◦ h1 = idΛ,

because they both commute with f and are close to h1.
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