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Abstract. We consider iterates of maps of an interval to itself and their stable 
periodic orbits. When these maps depend on a parameter, one can observe 
period doubling bifurcations as the parameter is varied. We investigate 
rigorously those aspects of these bifurcations which are universal, i.e. inde- 
pendent of the choice of a particular one-parameter family. We point out that 
this universality extends to many other situations such as certain chaotic 
regimes. We describe the ergodic properties of the maps for which the 
parameter value equals the limit of the bifurcation points. 

1. Introduction 

Continuous mappings of intervals into themselves display some remarkable 
properties when regarded as discrete dynamical systems. (For a survey, see May 
[9] or Collet and Eckmann [14].) One much-studied example is the one-parameter 

family 
x ~  1 - # x  2 (1.1) 

which maps [--  1, 1] into itself for 0 __< #=2 .  In this and similar examples, what is 
interesting is not so much the behavior of any particular mapping; rather, it is the 
way this behavior changes with #. 

The example (1.1), and the more general one-parameter families # ~ P u  we will 
study, have a simplifying qualitative feature: Each tp, has a unique (differentiable) 
maximum - at x = 0 in the example - below which it is increasing and above which 
it is decreasing. We will consider mappings p which satisfy 

P1) ~ is a continuously differentiable mapping of [ -  1, 1] into itself. 
P2) ~p(0)--1; ~ is strictly increasing on [ - 1 , 0 ]  and strictly decreasing on 

[0, 1]. 
P3) ~ ( - x )  = ~p(x). 
The space of all such mappings will be denoted by N. (The condition that the 

maximum of ~p occurs at zero and that ~ sends zero to one can frequently be 
arranged, if necessary, by making an affine change of variables.) We have included 
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condition P3) mostly for convenience; it simplifies matters and is satisfied by the 
~p's we are able to analyze in detail. 

One important property of such a transformation is having - or not having - 
an attracting periodic orbit. (Existence of periodic orbits which are not attracting 
is much less important, directly at least, in accounting for the behavior of typical 
orbits.) The fact that [ -  1, 1] is ordered and connected gives rise to powerful and 
general methods for proving the existence of periodic orbits - see, for example, 
Stefan [13] - but these methods do not help very much with the existence of 
attracting periodic orbits. Note, however, that if 0 is periodic for ~pe ~ ,  then, since 
tp'(0)--0, its orbit is necessarily attracting. We will say that ~p is superstable of 
period p if 0 is periodic of (minimal) period p for tp. If tpo is superstable of period p, 
then any ~ p ~  which is near enough to ~Po in the C 1 topology will also have an 
attracting periodic orbit of period p. Thus for example if 

is a one-parameter family of elements of N with ~u0 superstable of period p, there is 
an open interval about #o in the parameter space such that each corresponding ~pg 
has an attracting periodic orbit of period p. 

The existence of superstable ~p's can sometimes be proved by simple topologi- 
cal arguments. For example, with our normalization, tp is superstable of period 2 if 
and onlj~ if ~p(1)=0. If we now consider a continuous one-parameter family ~Pu 
defined on some interval of #'s, and if ~p~(1) is sometimes positive and sometimes 
negative, then there must be at least one # for which ~p~ is superstable of period 2. 
We give in Sect. 3 an elaboration of this simple argument which shows that, if qJ,(1) 
is near 1 for p near the left end of the parameter interval and near - 1 near the 
right end, there exists a sequence 

#1 <#2 </x3 < ... 

such that ~,~ is superstable of period 2 J. (See Guckenheimer [4] for an alternative 
approach to the existence of the/xfs.) It is clear that, if we allow arbitrary (non- 
monotone) reparametrizations, we cannot hope to prove the existence of unique 
#i's. Moreover, similar topological considerations guarantee that such a param- 
etrized family has, for each large j, many values of/x where lp~ is superstable of 
period 2 J. Nevertheless, in examples like 

x - ~ l - # x  2 

the first superstable values of # appear to occur with periods 

2,4,8,16,.. .  

in that order. We will denote the corresponding values of p by #j and !im #j by 
j - *  o:~ 

By investigating numerically a number of one-parameter families, Feigenbaum 
[3] discovered a striking universality property: For large j, # ~ -  #j is asymptotic 
to 

const x c$-J, 
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where 3=4.66920...  is apparently the same whatever one-parameter family is 
considered. (Note that, encouragingly, this property of the ~Lj's is not changed by 
making a differentiable change of parameter with derivative which does not vanish 
at #oo-) 

Having discovered the universality of 6 experimentally, Feigenbaum went on 
to propose an explanation for it which was inspired by the renormalization group 
approach to critical phenomena in statistical mechanics. The principal result of 
this paper is to show that Feigenbaum's explanation is correct, at least in a certain 
limiting regime to be explained below. We will next sketch our version of 
Feigenbaum's theory, ignoring numerous technical details which will need to be 
made precise later. 

Consider a mapping ~ ~ and define 

Assume 

a=a(~p)=-~(1 ) ;  b=bOp)=tp(a). 

and assume also that 

0 < a < b ( < l )  

lp (b )  = ~ , 2 ( a )  < a .  

then maps 

[ -a ,a]  onto [b,1] and [b,1] onto [ - a, ~p(b)] C [ - a, a] ,  

i.e. it exchanges the two non-intersecting intervals [ - a ,  a] and [b, 1]. Hence tp o~ 
maps [ - a ,  a] into itself, and -~po~ is again unimodal on [ -  a, a] (see Fig. 1). If we 

reverse orientation and scale up by a factor of-i, i.e. if we make the linear change of a 
variables 

Xol d ~ - -  aXne  w 

then h0 ou2 on [ - a ,  a] is transformed to 

1 
- - ~ o ~ J ( -  a x )  =-  (J~)(x) 

a 

on [ -  1, 1]. It is easy to verify that, with our hypotheses, Y ~  again has properties 
P1)-P3) [-but the condition a(Y~o)> 0 or a ( J p ) <  b(~--~) may fail]. We will refer to 
the transformation 3- as the doublin 9 transformation. The doubling transformation 
is essentially just composition of ~0 with itself, but combined with restriction of 
tpo~p to a subdomain of the original domain and then a scaling (and reversal of 
orientation) chosen to preserve the "normalization" ~(0)= 1. This combined 
operation, in contrast with composition alone, does not give rise to a more 
complicated-looking transformation. The utility of J -  in studying superstable ~p's 
lies largely in the remark that, provided ~ satisfies the conditions given above for 
Y--~p to be defined, 1/) is superstable of period p if and only if 3--~, is superstable of 
period p/2 (and, in particular, p must be even). 
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Fig. 1 
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We now, following Feigenbaum, propose some geometrical hypotheses about 
how ~- acts in the space N of transformations and show how these hypotheses 
account for the universality of 6. The picture is as follows : 

a) 3- has a fixed point 4~. 
b) The derivative of 3- at the fixed point ~ has a simple eigenvalue which is 

larger than one (and which will turn out to be 6); the remainder of its spectrum is 
contained in the open unit disk. Y- thus has a one-dimensional unstable manifold 
W, and a codimension-one stable manifold W~ at qS. 

c) The unstable manifold W, intersects transversally the codimension-one 

surface 221, Z I = {~p : tp(1)=0}. 

(Note that Z a is exactly the set of ~p's which are superstable of period 2.) See Fig. 2. 
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Using this picture, we can account for the universality of 6 as follows: Form 
successive inverse images Z2, Z3 . . . .  of £'1 under 9"- : 

~ j = 3 - - ( J -  I)X~ . 

Note that if ~ e Z j  then ~-(J- ~)tpeX~, so ~--J ~tp is superstable of period 2, so ~ is 
superstable of period 2 J. The successive Z/s  come closer and closer to W~; in fact, a 
straightforward argument (which we will give in detail later) shows that the 
separation between 27j and W~ decreases exponentially like & - j  for large j, where 
is the large eigenvalue of the derivative of ~- at q~. 

Fig. 2 

j W u  

.---- \ " - " - ~ 1  

Now consider a one-parameter family # ~ 0 ~  of transformations and regard it 
as a curve in N. Suppose this curve crosses the stable manifold HIs at/~ = #~ with 
non-zero transverse velocity. It is then clear that, at least for targej, there will be a 
unique #j near #~ such that ~p, ~Zj (which implies that tpu~ is superstable of period 
2 j) and that 

lira 6J(#~ - #j)  
j--* oo 

exists and is non-zero (see Fig. 3). 

Fig. 3 ............... l.~..Wu "-~_~I 
Thus, Feigenbaum's hypotheses not only account for the universal rate at 

which #i approaches #~ ; they also provide in principle an independent pre- 
scription for computing 6. They have other consequences as well; we will mention 
here just two of them: 

1. For all j, 3 -j- l~pu j is superstable of period 2. Because 0Y-- contracts in the W~ 
direction, the Y-J- l~p.i converge a s j ~  oe to the point of intersection of Zl with W~, 
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which we will denote by ~b~. Thus, q~ is also universal; for any one-parameter 
family as above, if we form 

and scale properly, we get something near to 4~ for large j. Similarly, YJ~Pu~ 
converges to 0- 

2. Let 21 denote the surface 

{~p : tpa(1) = - ~(1)} 

(i.e. the set of ~p's such that -~p(1) is a fixed point for @). Misiurewicz [11] has 
shown that there is an open set of ~'s on 2 ,  which admit an absolutely continuous 
invariant measure (and hence which have typical orbits which are not periodic). 
We will see that 21 intersects W~ transversally, with point of intersection inside 
this open set. (The intersection point will lie above W~ in Figs. 2 and 3.) Again 
form successive inverse images of X1 under J 

2j = ~--(J- 1)21 ; 

these surfaces converge to W~, again exponentially with rate ~, from the side 
opposite to that of the Zj's. Again, for each large j, there will be a unique ~j near #~ 
with 

tp;ty Z j, 

and the/ t fs  converge to #~ in the usual way: 

li2n ~ (~ j -  #~). 5~ 

exists and is non-zero. For large enough j, J J-1F~j will be near to the point of 
intersection of,~l with W~ and hence will admit an absolutely continuous invariant 
measure. From this it is easy to show that F~j itself admits an absolutely 
continuous invariant measure and hence also has orbits which are typically non- 
periodic. 

Thus #o~ is the limit of values of p for which ~u is chaotic. We warn the reader, 
however, that not all ~ ' s  for # just above #o0 are chaotic; for example, there is a 
sequence fii, again converging to #~ from above, with the same exponential rate, 
such that 

~ j  is superstable with period 3.2 j. 

As indicated earlier, we are going to prove that Feigenbaum's hypotheses are 
correct in certain cases. As Feigenbaum has noted, the universality of b is 
somewhat relative - its value depends on the function space in which the ~'s are 
assumed to lie. We will consider ffmctions ~ of the form 

~(x) = f(]x] 1 + ~). 

where the function f is smooth. Except for a result on the uniqueness of the fixed 
point, we will in fact have to assume that f is analytic in a complex neighborhood 
of [0, 1]. We would of course like to deal with the case e = 1, but the argument we 
are going to give is a perturbative analysis valid only for sufficiently small positive 
values of e. Our results could be expressed in terms of convergent series expansions 
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in e and various iterated logarithms of e which are analogues of the e-expansions 
occurring in the renormalization-group approach to the theory of critical pheno- 
mena. Work in progress, using quite different techniques, indicates that at least 
partial results can be obtained for e = 1 [8], see also note added in proof. 

As an indication that there is some simple behavior at e = 0 about  which we 
could hope to carry out a perturbative analysis, consider the family of functions 

~)a(X) = 1 - -  (1 -[- a ) l x l ,  

for small positive a. A straightforward calculation shows that 

(JW,)(x) = 1 - ( 1  + a)elxl, 

i.e. 

Thus, the curve a ~ P a  is invariant under the action of J- ,  and the end point at 
a = 0, although not in the domain of definition of.Y, is a sort of virtual fixed point. 
If  we consider instead 

~o(x)-- 1 - ( 1  + a)lxl 1+~ 

we no longer get such a simple closed-form expression for 3"-~ but we do get 

(J~v)(x) = 1 - (1 + a)2aqxl ~ +~ + O(e). 

This suggests that, for small e, there might be a fixed point near he,, where a is to be 
determined approximately by 

1 + a ~- a~(1 +a)  2 , 

i,e. 

i.e. 

a~_ l - a ,  

a 
e l o g a ~ _ - a  or s-~(_--i-oga- ~ .  

Observe that this, if correct, implies that e ~ a and hence suggests that it should be 
possible to get a fixed point by adding to 1 - ( 1  + a)lxl 1 +~ a correction which is 
small relative to a. 

2. Statement of Results 

We are going to consider functions tp~N of the form 

~v(x) -- f(lxl I + ~), 

where f is the restriction to [0, 1] of a function analytic in some domain in the 
complex plane. Through most of our analysis, the domain f2 of analyticity will not 
affect our results very much although it presumably affects how small we have to 
take e in order to make our estimates work. There is one point in Sect. 7 where it is 
necessary to impose some conditions on f2 ; these conditions are met if we take O 
to be an open disk with center 1/2 and radius not too much larger than 1/2. Aside 
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from this one argument, we can work with 1"2 any bounded connected open set in t17 
containing [0,1]. We will mostly think of O as chosen once and for all and so will 
frequently suppress it from our notation. We will write ~(~2), or simply ~, for the 
real Banach space of functions bounded and analytic on Q, and real on (2~IR, 
equipped with the supremum norm. For  e > 0, we denote by ~ ( C N )  the set of 
functions tp on [ - 1 ,  1] of the form 

with f e  ~ and satisfying 

f(O) = 1; 

~(x) = f(Ixl* +~), 

df  
-d-~<0 on [-0,1]; f ( 1 ) > - l .  

We can identify N~ in an obvious way with an open subset of the Banach space 

{geS(~) :o(0) = o}. 

Theorem 2.1. For e sufficiently small, 3- has a fixed point 0 in ~ .  I f  we write 

¢ . ( x )  = L(IxP + ~) 

then f~(t) extends to a function jointly analytic in (e, t)for 

ee { z e ¢ \ [ -  o0, 0] :lzl < Co} 

and te£2. We denote -q~(1) by 2~; then 

2~ = - e log e + O(Q 
(2.1) 

£ ( t )  = 1 - (1  + 2~)t + O(e 2 log e). 

~ is an isolated f ixed point for 3-  in ~ ,  ; it has negative Schwarzian derivative (see 
Singer [12]), i.e. 

<, 3(<)2 
~b; 2 \q~;/ < 0 .  

Theorem 2.2. For e sufficiently small, (a ~ is an isolated fixed point for Y- in the space 
o f functions 

tp(x)  = f ( t x l  I + ~) 

with f twice continuously differentiable on [0, 11. 

Note that, if ~>e, then ~b&)=L(lxl 1 +~) can also be written as 0(Ixl x +9 with g 
continuously differentiable on [0, 1]. Thus, Y has at least a one-parameter family of 
fixed points of the form g(lxl 1 +~) with g only once continuously differentiable. 

Notational Convention : From now on the symbols q~ and 2~ are permanently 
reserved to denote the above objects. We will frequently suppress the subscript e. 

Theorem 2.3. The transformation J-  is infinitely differentiabIe in a neighborhood of 
(o ~ in ~ .  The derivative o f f  at ~)~ has one simple eigenvalue 6~ > 1 which approaches 
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2 as e approaches zero. The diameter of the smallest disk centered at zero containing 
the rest of its spectrum goes to zero with e. 

Theorem 2.4. J-  has a smooth stable manifold, W~, of codimension one and a smooth 
unstable manifold, W,, of  dimension one, at ~ .  For each ae  [ -  1, 1] there is a unique 
point O* on W, with 

¢~*0) = - a .  

W. crosses the surfaces Z 1 and $1 (defined in Sect. 1) transversally. Each (9" has 
negative Schwarzian derivative. 

Theorem 2.5. Let l ~ p u  be a continuously differentiable parametrized curve in ~ 
which crosses the stable manifold W~ with non-zero transverse velocity at # = l ~ .  
There exist sequences l~j and [zj converging to #~ from opposite sides such that 

lim 6J(#~o - #i) and lira 6i(/z~ - ~i) 
j ~  j-,oo 

are both finite and non-zero, and such that ~ is superstable of period 2 j and ~p~,j 
admits an absolutely continuous invariant measure for each sufficiently large j. 

Moreover, the ratio of lim 6J(lz® -I~j) to lim 6J(#o~-[tj) is also universal, i.e. does 

not depend on the particular parametrized family under consideration. 

Remark. One instance of such a parametrized family is 

~ . ( x )  = ~(~-  x) 

for a fixed function tp sufficiently near to (9=. We can then in particular take 

~)~(x) = 1 - /~ lxl  ~ +~ 

[Actually, the first statement is not quite true. For  i f / z>  1, then x ~ p ( # . x )  need 
not  be in N~(f2), but  it is in N,(#-t l  +~)£2).] 

Theorem 2.6. I f  ~pE W~, then ~p has an invariant Cantor set d. 
1) There is a decreasing chain of closed subsets of [ -  1, 13 

j(o) ~ j(~) 3 j(2) 3 . . .  

each of which contains O, and each of which is mapped onto itself by ~p. 
2) Each j(i) is a disjoint union of 2 ~ closed intervals, jti+ l) is constructed by 

deleting an open subinterval from the middle of each of the intervals making up j(i). 
3) ~ maps each of the intervals making up j(i) onto another one; the induced 

action on the set of intervals is a cyclic permutation of order 2 i. 

We let J denote ~ J(i). ~p maps J onto itself in a one-one fashion. Every orbit in J 
i 

is dense in J. If, besides being on W~, ~ has negative Schwarzian derivative-for which 
it suffices that it be near (9~ - then we have: 

4) For each k= 1, 2 . . . .  ~, has exactly one periodic orbit of period 2 k -  t. This 
periodic orbit is repelling and does not belong to j(k) ; ~p has no periodic orbits other 
than these. 
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5) Every orbit of ~p either 
a) lands after a finite number of steps exactly on one of the periodic orbits 

enumerated in 4) or 
o r  

b) converges to the Cantor set J in the sense that, for each k, it is eventually 
contained in j(k). 

There are only countably many orbits of  type a). 

Theorem 2.7. Again assume that ~p~ W~, and let j(o, j be as in Theorem 2.6. Let v 
denote the probability measure with support J which for each i assigns equal weight 
to each of  the 2 i intervals making up j(1). 

1) v is invariant under the action o f f  ; it is the only invariant probability measure 
on J. 

2) The abstract dynamical system (v, ~p) is ergodic but not weak mixing. 
3) I f  x is any point of  [ - 1 ,  1] whose orbit converges to J, and if f is any 

continuous function on [ -  1, 1], then 

N - 1  

?¢ ~zv n : 0  

In particular, if ~ is close enough to ~b~ so that Theorem 2.6 holds, then this 
equality holds for all but countably many x's. Similar results were obtained by 
Misiurewicz [10]. The analysis leading to the Cantor set also gives an attractive 
picture of how the bifurcation at #~ looks. This is described in detail at the end of 
Sect. 8. 

The proofs will be organized as follows: 
In Sect. 3 we develop the elementary theory of the doubling transformation Y,  

and prove for a fairly general class of one-parameter families {~v,} in :@ the 
existence of an increasing sequence #j of parameter values such that ~v,j is 
superstable of period 2 j. 

Section 4 gives the proofs of Theorem 2.1 - except for the estimate (2.1) on the 
precise form of the fixed point, which is deferred to Sect. 7 - and Theorem 2.3. 
Theorem 2.2 is proved in Sect. 5. 

Section 5 gives the precise definitions of global stable and unstable manifolds 
that we use and proves a general theorem, sketched in the introduction, permitting 
us to deduce Theorem 2.5 immediately from Theorem 2.4. Theorem 2.4 is proved 
in Sect. 7, and Theorems 2.6 and 2.7 in Sect. 8. 

3. The Doubling Transformation 

In this section we develop the elementary theory of the doubling transformation 
Y. Let ~ e ~ ,  and define 

a = a ( ~ ) =  - tp(1). 

If a > 0 we also define 

b = bOp) = ~p( a) . 
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The domain of J ' ,  N(J-), is the set of all WeN such that: 

1) a > 0  

2) b > a  

3) ~P0P(a)) ~ a, 

and for tpe@(Y-) we define 

1 
( y - ~ )  ( x )  = - a ~ o~; (ax ) .  

Remark. Although ~(Y-) is defined by three conditions, the boundary of ~ ( J )  
consists in fact of two surfaces: 

a = 0  
p(~(a))=a.  

This comes about because, in moving from ~(Y)  to a region where 2) fails we must 
pass through a point where b=a, i.e. ~p(a)=a, and this implies ~p(~(a))=a. 
Normally, we would expect conditions 2) and 3) to fail simultaneously, but it is 
easy to find situations in which 3) fails and 2) does not. 

Proposition 3.1. Let ~p~ ~ satisfy aOp)= O, and let (tp,) be a sequence in ~ converging 
to ~p in the C 1 topology and with a(~n)>O for all n. Then 

1) ~p,eN(Y-)for sufficiently large n. 
2) (J'~p,)(1)-+l as n~oo.  
In other words: Every point on the surface {a0P) =0} is part of the boundary of 

@(~-), and Y- sends ~p's near this surface to functions near the constant function 1. 

Proof It is easy to see that, if to2(a)< 0, then ~ N ( Y ) .  We will show: 

tp.Z(a.)- ( -  a.) ~ 0  (a. = a(~.)) 
a n 

which implies both 1) [since it implies tpZ(a.)<0 eventually] and 2) [since 
3-~p.(1 ) = - ~Z.(a.)/a.]. 

In view of the facts that 

a.--*0; 

we get 

On the other hand, 

SO 

~p.~p in C1; 

~.(a.)- ~.(0) 
an 

~'(0)=0, 

,0. 

W,(x)[ _-< M uniformly in x, n 

~.Z(a . )~(-a . )  = ~.(~.(a.))a~tp.(~p.(0)) " < M  N. (a . )~ . (O)- - , .0  

as claimed. 
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It is on the other hand clear that if tp satisfies ~poq)(a)=a and if ~,e@(c-);  
~p~tp, then 

1 o c - ~ , ( 1 )  = - ~ w °  ~ , ( a . ) - - ,  - t .  

Consider now a mapping #--.W, from an interval (#o, ~to) into N, i.e., a one- 
parameter family of elements of N. We assume the mapping to be continuous in 
the C 1 topology. We will say that such a one-parameter family is full if 

tpu(1)--*l as #'-*go 

and 

~&(1)-->-i as #--'no 

(e.g. lpu(x) = 1 - # x 2 ;  #o =0 ;  n0 =2). 
We have already remarked that for any such one-parameter family there must 

be at least one # such that ~pu(1)=0, i.e. such that ~p, is superstable. There may be 
many such #'s; in any case, we denote by #1 the largest such. Proposition 1 shows 
that, for # slightly larger than #,,  ~vueN(c- ). We will denote by ~, the smallest 
# > # 1  such that ~ ,q~(c- ) .  [Since b0pu)=~p~(1)~-i  as # ~ 0 ,  whereas aOPu) 
= -~,(1)--* 1, condition 2) in the definition of ~(C-) must fail before p reaches no.] 
By our earlier remarks, ~p~(a~)= a~. 

Proposition 3.2. I f  #~Ip ,  is a full one-parameter family, then 

# ~ c - t p , ,  #1 < # < ~ 1  

is also a fidl one-parameter family. 

Proof. By Proposition 1, c-tpu(1)~l as #+#1, and by the remark following 
Proposition 1, 

By induction, then, there exist two sequences 

~0</~1 < # 2 <  . - -<~2 </~1<~0 

such that, for & < # < ~j, ~v,~ N(C-J) and 

#-"+ ~¢--Jll) # , ].,lj <~ # < f.lj 

is a full one-parameter family. In particular these sequences are constructed in 
such a way that 

C -s- b&j(1)=0 

i.e. c-s-~P,s  is superstable of period 2, i.e. ~P,s is superstable of period 2 j. 

4. Existence and Elementary Properties of the Fixed Point 

If ~ p ~  is in ~(C-) as defined in Sect. 3, and if tp(x)=f(lx[ 1 +"), then 

(C-W)(x) = f(lxl 1 +") xe  [ -  1, 1], 
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where 

F(t) = -- 1 f ( l ( f (al  + ~t))[ 1 + ~) ; a = -- f(1) > 0. 

The conditions for the definition of J~p imply that 

f(al+~t)>O for 0_< t< l  

and we can therefore drop the absolute value sign. If we define @~ to be the set of 
such functions ~p satisfying in addition 

a l + ~ C f 2 ;  f(al+~g2)n(-- o% 0) =0  ; 

[f(aa +~f2)] 1 +~ C ~ 

then, if ~ps @~, ~--V' is again in ~ .  We are going to prove that J -  has a fixed point in 
N~ for each sufficiently small positive s. 

It is convenient to introduce a new variable c( related to e by 

-(z 

1 + log (c~)" 

Note that for each small positive e there corresponds exactly one small positive 
and vice versa. Any ~ p ~  can be written uniquely as 

~(x) = f(lx[ 1 + 9 ; f ( t )  = 1 - t + o:t(g(t) - 1), 

with ge ~(f2). 
Working with g rather than ~p is simply a (linear) change of variables in function 
space. If ~ N~, we will write the g corresponding to J-~p as T~g. The domain of C- 
is bounded on one side by the surface 

~(i)=0 

which corresponds to 

g(1) = 1. 

We are going to show that, for small ~, ~ is defined and well behaved on the open 
unit ball in .~ and has a fixed point near zero. 

To formulate our results concisely, we need some special terminology. If ~r is a 
normed space and Q a positive number, we write ~ r  for the open ball in ~r with 
center 0 and radius Q. A mapping defined on/g'l will be said to be nearly bounded if 
it is bounded on each . ~  with ~ < 1. Similarly, functions will be said to converge 
nearly uniformly if they converge uniformly on each ~ with ~ < 1. 

Proposition 4.1. For s > 0  sufficiently small, T~ is defined on ~1(g2). The mapping 

(e, g)-* ~(g) 

is jointly infinitely differentiabte. For f ixed  ~, derivatives o f  all orders of  T~ with 
respect to g are nearly bounded on ~ l .  We can decompose T~ as 

T~(g) = Tog + r~(g), 
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where T o is a rank-one linear operator with range the constant functions: 

(Tog)(t) = g(0) + g(1) + g'(1) 

and r~ and its g-derivatives of all orders converge almost uniform.ly to zero with ~. 

We emphasize that: Although 7~ is highly non-linear, its zeroth order part T o is 
not only linear but very simple - dividing it by two gives a projection onto the 
constant functions. Its simplicity makes possible a detailed analysis of the behavior 
of T~ for small e. 

Before proving the proposition we note its principal corollary. 

Corollary 4.2. 1. For each sufficiently small ~ > 0, there is exactly one solution g~O) 
for the fixed point problem 

a = T~(g) 

in ~1/2. (Here, ½ may be replaced by any number less than one.) 

__~ g~O) 

is infinitely differentiable and g~O) approaches zero with ~. 
2. D T~(g~ °)) varies continuously with ~ and approaches T O in operator norm as 

approaches zero. 
3. Let 0 < Q <  1. For sufficiently small ~, the only part of the spectrum of 

DT~(g~ °)) at a distance greater than Q from 0 is a simple positive eigenvalue 6~ which 
approaches two as e approaches zero. The corresponding eigenspace converges to the 
space of constant functions. 

To prove 1., we write the fixed point problem as 

g = Tog + r~(g) 

or equivalently as 

( I -  To)g = r~(g) . 

Since To 2 =2To, we have ( I - T o ) 2 = I  and so the above equation is equivalent to 

g = ( I -  7o)r~(g). 

Since r~ and Dr~ converge to zero nearly uniformly with e, 

g-~ (I - To)r~(g) 

is a contraction on ~1/2 for e sufficiently small. The existence and uniqueness of g~O) 
follows from the contraction mapping principle. The smoothness of the de- 
pendence of g~o) on e follows from the implicit function theorem in Banach space. 
(See, for example, Dieudonn6 [2].) That ~(o) approaches 0 with e follows ~e 
immediately from the nearly-uniform convergence of r~ to zero. 

Part 2 follows from the joint continuity of DT~(g) in g, e and the continuity of 
g~O) in ~. Part 3 follows from 2 by standard perturbation theory (Kato [7]) and the 
fact that the spectrum of T O reduces to {0, 2} with 2 a simple eigenvalue whose 
associated eigenspace is the constant functions. 

The proof of the proposition is a relatively straightforward computation 
supported by some general theorems. We will give the computation first; then 
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sketch the justification that  the remainder terms do indeed have the properties 
claimed. 

We first do a computa t ion  whose result we will need to use again later. We 
have already seen that  if 

~ ( x ) = f ( l x l l + ~ ) ;  a =  --~p(1) 

then the t ransformat ion tp~J-~p translates to 

f - ~  - -~ f ( ( f ( a  1 ~ ~t))l +~). 

We will next write 
f ( t )  = 1, - th(t)  

and determine how h transforms. We will need the following nota t ion : If  t o ~ ~2, we 
define a bounded  linear opera tor  Ato on 9((2) by 

(Ato f ) ( t )  = f ( t ) -  f ( t o )  t #: t o 
r - -  t o 

= i f ( t o )  t = t o . 

N o w  define rh, r/2 by 

f ( a l + " t ) = l - a t r l l  [so r l l=a~h(a l+~ t ) ]  

( 1  - at t l l )  1 +~" = 1 - atrl2.  

We now claim: Under  the action of  J- ,  h transforms as 

h~t /2  x {h(1 - atrl2) + ( A  lh)  (t - a t q z ) } .  

To verify this, write 

f ( ( f ( a  1 +~t)) 1 +~)= 1 - ( 1 -  atrl2)h(1 - a t t l 2 )  

= 1 - h(1 - attt2) + atrlzh(1 - at~12). 

N o w  use the following expression for the first h ( 1 -  atrl2), 

h(1 - atrl2) = h(1) - atrt2(A l h)(1 - atrt2) 

and recall that  a =  - f ( 1 ) = h ( 1 ) - 1 ,  to get 

- a + atrl2 {(A lh)(1 - atrt2 ) + h(1 - atr/2)}. 

Thus 

1 
- - f ( ( f ( a  1 + ~t)) 1 + ~) = 1 - tr/2 {(A 1 h) (1 - attl2 ) + h(1 - atr/2) } 

a 

f rom which the formula (4.1) for the action of  ,Y- on h can be read off. 
We must  next insert the expression 

h(O = 1 - ~(g(t) - 1) 

(4,1) 
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and extract the principal terms for small e. In  so doing, we generate a large number  
of  remainder  terms, and it is convenient to have a systematic nota t ion for the 
spaces in which the remainder terms lie. Let 9~ denote the space of  all mappings 

r : (e, g)-~ r(e, g) 

defined on a set of the form (0, Co) x.~1((2 ) with values in .~(f2). Here eo is a strictly 
positive number  which may  vary with r. These mappings are required to be jointly 
infinitely differentiable in e, g, and derivatives of  all orders with respect to g are 
required to be nearly bounded  in .~1((2) for each ~ and to converge to zero nearly 
uniformly with e. We will use ~ to denote the analogous space of  functions which, 
together with their g derivatives, will merely be required to remain bounded as 
approaches  zero and No, ~ o  to denote the analogous spaces of  functions taking 
values in IR rather than 9-  Recall, also, that  e and ~ are related by 

e - (1 + log~) ' 

whenever c~ appears in one of  our  formulas it is to be regarded as a function of  e. 
Since a = h (1 ) -  1 and we are writing h( t )= 1 -  ~ ( g ( t ) - 1 )  we have 

a=~(1-g0)) 

and hence 

[ -  ~ logct~ 
N o w  ~ = exp [~ loges] = exp ,~ i ~ )  = exp [ - ~ - ~]. 

/ 

Thus 

a ~ = e - ~ + e b l  ; b l E ~ o .  

Also, 

Thus  

g(a i + ~t) = g(O) + a 1 + ~t(A og)(a 1 + ~t) = g(O) + ~b2, b 2 ~ 26. 

r/1 = a~(1 + e(1 - g ( a  1 + ~t))) 

= (e- ~ + ebl)(1 + c~ - ~g(O) - ~2bz) 

= 1 -  c~g(O) +ctr 1 , r l e N .  

[We have used the fact that  e/e goes to zero with ~ to replace eb t by e(e/cOb 1 with 
e/c~b l ~ 9~o. ] N o w  

1 - att?z = (1 - atr/1) l+~ , 

so 

so 
t / 2 = t / l + e ~ b  3, b 3 ~ ,  

~/2 = 1 -- ~z9(0) + o~r2, r 2 E ~ .  
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Also 

h(1 - atqz) + (A lh)(1 - atrl2 ) = 1 + 0~ - -  eg(1 -- ate12)-- a(A 19)(1 - -  atrt2) 
=l+e(1-g(1)-g'(1)+r3),  r3~9l. 

Thus 

r/z {h(1 - atrh) + (A 1h)(1 - art/2) } = (1 - c~g(O) + er2)(1 + e(1 - g(1) -  g'(1) + ra) ) 

and hence by inspection 

=l-e(g(O)+g(1)+g'(1)--l+r¢), r4sN 

Tg = g(0) + g(1) + g'(1) + r 4 ,  

as desired. 
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and that 

)~, = - e logs + O(e) 

q~(x) = 1 - ( t  +)~01xP +" + 0 ( -  ~ ~ logs). 

We turn now to the problem of justifying the above computations, i.e. of 
showing that the remainder terms do indeed have the asserted properties. The 
verifications are tedious and we will not do all of them, but we will work through 
one in full detail. We wrote, in the course of the computation, 

al+~t(Aog)(at+~t)=~b2 with b2~23. (4.2) 

We now want to prove this. The proof is based on a number of principles which we 
list here: 

a) The mapping (~, g)--+g is in 23. 
b) For  any go~5,  the constant mapping (e,g)--,g o is in 23. 
c) If bo~23 o, the mapping (s,g)-+(the constant function with value bo(s,g)) 

is in 23. 
d) Let 2}1,..., 2}, be open sets in ~ and let 

~ : 2 } 1  x .. .  x ~ 8 . - + 5  

More detailed computations to be done in Sect. 7 show that in fact 

Remark. These computations show that ~ admits a fixed point q S ~  with 

~(x)  = 1 - (1 +,(8))lxl 1 +~ + correction, 

where the correction vanishes more rapidly than ~ as e goes to zero. They also 
show that there is no other fixed point in a ball about ~b~ whose radius is bounded 
below by conste(s). If we write 

2~= - ~(1) ,  

then 

2 ,=e (e )+0 (e ) ,  or 2,=-eloge+o(eloge).  
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be bounded, infinitely differentiable, and have bounded derivatives. Further, let 
bl . . . .  ,b,e~3, with the range of b~ contained in ~B~ for each e. Then 

@, g ) ~  q)(b l (~, g), .. . , b,(e, g)) 

is in ~.  
e) (Corollary of d.) If b 1, b2e~,  then 

(~, g )~b l ( e ,  g)" b2(,% g) 

(pointwise product of analytic functions) is in ~8. Similarly, if b 1, b 2 a r e  in ~o, so is 
their product. 

f) If t21, f22 are bounded open sets in 117, we write 5(t21, f22) for the set of all 
geS(f/1) with g(f21)Ct? 2. [-Hence, if f22 is the open unit disk, 5(f/,f22)=51(O). ] 

' t~' 5(f/1, f22) is an open subset of 5(t21). Now let f22C /COg. Then composition 
(gl,g2)~g2°gl is a C ~ function with bounded derivatives from 
5(f21, f2~) xS(f22, ~3) into 5(f/1, f23). 

We omit the proofs of these statements. Note that a)-e) remain true if we 
replace 5 by C 2, but that t) depends upon the properties of analytic functions, and 
fails in C a . 

We are now ready to verify 2). 
1. The mappings 

(g, g)-~ 1 - g(1), (1 - g(1)) ~ , a, e -~ , e -s: 

are all in $0. This is readily proved by direct verification. Note that the 
g-derivatives of ( 1 -  g(1)) ~ have singularities as g(1)--> 1; it is for this reason (only) 
that we have to work with functions with derivatives which are nearly bounded - 
rather than bounded - on the unit ball of 9- 

We will from now on write, as a shorthand, statements like (1-g(1))~e$o 
rather than the more logical 

((e, g)~(1 - g(1)y)s $o .  

2. a=:¢(1 -g(1))~B0 ; a~=e-~e-~(1 -g(1))~e!B0 ; a 1 +~e~3 o. [Use le).] 
3. a 1 + ~t~ ~. [Use 2b), c), and e).] If e o is small enough there exists a domain ~1 

with ~ Cf /such that a~+~tef21 for all e<eo, ge51,  tar2. 
4. A o g e ~ .  [Use a), d).] 
5. Aog(at+~t)e~.  [Use 3., 4., f), d).] 

6. l -al+"Aog(al+~t)=(1-g(1))a~Aog(al+~t)ef& [Use 1., 2., 5., c), e).] 

This completes the proof of (4.1). 
The arguments given so far show that the fixed point g~O) varies smoothly with 

e. We next show that g~°)(t) is jointly analytic in e, t. The logarithm appearing in the 
relation between 2~ = -0~(1) and e shows that there must be a singularity at e = 0, 
and we want to clarify the structure of that singularity. For this purpose it turns out 
to be useful to consider a somewhat contrived generalized fixed point problem in 
which the relation between e and c¢ is partly relaxed. Recall that ~9- takes the form 

f ~ - }. f ( ( f ( a  1 + ~r))l + ~) a 
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with a = - f ( 1 ) = a ( 1 - g ( 1 ) ) .  We modify this transformation as follows: In the 
innermost argument we replace a ~ by e-~-~(1-  g(1)) ~. We then replace e wherever 
it appears by #. ~ and we regard #, a as independent parameters. This gives a two- 
parameter family of transformations whose action we can again express in terms of 
g related to f as above. Expressed in terms of g, we will denote the transformations 
by 

g--* T~.,(g). 

Our original transformations T~ are recovered through 

T~(c0 ~--~ T ,  1 
1 + Iogc~ 

The advantage of considering c~, # as independent variables is that T~,, turns out to 
be, heuristically, jointly analytic in e, # at (0, 0) ; the non-analyticity appears only in 
the relation between # and c~. 

We now, temporarily, drop the requirement of reality for real values of the 
argument in the definition of the space 9,  and we consider the transformations T~., 
for arbitrary small complex values of e, #. Exactly the same computations as were 
done in the proof of Proposition 4.1 go through, and we obtain 

T~,.(g)=Tog+G,u(g), 

where G., and its derivatives of all orders with respect to g converge nearly 
uniformly to zero as e, # both go to zero. Hence, as before, the fixed point problem 

g = T~..(O) 

can be rewritten as 

g = (I - To)G, ~(g) 

and the right hand side is contractive on 91/2 for sufficiently small [a[, [#[, Thus, 
there exist c%, go >0  such that for all ~, # with I~l < So, 1#1 <go, T~,~ has a unique 

~(o) in fixed point g~,. -~t/2. Moreover, the computations which show that r~,. is small 
for small a, # also show that ifa, #--*g~.. is a mapping from {(~, #) :N < So, 1#t < go} 
into 91/2 such that g~..(t) is jointly analytic in c~, #, t then r~. ~(g~..)(t) is again jointly 
analytic, and so the same is true for 

(I - T0)G,.(g~, ~)(t). 

From this it is easy to show - using the contraction mapping principle in an 
appropriate space of jointly analytic functions that Ao)(t ~ is jointly analytic in - -  ~ 4 ~ , ~  y 

c~, #, t. 
Since the parameter e was introduced artificially, it is desirable to express 

directly the dependence of g(O) on e. To do this we need the following lemma. 

Lemma 4.3. There exists a function r(zl, z2), analytic on a neighborhood of  zero in 
112 2 and with r(O, O) = 1 such that for small positive e 

1 l ° g ( -  l°gOl 
] 
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is the unique small  posit ive solution o f  the equation 

- (4.3) 
1 + loge" 

Proo f .  Write c~= -e - loge . r  and insert in (4.3). The result is 

1 log(- loge)  logr 
1 + ~ g e  + loge + loge = r. 

For fixed e in (0, 1) this equation has a unique solution r; for e small, the solution is 
near 1. On the other hand, by the implicit function theorem, there is a uniquely 
determined function r(zl, 22) defined and analytic on a neighborhood of zero in C 2 
and satisfying 

l + z l + z 2 + z 1 l og r= r  ; 

and r(0, 0)= 1. This is thus our desired function r. 
We can express the conclusion of the lemma more concisely by saying simply 

that a/eloge is an analytic function of 1/loga and log(-loge)/loge. It follows 
immediately that e/a is also an analytic function of 1/loge and log(-loge)/loge. 
Thus we get: 

1 log(-log~) and t. In  Proposition 4.4. ~(°)(t), . is an analyt ic  func t ion  o f  e loge, loge '----loge 

particular,  9~°)(t) is jo in t ly  analyt ic  and bounded in ~, t f o r  e in a small  disk about  zero 
in 112 and o f f  the negat ive real axis  and t in f2. 

5. Existence and Uniqueness in C z 

Write 

f ( t )  = 1 -- (1 + 2)t + )~2f(t). (5.1) 

We are looking for (e, E) such that 

2f(t) + f ( f ( ,~ )  +*t)* + ~) = 0. (5.2) 

We study the equation to be satisfied by the second derivative of f .  If (5.2) holds, 
then 

i f ( t )  = - ) ? f ' ( f ( 2  ~ + ~t) ~ +") f ( ; ?  + ~t)~(1 + e f t ' ( )?  + st), (5.3) 

and 

i f ( t )  = - )ol + 2~{f , ( f ( .~)  +,t)l +~)fOol + ~t)2,(1 + ~)2f,() 1 +~t)2 

+ f ' ( f ( 2 1  + ~t) 1 + ~)f(21 + ~t)~(1 + e)f"(21 +~t) 

+ f , ( f ( 2 1  + ~t)l + ~)f(21 + ~t)~- 1(1 + e)ef,(21 + ~t)2}. (5.4) 

Setting t =  1 in (5.3) we get 

1 + 2 - ) ~ 2 f ' ( 1 )  = )f{(1 q- 5~) - -  2 z~ ' ( f0  o* + ~)1 + ~)} 

• { 1 - ( 1  + ~)21 +,  + ;?E(,~I + ~)},(1 + e) 

• {1 + ~ t -  22~(2 * +~)}, (5.5) 
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o r  

i.e. 

0 =)~ + e + e log2 + 22filo(~, e, 2), 

We also rewrite (5.4): 

(5.6) 

f"  = 2Kz(f, e)(" + Ma(?, e), (5.8) 

where for ~eC°[0 ,1 ] ,  and f defined as in (5.1), 

(Ka((, e)~)(t) = - 2a~{~(f(21 + ~t) ~ + ~)f(2 i + ~t)2~(1 + ~)2f'(2~ + h) 

+A O) + h)f '(f()J + ~t) i +")f(2 i + h)~(1 + e)}, (5.9) 

and 

and 

Mi(t  ~, e)(t) = 2~ ~ , o i +~ ~ +h)~- -,~ ~ f ( f ( , t  t) +~)f(21 i(l+8)f'(,~t+~t)2. (5.10) 

Finally, we define Y by 

t I. 

(£a~)(t) = ~ ( t -  z)~(z)dv- t ~ (1 - ~)~(~)d'c. (5.11) 
0 0 

Instead of solving (5.2) directly, we rather discuss first the set of equations (for 
fixed, small 2 > O) 

=N~(E,e), (5.12a) 

f = 5 f ( I -  2Ka((, e))- 1M z(f, e). (5.12b) 

We claim that  the solutions (e,() of (5.12a, b) solve actually (5.2). 

[Proof. (5.12a) implies (5.6) and (5.5), and hence (5.3) at t =  1. Equat ion (5.12b) 
implies (5.4). Integrating, we find that  (5.3) must hold up to an additive constant, 
but this constant  is zero since we have already seen that  (5.3) holds at  t =  1. 
Integrating again, we find that  (5.12) holds up to an additive constant, which 
however must be zero, since, by (5.12b) and the definition of ~ ,  E(0)=((1)= 1.] 

We now discuss the existence and uniqueness of solutions of (5.12). [This also 
implies uniqueness of the solution of (5.2) since every solution of (5.2) solves 
(5.12).] The appropriate function space is 

e =  {(~,~), ~ec2[o, 1], ~(o)=~(1)=o, ~e¢} 

equipped with the norm 

log). + 1 
Ii(f,e)rle= sup V"(x)t-tel , (2 is small). 

x~lO, 1] 22 

2 + 22Nl(Y, e, 2 ) -  Na(#, e) (5.7) 
1 + log,~ 
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Let  e 1 be the unit ball in ~. ~ is a Banach  space. In fact [ = ~q(['),  and I(~q~d)'(t)[ 
+ / (~) ( t ) r_-<cons t  sup [A(t)[. (All spaces C °, C a are on [0, 1].) 

te[O, 11 
We claim tha t  for sufficiently small 2 > O, 
a) N z is a contract ion 1 f rom ~a to ~;. 
b) M~ is a contract ion f rom @t to C a. 
c) Fo r  (d, O e ~  1, K~.(d,e) is a bounded  linear m a p  f rom C o to C O and f rom C 1 

to C 1. 

d) Fo r  X 1 , X 2 e ~ l ,  

t K  ~ (Xa)d  - g).(X2)d[co <--__ const  I[X 1 - X  2 Itelfilc, - 

e) ~ is bounded  linear f rom C o to C a, and ( ~ d ) ( 0 ) = ( ~ d ) ( 1 ) = 0 .  
Note  that  f rom c), d) above  it follows that  

t(1 - 2K;,(X a))- ~d - (1 - ,~.K~(X2) )- ~dlco 
= 2l(1 - 2Kx(Xl))-  I (K;~(X1)  - Kx(X2))(1 - 2Kx(X2))- ld[co 
= 2 const [IX a - X 2  [[ eIdtc~, 

and hence we see that  (5.12) has a unique solution. It  remains to verify the claims 
a)-e). This is tedious but  straightforward.  Each t ime we have to est imate 

we use the formula  

t~(u)-~(v)l _-< t 4 c l l U  - v l  . (5.t3) 

This is responsible for the fact that  the contract ions in b) and d) lose a derivative. 
We only commen t  on the otherwise trivial verifications: 
a): Obvious  f rom (5.5), (5.6), (5.7). 
b): Obvious  f rom (5.10). [No te  that  f (21+~t)>½ for small 2 > 0 . ]  
c): Obvious  f rom (5.9) since no derivatives of d occur. 
d): Obvious  f rom (5.9) using (5.13). 
e): By construct ion,  ( ~ , ) ( 0 ) = ( Y A ) ( 1 ) = 0 ,  cf. (5.11). On  the other  hand,  a 

direct compu ta t ion  shows 

f~e~lco_-< 14co ; I(~,~)'lco <= I~[co ; I(~e~)"[c,0=< I~lco. 

This proves  existence and  uniqueness in C 2 and hence T h e o r e m  2.2. The  same 
p roo f  works  on any  interval [0, A] provided  2 > 0 is sufficiently small, and  A > 1. 

6. Stable and Unstable Manitolds 

In this section, we present  a general a rgument  deriving some analytic con- 
sequences f rom a geometr ic  situation. The  geometr ic  s i tuat ion is as follows: 

We consider a twice cont inuously  differentiable mapp ing  J -  defined on an 
open set ~ in a Banach space .~ and  taking values in .~. We do not  assume that  J 

1 By contraction we mean a bounded, contractive map 
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maps ~ into itself, but we do assume that it has a fixed point qS. We further assume 
that DJ-(qS), the derivative of J -  at 4~ (which is a bounded linear operator on ~5) has 
spectrum which, except for a single simple eigenvalue 6 > 1, is entirely contained in 
the open unit circle. It then follows from invariant manifold theory that Y admits 
a stable manifold W~ of codimension one and an unstable manifold W u of 
dimension one. We will define these submanifolds precisely later; for present 
purposes, it is good enough to think of W s as an invariant surface and W, an 
invariant curve (the two of them crossing at the fixed point 4~) with Y acting in 
a purely contractive way on ~1/; and in a purely expansive way on W~. 

We also give ourselves two further objects: 
A submanifold I/1 of ~ of codimension one which intersects W~, transversatly 

at some point ~b*+ ~b. 
A continuously differentiable parameterized curve # ~ p u  in ~ which crosses 

the stable manifold W~ at # =  ~ with non-zero transverse velocity. 
Although the notation in this section will be chosen to suggest the application 

of the results obtained here to the main topic of the paper, the reader should note 
that these results depend only on a few explicit assumptions about the objects 
under consideration. Symbols like Y,  qS, W,, etc. are used in a more general sense 
here than in the remainder of the paper. Moreover,/ /1 will be later on identified 
with 2; 1 (see Fig. 3). 

From this set-up we want to conclude: 
a) There exists a sequence/~. (perhaps defined only for large n), converging to 

#~, with ~J"-ltpu ~ir/p and such that lim 6"(# , -#~)  exists and is non-zero. 

b) The sequence ~--"-l~pu n converges to 4)*. 
The significance of these conclusions has been discussed in the introduction. 

(We would like to be able to make the more precise assertion that #, is the unique 
value of # n e a r / ~  such that 3-"-l~pu~//1. Whether this is true or not depends on 
relatively inaccessible global properties of 3-;  but we can say, informally, tha t /4  is 
the unique such # for w h i c h  ~-lDg, f2~)[~ . . . . .  ~'-n--21D u all lie between I4~ and H1. ) 

The first step in our analysis will be to define precisely what we mean by stable 
and unstable manifolds. This is not entirely routine since, in the application we 
have in mind, the transformation ,Y- is not invertible; in fact, it is not even locally 
one-one near qS. 

If 2} is a sufficiently small open ball in .~ with center ~b then 

{~pe~3:~--Jtpe~ for j=1 ,2 ,3 , . . .}  

may be shown to be a smooth connected submanifold of ~ of codimension one. 
We will call this set a local stable manifold for ~ at ~b and denote it by W~ ~°). It 
passes through ~b and is tangent there to the stable eigenspace for DJ-(~b), i.e. the 
spectral subspace for the part of the spectrum which is inside the unit disk. The set 
14~ °) is mapped into itself by ~--, and the sequence of sets Y-JW~ ~°) shrinks to {~b}, i.e. 
is eventually contained in any neighborhood of ~b. The proofs of these facts, as well 
as those to be cited in the next paragraph on local unstable manifolds, can be 
found in the monograph of Hirsch et al. [6]. 

If we define (again for ~ a small open ball with center q~) 

~0 = ~ ; ~j+~ = ( Y - ~ ) c ~ ,  
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then (~ ~3j is a smooth connected one-dimensional submanifold of 2~, passing 
J 

through ~b and tangent there to the eigenspace of DJ(~b) corresponding to the 
large eigenvalue 3. We call this set a local unstable manifold for J -  at q~ and denote 
it by W~ °). 

We have: 

and, for any ~pe W, (°) and a n y j = l , 2 , 3  . . . .  , there is a unique ~oje W~, °) such that 

~ - ' J p  j = 1]) ; 

moreover, the sequence (~0j) converges to 4. 
The gtobalization of the stable and unstable manifolds is complicated by the 

non-invertibility of J-.  We will simply define what we mean by a stable or unstable 
manifold without investigating the existence of a unique largest one. Thus we 
define: 

A stable maniJbtd for 3" is a smooth codimension-one submanifold W~ of the 
domain of 3- such that: 

a) J ~ c ~ .  
b) If ~pe~;, then lim JJ~p=qk (Note that this implies that ~--J~oE 14~ °) for 

j ~ m  

sufficiently large j.) 
c) (Transversality.) For any ~p in W~, the range of DY(~c,) is not contained in the 

tangent space to W~ at ~--~p. 
An unstable manifold for Y- is a smooth one-dimensional submanifold W u of 

(not necessarily contained in the domain of J-)  such that 
a) 3- (W.c~(9-) )~  %. / 
b) If ~pe W~, there is a sequence ~pj converging to 4) such that ~o = J%pj. {This 

\ 
implies that 14] C ~) J q 4 ~  ° ) . . =  

c) For any ~ e  Wuc~(J-),  the tangential derivative of J -  along I4/~ at ~p does 
not vanish. 

Since l ~  °) and V~, °) are, respectively, stable and unstable manifolds, stable and 
unstable manifolds do exist. 

We now need some special terminology. Let //~, j = 1 , 2 , 3  . . . .  and W be 
submanifolds of ~ of codimension one. We will say that the sequence Hj converges 
to WexponentialIy with rate ~ (3 a real number larger than one) if, for each tpe W 
there is a diffeomorphism from £r  x ( -  1, 1), Y'a the open unit ball in some Banach 
space £r, onto a neighborhood ~ o f ~  (i.e. a set of local coordinates at ~) such that 

1. ~p is the image of (0, 0). 
2. Wn~3 is the image of~r 1 x{0}. 
3. For each sufficiently large j , / / f ~  is the image of the graph of a mapping 

i~j : f l - +  ( -- 1, 1), 
where 

4. fiJlIj converges in the C 1 topology on ~ ,  to a nowhere vanishing limit. 
Intuitively, this means that the separation between Hj and Wvaries asymptoti- 

cally (for large j) like 6 - j  multiplied by a differentiable function of position on W. 
The following proposition is nearly obvious: 
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Proposition 6.1. Let IIj converge exponentially to Wwith rate 6, and let # - ~ u  be a 
continuously differentiable parametrized curve in .~ crossing W with non-zero 
transverse velocity at #=#~ .  There is then a sequence # j ~ p ~  (defined for 
sufficiently large j)  such that ~p,y I1j ; the quantity 8J(#~ - # )  converges as j ~  oo to 
a finite non-zero limit. 

Returning to the principal objective of this section, we see that the proof of a) 
p. 233 now reduced to constructing appropriately localized preimages Hj  of HI  
under y j-1 and showing that they converge exponentially to V¢~ with rate b. 
The following theorem asserts that this is possible; it also asserts that b) holds. 

Theorem 6.2. Let J ' ,  4, B~ W~, 8, H 1, and 4"  be as above. Then there exists a 
sequence (17;) of codimension-one submanifolds of fj, converging exponentially to W~ 
with rate 8, such that 

9--J-IHjCHI.  

Moreover, if ~p~ W~ and if ffl3 is a sufficiently small neighborhood of p in 9,  then 

J-J-I(Iljc~flB)~{qS*} as j ~ .  

The first step in proving this theorem is to reduce it to a statement which is 
local at ~b. More precisely, we claim that the theorem as stated is true if we can find 
an open neighborhood ~ of q5 such that it is true for W~ and W~ replaced by Wsn~ 
and W~n~ respectively, with the added assumption that H~ C~B. Proof of this 
ciaim is straight-forward, using (notably) the transversality conditions in the 
definition of stable and unstable manifolds. We will sketch one part of the 
argument, showing that there is no loss of generality in assuming that/7~ C ~3. 

As before, we let q~* denote the (first) point where 14] intersects H r Since 
q~*~ W,, there is an integer k and a point 4~*e W,n~B such that ~--k-15~, =q~,. By 
our definition of W,, the tangential derivative of y-k- 1 along W, at ~b~ does not 
vanish. From this (and the implicit function theorem) it follows that, for 11' a 
sufficiently small open ball about ~b*, 

H' 1 = {~,~ ~I' :y-k- ~ H x  } 

is a smooth codimension-one submanifold of ~ intersecting W, transversally at 
~b*. The localized version of the theorem implies the existence of a sequence of 
surfaces H~. converging exponentially to V ¢ ~  with rate 8 and with 

We can thus take 

s-;- nl. 

H j +  i = H I j +  1 " 

This establishes localizability in the expanding direction. A similarly straightfor- 
ward argument, which we omit, establishes localizability in the contracting 
direction. 

Thus, we have only to prove the localized version of the theorem. We do this by 
choosing special coordinates in which Y and H t take particularly simple forms. 
The result we need is the following: 



236 P. Collet, J.-P. Eckmann, and O. E. Lanford III 

If ~b* is close enough to q), then there exists a C 1 diffoemorphism from a set of 
the form £r 1 x [ - 1 ,  1], 5f 1 the unit ball in some Banach space, onto a neigh- 
borhood 2~ of q5 such that 

q) is the image of (0, 0), 
Vf=c~3 is the image of £r 1 x {0}, 
Wuc~B is the image of {0} x ( - 1 ,  1), 
/ / l n ~  is the image of ~1 x{1}. 
If we regard x~£r 1, y~ [ -  1, 1] as coordinates for their image in 2~, then in these 

coordinates 9-- takes the form 

y :(x, y)-->(M(x, y), ,~y), 
where 

[IM(xl, Y ) -  M(x2, Y)[I ~c~[Ixl - x2 N, 

with e < 1, and M(0, y) = 0. 
In terms of these coordinates we can take simply 

Hj= image  of X 1 x{6 -(;-1)} 

and this sequence of surfaces converges exponentially to I /V j~  with rate 6. 
Moreover, in view of the contractivity of M(x, y) in x, the diameter of J J- 1H~ goes 
to zero as j--> oo. Since this set always contains q)*, we have 

YJ-IHj-~{~b*} as j ~ o o .  

The proof of the theorem is thus reduced to proving the existence of the 
indicated "normal coordinates" for J -  and/ /1 .  We will concentrate on showing the 
existence of coordinates in which 9" has the desired form, since this result may be 
of interest in other contexts; we will then at the end sketch how the argument can 
be modified to bring I/1 into normal form as well. The proof of the following 
theorem is based on an analogous but more complicated result proved in Collet 
and Eckmann [1]. 

Theorem 6.3. Let Y be a twice continuously differentiable mapping from an open set 
~3 in a Banach space into the Banach space. Let (o be a fixed point for J-. Assume 
that DJ-(~) has a single simple eigenvalue 6 > 1 and that the rest of its spectrum is in 
the interior of the unit disk. Then there exists a C I diffeomorphism of .~r 1 x ( - 1 , 1 )  
(~'1 denoting the open unit ball in some Banach space) onto a neighborhood fg of d? - 
i.e. a set of local coordinates at & - such that 

(0, O) represents 4, 
5~ 1 x {0} represents W s c ~  , 
{0} x ( -  1, 1) represents W S ~  , 
J-  takes the form (x, y)~(M(x,  y), 6y), 

where 
M(0,y)=0;  [ID=M(x,y)I[<e<I for (x,y)sY[a x ( - 1 , 1 ) .  

We emphasize 
1. tn these coordinates the action of 3" in the y direction has been made 

exactly linear. 
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2. We do not require - and it is generally not possible - that Y be linearized 
smoothly in the x direction as well. 

The first step in the proof is to introduce coordinates which are approximately 
right. We do this in a sequence of steps: 

- Make a translation to put 4) at the origin. 
- Write the Banach space as the direct sum of the one-dimensional eigenspace 

corresponding to the eigenvalue 6 (y direction) and the complementary spectral 
subspace (x direction). 

- Carry out an x-dependent translation in the y direction to bring the stable 
manifold to the surface {y = 0}. 

- Carry out a y-dependent translation in the x direction to bring the unstable 
manifold to the line segment x =0.  

- Reparametrize the y coordinate in such a way that the action of 3- on the 
unstable manifold becomes exactly multiplication by b. The possibility of doing this 
follows from a trivial case of the Sternberg Linearization Theorem. (See, for 
example, Hartmann [5].) 

Thus we can assume that: 
1. The domain of J is Y'I x ( -  1, 1) and Y ( x , y ) = ( M ( x , y ) , @ + N ( x , y ) )  where 

M, N are continuously differentiable and M(0, y) = 0; N(x, O) = 0; N(O, y) = 0. 
In the course of the argument, we will need to assume that the nonlinear terms 

in Y are small. This can be accomplished by magnification, i.e. by replacing (x, y) 
with new coordinates x' = 2x, y' = 2y with 2 large (and restricting the domain to the 
set IIx'll < 1, lyq_<_l). This transformation leaves the linear terms unchanged but 
shrinks the nonlinear terms by a factor of at least 1/2. In this way (and possibly 
also renorming the space Y') we can arrange that, for some fi > 0, 

2. IiD,~M(x, y)[[ <c~ < 1 
for Ilxll < 1 ,  t y l < l .  

1 <f i<  6 y + N ( x , y )  
Y 

It  will also be convenient to assume that J-(x, y) is defined and well behaved for all 
y. To extend it, we choose a smooth cut-off function ~(y), 

0=<0(y)= 1, 

with 

O(Y) = 1 

Q(y) =0 

and modify ~- to the mapping 

1 

for ly[< ~- 

for tYl->-I 

(x, y)--, (O(y)M(x, y), 6y + O(y)N(x, y)), [Yl < 1 

-~(0, ay), lyl _>- 1. 

The modified Y- agrees with the original Y- on all (x,y) with 
J ( x ,  y)eY" 1 x [ -  1,1] ; it maps f l  x IR into itself and satisfies the inequalities (2.) 
for all y. We will work, from now on, with this modified 3--. 
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To prove the theorem, it suffices to find a continuously differentiable function z 
such that 

zoJ-=6.z ,  z(O,y)=y. 

The inverse function theorem then assures us that (x, z) is a set of local coordinates 
at (0, 0) and Y- evidently has the desired form in these coordinates, To construct z, 
we let y.(x, y) denote the y coordinate of :-"(x, y), and we put 

Zn(X, y) = ~-"y . (x ,  y).  

It is immediate that z.(x, y) is continuously differentiabte and that z.(O, y )=  O. Also, 

ZnO~-:O'Zn+ i 

so if 

exists, we have immediately 

lim z. - z 
n ~ o o  

zo~:6.z 

as desired, Evidently, z,(x, O) = O, so the limit exists in this case. On the other hand, 
if y 4= O, then, since 

ly.I >/3ntYl, 

lY.l is eventually larger than one. But because of the way J -  is cut off, y. + t = 6y. if 
l y J > l ,  and so z.+l(x,y)=z.(x,y ). Hence, for all x,y 

z(x, y) = lim z.(x, y) 
. ~ clo 

exists, and the only problem is to prove that it is continuously differentiable. Note, 
incidentally, that if y + 0  and n is sufficiently large, z=z .  on a neighborhood of 
(x, y) and so z is continuously differentiable on that neighborhood; the only place 
where differentiability could fail is for y=0 .  

We will write 

z.(x,  y) = y + r.(x, y); 

then a simple computation using 

1 
z.+ i = ~ z . o Y  

and the expression (1.) for 0Y- gives: 

1 1 
r.+ i(x,y)= ~N(x,y)+ -~r.o~--(x,y). 

Defining a linear operator L by 

Ls(x, y) = 1 so 5"(x, y) 
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we see that 
1 n 

= ~=o L~N' rn+l ~j= 

so, if we can find a normed space containing N on which L is a contraction, we can 
write 

lOO 
~=o LJN. z--y= ~j= 

We will use the norm 

max fsu is(x, Y)I tDys(x, Y)I } 
{llslll= ~x,P H--~ -'sups,, --IIx/I ,sup~.r tJDxs(x'Y)tJ 

on the space of those continuously differentiable functions vanishing for x = 0 for 
which the norm is finite. (It is to guarantee that N belongs to this space that we 
have to assume that 3- is twice continuously differentiable. We could make do 
with less, but simple continuous differentiability does not seem to be enough.) 

The proof that L is a contraction in this norm is straightforward; we will 
describe explicitly only the most sensitive of the estimates, 

1 Dy(Ls) (x, y) = ~ (Dxs) (M(x, y), 6y + N(x, y)). DrM(x, y) 

+ ~ (Ors) (M(x, y), 6y + N(x, y)) (6 + OrS(x, y)), 

1 ID~s(M(x, Y), 6y + N(x, y))DyM(x, y) t < 1 II Is lit sup 11DxDyM( x, Y)tl. 
6 Ilxll x,y 

Now DxDrM(x, y) comes from the nonlinear terms in ~-- which can be made small 
by magnification, so we can estimate this expression by an arbitrarily small 
multiple of Ittsltl. From 

it follows that 

and thus 

M(O,y)=O; IIDxM(x,y)[ I <=c~ 

[IM(x, y)ll ~c~. I[xl[ 

~ Drs(M(x,y),@+ N(x,y))(6+DyN(x,y)) _<~][[s]][(l+ 1 [[DyN(x,y)[]) ~sup 
Ilxll x,~ 

Again, the last term can be made arbitrarily small by magnification. The final 
result is, then, that we have an estimate 

sup ~ !D'Ls(x' y)[ ~ < IlJs Ill x (~ + something small). 
x , ,  [ llxll J =  

The other two terms are estimated similarly. 
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Hence, L is a contraction so the series 

1 oo 
LJN 

j=O 

converges in this normed space; the sum is z -  y so z is continuously differentiable. 

Remark. Similar estimates show that if c~. 6~- 1 < 1 then z is C r (assuming that J -  is 
0+1). 

On the other hand, no matter how smooth J"  is, it is usually not possible to 
1 1 1 

find a C r solution to z o Y = 6  .z, z(O,y)=y if one o f ~ , ~  ..... 6~-2 can be written as 

a product of points of the spectrum of DxM(O, 0). 
Finally, we have to show how to modify the above argument to bring a 

codimension=one surface crossing the unstable manifold transversally away from 
the fixed point simultaneously into the desired normal form, a flat horizontal 
surface. We start as before, choosing coordinates in a neighborhood of q~ in which 
Y takes the form (1.) and (2.) holds. Le t / I1  intersect the unstable manifold inside 
this coordinate neighborhood; then a part of / I1  near the intersection point can be 
represented in our coordinate system as the graph of a function x-~/11(x)s ( -  1,1) 
with/I1 defined in a neighborhood of 0. By magnifying in the x dimension we can 
assume that 1) 1 is defined and non-zero on all of ~1. 

Now define a new y coordinate by 

Yold 
Ynew ~ ^ //~(x)" 

In terms of the new coordinates, (1.) still holds; if (2.) doesn't then it can be made to 
hold by a further magnification in the x direction. We have thus arranged so that 
(1.) and (2.) hold, and, in addit ion,/ /1 corresponds to the surface {y= 1}. We then 
proceed to cut off and extend N, M as indicated. Note that, because of the way we 
have done the cutting off, the inverse image under • of any set in 2F 1 × [ -  1, 1] is 
exactly the same as it was before the modification of Y but, on the Other hand, 

J-"(x, 1) = (0, ,~"). 

From this last equation, it follows that 

z(x, 1)= 1 

i.e. that F/1 corresponds to the surface {z= 1}. 
It still has to be shown that z is continuously differentiable. To prove that, one 

needs to know that 

sup qlDxD,M(x, y)ll , sup ]lDyg(x, y)lt , sup tlOxN(x, y)l I 
x , y  x , y  X , y  

are all small. This would normally be arranged by magnifying sufficiently before 
cutting off in the y direction. We note, however, that the magnification can just as 
well be done after cutting off, and that this does not spoil the flatness of H 1 in the z 
coordinate. 
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7 .  T h e  G l o b a l  U n s t a b l e  M a n i f o l d  

The  preceding section shows that  the universali ty of  the rate of  period doubl ing  
can be unders tood  if the unstable manifold  for the fixed point  ~b~ crosses the 
surface Z l = { ~ p : t p ( t ) = 0  } transversally. In  this section, we est imate the global  
s tructure of  the unstable manifold.  In  essence, we show that  it remains close to the 
line segment  {~(x) = 1 - (1 + a)lxl 1 +~ : - 1 < a < 1} th roughou t  the full length of  
this segment,  provided tha t  e is small enough. 

We need yet ano ther  realization of the act ion of  3"- in convenient  coordinates.  
Recall that  we showed that  if we write 

~p(x) = f(lxl 1 + ~); f ( t )  = 1 - th( t ) ;  

then in terms of h, Y takes the form 

h ~t /2  {h(1 - atq2 ) + A lh(1 - atq2)}, (7.1) 

where the nota t ion  is as in Sect. 4. Deviat ing f rom the nota t ion  of that  section, we 
will write 

h(t) = 1 + a + ( t -  1)9(t ) (7.2) 

and determine the form of  Y- expressed in terms of  the coordinates  a ( s ( -  1, 1)) and 
g(e~) .  Note  that  

l + a = h ( 1 )  

g(t) = (A lh)  (t) 

so it is easy, in principle, to read off this form f rom (7.1). We will need, however,  to 
look with some care at the expression for t/2. Recall 

rl 1 = a~h( a t  + ~t) 

(1 - att/i) 1 +~ = 1 - a t t l z .  

A stra ightforward computa t ion  shows that  

(1 - z) 1 +~ = 1 - z(1 + es(z,  e)),  

where s(z, e) (which can easily be writ ten explicitly) is analytic for all e and all 
z¢[1, co). Hence 

r/2 =t/ l (1 + ~ s ( - a t r l p ~ ) ) .  

Also, 

h( 1 - atrl 2) + A 1 h( 1 - atl/2) = 1 + a - atrt ag(1 - atrt z) + g( 1 - a t r  I a) 

= 1 + a + (1 - atrl2)g(1 - atrl2).  

Thus  the t ransformed h becomes  

a~(1 + a + (a 1 +st - 1)g(a 1 + st)) (1 + es( - attl a, ~)) (1 + a + (1 - at~12)g(1 - at~ 2)). 

(7.3) 

We will write A(c, a, g) and G(e, a, g) for the a, g componen t s  of  the representat ion of 
(7.3) in the form (7.2). Thus,  to get A(e,  a, g) we have simply to insert t = 1 in (7.3) 
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and then subtract 1. Doing this, and grouping terms in a straightforward way, we 
find 

A = a~(1 +a)  2 -  1 + A  1 +cA2, 

where A 1 = 0  for g = 0  and where A1 ,A  2 are both "regular". The meaning of 
"regular" has to be specified with a bit of care. The formulas are full of factors o fa  ~ 
whose a-derivatives become infinite as a approaches zero. The idea is that these are 
the only singularities for small e, a, g. One way to formulate this is indicated in the 
following proposition. 

Proposition 7.1. We can write 

A = a*(1 + a )  2 - -  1 + A l ( ~ ;  , a, a ~, g) + 8A2(,~ , a, a ~, g) 
(7.4) 

G = aGi(e, a, a ~, g) + aeG2(e, a, a ~ , g) 

(A  a and A 2 take values in IR; G 1 and G 2 in ~(~2)) where A1,A2,  G1, G 2 are all 
infinitely differentiable with bounded derivatives on 

(0, %) x(0, ao) x(0,1) x { g e 5  : tlgl[ <go} 

(Jbr sufficiently small eo, ao, go) and where A 1 and G i vanish identically for  g=0 .  

We have already indicated the proof for A. To get the formula for G, apply A 1 
to (7.3) using the "product rule" 

d l g l g 2 = g i A i g z  +g2(1)Algl  ; 

group the contributions from differencing in the first and third factors to form 
a. G 1 and the contribution from the second factor to form a. e- G z. To extract the 
indicated explicit factors of a, make repeated use of the "chain rule" 

(~o(g 1 °g2)) (z) = (~g2(~o)g~) (a2(z))A~og~(z) 

and observe that every t in (7.3) is accompanied by a multiplicative factor of a. 

Corollary 7.2. There exist constants B~, B 2 such that 

[]G{1 <=a'B 1 ]{glt +aeB2 ( 0 < a < a o ,  0 < e < % ,  llgt] <go).  (7.5) 

In particular, at the fixed point, a = 2~ and we write g~O) for the corresponding g. 
Then 

r[ g~O)if < 2~B1 f[ g~o)iT + 2"eB2 

from which it follows at once that 

(o) ~2~B2 
g~ ] [ < - -  -O(e2  3 

(1 - 2~B~) 

for small e. Since 2~ = O ( -  e log0  for small e, this estimate gives exactly the estimate 

~(x)  = 1 - (1 + 2~)]xl x +~ + 0 ( -  ~2 log0 

announced in Sect. 2. 
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Corollary 7.3. I f  

and if 

then 

a(B 1 -I- B 2 ) =  t ,  

IIg[l<~, 

ItGII=<~. 

In other words, Y- can push a point out of the cylinder { ( a , g ) : 0 < a < a l ,  
[]g[[ =<e}, [with a 1 the smaller of a o, 1/(B 1 + B2)], only through the ends. 

We have noted already that singularities appear when we differentiate a ~ for a 
near zero. However, since 

d __a~= _a  t 
da a 

the singularities are not much in evidence in the first derivative for a->_ e. Since the 
fixed point occurs at 2~>e, we don't have to worry about the singularities when 
looking at first derivatives near and beyond the fixed point. Thus: 

Corollary 7.4. There exist constants B 3, B 4, B 5 such that 

d G ( a , g , )  _-<B31[g, fl + B4E+ B5a 
dg 
da I 

for any differentiable mapping a - ,g ,  provided 

e < a < a o  ; Il g~ [I --< go . 

Proof. The B 3 term comes from the explicit aa ~ dependence in aG 1 ; the B 4 term 
from the explicit aa ~ dependence in aG 2 ; the B 5 term from the g dependence of the 
s l im .  

Corollary 7.5. Consider a curve given as the graph of a .function a-*g,, defined in a 
subinterval of (~, ao). Assume 

dA(a, g,) _> 1. (7.6) 
da - 

Then the image of this curve under the action of Y is again representable as the 
graph of  a fimction 

and 

I aa~A(e'a'g) =<B3]lgal [ +B4e+Bsa ~a " (7.7) 

We can apply this corollary in particular to a (possibly very small) local unstable 
manifold. Such a manifold can be represented as the graph of a mapping defined 
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on a small interval I about  2~; condit ion (7.6) is satisfied and we can assume 

N =  sup []ga[[ ~ e .  

Pu t  

= sup dg . M 
a e I  bg(A. 

Since the local unstable manifold is mapped  onto  itself by 9--, we get 

M < B3N + B4e + 2B52~M 

or, for small e, 

M < 2B48. 

Consider now a manifold specified by 

b-*g b 

defined on a subinterval of  (e, a), and satisfying 

[Ig°ll<~; Tadg~ <=2(BN+B4)e. (7.8) 

F r o m  (7.4) it is easy to check that there exists a constant  B 6 such that, under these 
hypotheses,  

dA(a,,aa) > 2 -  B6e 
da 

(and so ____ 1 for small e); then from (7.7) the image curve satisfies 

d~ ~ (B 3 + B4)e + Bsa2(B s + B4)~ 

so if 

we get again 

a<ao ; a(B1 + B e ) <  1 ; 2aB5 < 1 

d~a ~2(B3 +B4)~. 

Summarizing and simplifying the notation,  we get: 

Proposition 7.6. There exist constants ~1 > 0;  a 1 > 0, B 7 such that, if  0 < e < e 1, and if  
we have a curve in ~ specified by 

a-+ g a 

defined on a subinterval o f  (e, al) and satisfying 

tlgatl <=e ; , dg~ < BTe (7.9) 
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then 
d 
da A(e, a, 9a) ~ t.5, (7.10) 

so the image curve also admits a representation as 

a---~ Oa 

and the bounds (7.9) hold with 9 replaced by (~. A sujficiently small local unstable 
manfold satisfies these hypotheses. 

Now let e<e  1, a small local unstable manifold, and apply Y to it repeatedly, 
throwing away at each step the part of the image curve with a outside of (e, a 1). In 
view of (7.10), we obtain after a finite number of iterations a curve a~9* defined 
on all of (e, al) contained in the unstable manifold and satisfying the inequalities 
(7.9). 

It remains to show that the unstable manifold in the form a ~ 9 *  can be 
extended to all a e ( - 1 ,  1). We will consider only the problem of extending it to 
values of a > a 1 ; the extension to a e ( -  t, e) is similar but easier. 

If we write 

f*(t) = 1 - t(1 + a + ( t -  1)9"), q~*(x) = f*(tx[ 1 + ~), 

it will suffice, by the general theory of Sect. 3, to show that 9* can be extended to a 
value of a such that 

qS*(a) = a  

(i.e. such that (qSa*)4(0) is the fixed point of qS* in [0, 1]); then one more iteration of 
3- gives values of a running all the way to 1. By continuity, it will suffice to extend 
it to a value of a such that 

qS*(a) < a. (7.11) 

As above, we will write qS* in the form 

¢*(x)=L*(Ixll +9 ; f * ( t ) = l - t [ l + a + ( t - 1 ) g ( t ) ] .  

Ignoring 9 and terms of order e, we get 

0*(a) ~ 1 - a (1  + a ) ;  

from this it is easy to see that (7.11) will hold provided a ( 2 + a ) >  1, i.e. a >  1 / 2 -  1 
and provided [[g[I and e are small enough. 

Next we will argue that we can take a o > V 2 - 1  in Proposition 7.t. To do this 
we need, for the first time, to be careful about our choice of the domain f2. 
Examination of the proof of Proposition 7.1 shows that the only limitations on % 
ao, and 90 are that 

1) al +~(-Q 

2) f(a~*~(an(- oo,0]--0 

3) If(a1 +~O)]1 +~ el2 
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for 0 < a < ao; 0 < e < Co; lf glt < go. If these three conditions are satisfied with g = 0 
and e = 0, it follows by continuity (and compactness) that they will be satisfied for 
all sufficiently small e and g. Thus, a o is limited by: 

1') a~C(2 

2') ( l - a ( 1  + a ) ~ ) C ~ \ ( -  go,0] 

for 0 < a < a  o. It is easy to check that these conditions hold, for example, for 

a o = 1/2 > V 2 - 1  and for £2 the open disk with radius 3/4 and center 1/2. 
We can thus assume that estimates (7.5), (7.7), and (7.10) hold for e < a < 1/2, 

and that the unstable manifold has been extended to a curve of the form a-4g* 
satisfying (7.9) and defined on (~, al) where a 1 may be taken to be independent of e. 
Because of (7.10), a number of iterations of J -  which is bounded uniformly in e for 
small e suffices to extend the unstable manifold to a curve of the above form 
defined on (e, 1/2). The bounds (7.9) are no longer necessarily propagated by 
application of ~--, but each such application worsens them by only a finite amount 
[because of (7.5), (7.7)]. In this way (and also extending similarly in the direction 
a-+0) we get: 

Proposition 7.7. Let  ~2 be the open disk o f  radius 3/4 and center 1/2. There exist 
constants Bs, B9, and e o > O, such that for  0 < e < %, the unstable maniJold for  3 -  in 
~ contains a curve 

a ~  ~b* : q~*(x)= 1 - ( 1  + a)[xl 1 + ~-Ix[ I + ~(1 - [x l  1 + ~)g*([x] I + 8) 

defined on as  [0, ~] and satisfying : 

Hg*]] <=B8e " dg* <=B9e ; (b*(fi)=a 
da 

dA 
J * l  Moreover if  A(a) = - ( 4 , ) (  ), then daa > 1.5 on [0, gt]. 

Remarks. The estimates developed in this section show that any ~ near qS~ and not 
on the stable manifold will be driven out of ~ (Y)  by a finite number of iterations 
of Y.  This justifies the restriction in Sect. 6 to a non-recurrent fixed point. It also 
permits us to clarify the uniqueness of the /~js. Consider the cylinder in ~ 
corresponding to 

0 < a < l  ; Ilg[[ < g l .  

For  fixed small e, and sufficiently small gl, the stable manifold cuts across this 
cylinder and thus divides it into two parts. We will refer to the part on the side of 
a = 0 as "above" the unstable manifold and the other part as "below" it (see Fig. 4). 
The surfaces Z i further divide the part of the cylinder above the stable manifold 
into slabs. If ~ lies between Z~ and Zi+ 1, then ~ = 3"-J~, is defined and (~j)(1)> 0. 
Thus, ~pj maps all of [ -  1, 1] into the interval [~pj(1), 1], which does not contain 0, 
and hence ~p~(0) # 0 for p =  1, 2, . . . .  But ~j differs from ~p2, only by a scale factor, so 
pv2J(0) # 0 for all p. This implies that ~v(0) 4= 0, so ~p is not superstable. Thus : The 
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only superstable ,¢'s lying in the part of the cylinder above W~ are those on the 
surfaces J@ j = 1, 2 . . . . .  If ~pu is a parametrized curve crossing W~ from above when 
/~=#~o, at a point inside the cylinder, with non-zero vertical velocity, then for 
sufficiently large j, the/~j are uniquely determined by the conditions 

~o,j is superstable of period 2 i; #j < #~ ,  #~ - #~ is small. 

On the other hand, it is not hard to see that, for large j, there are very many values 
of #, larger than but near to #~, where ~p, is superstable with period 2 ~. 

Wu 

~! =, I 
# WS ¢ 

Fig. 4 

In another direction : It is easy to verify (using the implicit function theorem) 
that, for small e, 9 there is a uniquely determined a = ~(9) such that ~p correspond- 
ing to (a, g) is superstabte of period 3. Moreover g~a(9) is smooth and defines a 
codimension-one surface crossing W, transversally. Call this surface 21, and apply 
the theory of the preceding section to show that ots successive inverse images 

I , ,  

Fig. 5 l ~,,_Wu 

22, 23, ... (under J-) converge to W~ exponentially with rate 6. If/~--,lpu is a 
parametrized curve as before, there exists a sequence/~:, converging down to p~, 
such that ~ j e  2j, i e ~p~j is superstable of period 3.2 j -  I. Moreover, just as before 

converges to a finite non-zero limit. A warning, however: There is another 
sequence, say #~, with h0~j superstable of period 3-2 ~- 1 and/~j_ 2 >/2j >/2j_ 1- In 
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fact, there are infinitely many more distinct, interleaved, sequences of periods 
3.2 J- 1 

Similarly, the equation 

~p(a) = a [i.e. @(0) = ~04(0)] 

defines a surface, say X1, of codimension onecrossing W~ transversally. A general 
result of Misiurewicz implies that any p~I;1 sufficiently near to the unstable 
manifold admits an absolutely continuous invariant measure. It is easy to see, 
however, that if ~-~p admits an absoiutely continuous invariant measure, then so 
does ~p, so, applying the machinery described above, we see that, for each ~ p ,  as 
above, there is a sequence ~j converging to #oo such that each ~ admits an 
absolutely continuous invariant measure and such that 

approaches a finite non-zero limit. Many other such examples could be con- 
sidered, e.g., take for the initial surface the set of ~c,'s such that ~'(xo) = - 1, where 
x o denotes the unique fixed point of~p in [0, 1]. The #j's in this case will correspond 
to bifurcation points, where the orbit of period 2 j -  t becomes unstable and the 
orbit of period 2 j appears. 

8. Attracting Cantor Sets 

Let ~v6~(~-). As in Sect. 1, we write 

a =  - ~ ( t )  ; b = ~2(a) ; 

and we will also write 

c = ~p(b), 

and we will assume c > 0. [This would follow automatically if tp~ ~ ( j 2 ) . ]  Since 
maps [ - 1 ,  1] into I - a ,  1], we may as well restrict its definition to the interval 
I - a ,  1]. We have seen that ~p maps [ - a ,  a] onto [b, 1] and it evidently maps 
[b, 1] in a one-to-one fashion onto I - a ,  c]. Thus, the set 

[ - a , c ] u [ b ,  1] 

is mapped onto itself by tp. Note that this invariant set is constructed out of the 
original interval [ -  a, 1] by deleting an open subinterval (c, b) in the middle, i.e. as 
in the first step of constructing a Cantor set. Note also that [ - a ,  c] is mapped 
onto itself by ~p o~p and that 3 -~  is obtained from the restriction of ~p o~p to [ - a, c] 
by a linear change of variable x ~  - a x .  Observe, finally, also that if K C [ - a ,  c] is 
mapped onto itself by ~otp, then 

J = KuO#- 1Kn[b, 1]) 

is mapped onto itself by J-~p. 

If J-~p is also in ~3(~-2), we can apply the same operation to ~-~p and thus 
obtain an invariant set for ~p by deleting an open subinterval from the middle of 
each of [ - a , c ]  and [b, 1]. Continuing, if ~p~ VV~ and hence ~e  ~)(¢-J) for all j, we 
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can repeat this operation infinitely often and so obtain an invariant Cantor set for 
~p. In this section, we will analyze the construction of this Cantor set in more detail. 
In particular, we determine the action of tp on the Cantor set, show that orbits of tp 
which converge to the Cantor set have simple statistical properties, and show that 
if ~0 is near enough to the fixed point all but countably many orbits do indeed 
converge to the Cantor set. 

We deal first with some combinatorial aspects of the construction of the 
Cantor set. For  p as above we write 

J(11) = [b, 1] ; J(21)=[-a,c]; J(1)=J(1)uJ(1). 

Observe that ~p maps j~l) onto j~l) and J(2 *) back onto j(1); also that the end-points 
of j~l) are ~(0) and @(0) while those of J(21) are ~p2(0) and ~04(0). The following 
proposition is proved in a straightforward way by induction, using the remarks 
already made. 

Proposition 8.1. Let ~p~(3"-') and assume (Jn~p)(1)<0. There then exists a 
decreasing sequence of closed sets 

j(1) ~ j(2) 3 j(3) 3 ... 3 J(") 
with the following properties: 

1. Each j(o is mapped onto itself by ~p. 
2. Each j~o is a union of 2 ~ disjoint closed intervals which we can label j(o, ... , o 2,~(~ 

in such a way that p maps j}o onto j}i~+ 1, where addition is understood modulo 2 i. The 
interval J(~ contains O. 

3. J(~+ 1) is constructed by removing an open subinterval from the middle of each 
of the intervals j}i). The resulting two intervals are labelled j}i+ 1) and j}i+}). The 
interval to be removed and the labelling are determined as follows: FV restricted to 
J(~2, differs from ~pi=Ji~p only by a scale factor. Remove from 0 2,r(il the interval 
corresponding, under this scaling, to (c(t&),b(~i)). Call the remaining subinterval 

j(~+l) and the other J(~+~). (Note that tp 2. interchanges these which contains zero 2~+ 
intervals.) Then put j}i+ 1~ --~Jrt(i+L"2,+, j, j =  1, 2, . 1 t l  .., 2i+ 1 _ 1. 

4. The end points of j}i) are ty(O) and ~0J+v(0). 

Corollary 8.2. I f  tpe W~ (so tpe ~ ( J  TM) for all n) then ~p admits an invariant Cantor 
set J=  ~. j(i). This Cantor set is homeomorphic to {0, 1} N, with a correspondence 

such that x , ~ i p i  2 . . . .  )eJ~ ) if and only if j = i  1 +2i2+22i3+  ... +2J -  tij. 

In this representation ~Plj takes the following form 

:(1, 1, 1 . . . .  )~(0,  0, 0 . . . .  ) 

~p :(1, 1 . . . . .  1,0, i,+ p . . . ) ~ 0 , 0 ,  0 . . . . .  0,1,i,+ 1 . . . .  ). 

The orbit of each element of J is dense in J ; ~p is invertible on J. Heuristically, we 
can think of the sequence (i~,i 2 . . . .  ) as the binary representation of a (usually 
infinite) integer 

k = ~ ie2 ~- 1 
~=1 

In terms of k, the action of t; is simply k ~ k +  1. 
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Next we continue to assume that tpe N~ and we look at the ergodic theory of 
the action of V; on J. Let v be the unique probability measure on J defined by 

v(J} i)) = 2-i for all i, j 

(i.e. v assigns equal weight to each of the intervals making up J%) Since 

- 1 ( i )  ( i )  ( i )  tp (Js )c~J = J j - 1 ,  

the uniqueness of v implies that it is invariant under the action of ~0; on the other 
hand, this same equation shows that any ~#-invariant probability measure 
assigning measure zero to the complement of J must assign equal measure to each 
j}i} (i fixed but arbitrary, j = 0 ,  1, 2 . . . .  ,2 i -  t) and hence must coincide with v. 

Proposition 8.3. v is the only q~-invariant probability measure on J. I f  xE [ -  1, 1] has 
the property that lp"(x) approaches J as n---, oo and if f is any continuous function on 
[ - -  1, 1] then 

lim 1 N- 1 
N-,~ N Z foq~"(x)=~ fdv .  

n=O 

The abstract dynamical system (v, ~) is ergodic but not weak mixing. 

Proof. The first statement has already been proved. To prove the second, suppose 
it is not true. By standard compactness arguments, there then exists a sequence Nj 
going to oo with j such that 

f =  lim 1 u~-i J-'® ~ ,=oZ f og,"(x) 

exists for all continuous functions f on [ -  1, 1] but such that f # j ' f d v  for some f .  
But f - , f  is a positive linear functional on the space of continuous functions, 
taking the value 1 on the constant function 1, and vanishing if f = 0 on J [since 
~"(x)-~J by assumption]. Thus, there is a probability measure g on J such that 

Y=ffd . 
A standard argument shows that ~ = f ,  so V is w-invariant, so V = v, contradict- 
ing the fact that f ~ S f d v  for some f .  

The ergodicity of (v,•) follows at once from the fact that v is the unique 
~-invariant probability measure on J. On the other hand, the set 

J c ~ J (o 1) 

is invariant under ~p2 and has measure 1/2, so  ~)2 is not ergodic, so ~p is not weak 
mixing. One can also show that the spectrum is discrete. 

We next show that, if ~ is sufficiently near to the fixed point (and on ~19, then 
all but countably many orbits of ~p converge to J. In general, if ~eo~,  it has a 
unique fixed point in [0, 1], which we will denote by x o. 

Lemma 8.4. For 8 sufficiently small and ~p sufficiently close to the f ixed point ~ (but 
tp not necessarily on W,), the orbit of  every x +- -t-x o is eventually in j(1). 

Proof. Note first that, since tp(Xo)= x o and ~ ( - x o ) =  ~P(xo)=Xo, the orbits of x o 
and - x  o are extremely simple. Note also that, for any x~ [ -  1, 1], ~0"(x)~ I - a ,  1] 
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for all n > 1 and that  

[ - a, I ]  = J(1)w {Xo} u(c, Xo)W(x o, b). 

Now ~p maps (x0, b) onto  (c, Xo) and (c, Xo) onto  an interval containing (x0, b). Any 
orbit  must  therefore either 

land on x 0 after no more  than one step 
or 

land in j(1) after no more  than two steps (and remain there, by invariance) 

o r  

land in (c, xo) after no more  than two steps. 

(These are not  mutual ly exclusive.) 
We have to show that,  in the third case, ~n(x) is eventually in j(1). Now ~po~p 

leaves x o fixed and maps (c, xo) onto  a larger interval contained in ( - % ,  Xo). The 
idea is that  ~p o~p pushes points further and further from x o and we want  to show 
that  every orbit  for ~po~p starting in (c, Xo) eventually reaches [ - % ,  c]. If it reaches 
[c, a], then one more iteration of ~p o~p will put  it in [ - a, c], so what  have to show 
is that  it is impossible that  

(tpotp)"(x)~(a, Xo) for all n. 

Since tpo~(Xo)=Xo, it will suffice to prove 

(~po~p)'(x)>l on [a, Xo]. 

The p roof  of  this last s tatement  is straightforward, using the fact that  since 

~b(x) = 1 - (1 + 2~)[x[ i +~ + 0(2~) 

we can, by making ~p sufficiently close to 4), arrange that  (for example) 

W'(x)_<_-(1÷32).~)(1-t-e)lxt ~ on [0,1]  

and also that  
a > 2J2  ; x o _>_ 1/3. 

We will now iterate this ar rangement  to prove:  

Proposition 8.4. I f  tps W~ is near enough to O, then 
1) h0 has exactly one periodic orbit of  each period 1, 2, 4, 8 . . . . .  and no periodic 

orbits of other periods. All these periodic orbits are repelling. 
2) Every orbit of lp which does not eventually fall exactly on one of the repelling 

periodic orbits converges to the invariant Cantor set J. 

Proof. The preceding lemma tells us that  x o is a repelling fixed point  for ~p and that  
every orbit  which does not  eventually fall exactly on x o is eventually in j(1) j(i)  
consists of  the two pieces J(o l) and j(1) which are exchanged by W, so to analyze 
orbits which are eventually in j(1) it suffices to analyze orbits of W o~p in J(o 1), i.e., of  
~p in [ -  1, 1]. Since ~, is again in I~] and near  qS, we can apply Lemma 3 to it. Thus, 
~po~p has a repelling fixed point  in J(o 1), which corresponds to a repelling orbit  of 
period 2 for ~, and every orbit  for N o~0 in J(o l) which does not  eventually land on 
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the fixed point is eventually in 1(2), ,1(2) Expressed in terms of,#, every orbit which o 0 ,--'o 2 • 

does not land eventually on either the fixed point x o or the orbit of period 2 just 
described is eventually in j(2). 

Continuing in this way we find, for each n, a repelling periodic orbit of period 
2"-1 and show that every orbit which does not fall exactly on one of the 
constructed orbits of periods 1, 2, 4, ..., 2"- 1 is eventually in J("). 

This proves everything in the proposition except for the non-existence of 
periodic orbits other than the ones enumerated. From 2) any such orbit, if one 
exists, must be in J. But for any n, J can be broken into 2 ~ disjoint pieces 

JnJ~ n) , j = O, 1, 2 . . . . .  2" - 1, 

which are permuted cyclically by ~p. It follows that periodic orbits in J would have 
to have a period which is divisible by 2" for all n. This is impossible, so there are no 
further periodic orbits. 

Remarks. 1. We note that 2~ appears as an asymptotic scaling parameter for the 
Cantor set J. Specifically, J(on)C3J and J(0 "+ 1)~a asymptotically differ by a scale 
factor of 2,. This means the following: If we write 

A, = a(~) ... a(J-tp) ... a(~-"- l~p) 

then 

J(on) ~ J =  a,J(~-n~).  

As n ~  oo, .Y-'~#~b, so, in a sense which is easy to make precise, J(Ynt!))-~J(~ ). 
Thus, 

A;a(J(o')nJ ) and A,7+ll(J(on+ l)~J) 

look essentially the same for large n. In other words, J~+ 1)c~J looks almost th.e 
same as J(On)C~J multiplied by a scale factor of A,+a/A,=a(J '" lp  ). Again, since 
3 "~p~¢ ,  this scale factor converges to a(¢)=2~. Observe, however, that this 
scaling is different for other pieces of the Cantor set, For  example, successive terms 
in the decreasing sequence JnJ(ll) D J~J(2)D J~J(13) D ... differ asymptotically by a 
numerical factor of 2~ +~ rather than 2~, and the same is true for any of the 
sequences J~J~)  for fixed, non-zero j. 

2. It is easy to see that, for ~p near ~b, J(0 2) is longer than J]Z). More generally for 
any "(") n, a 0 is the longest of the 2" intervals making up J(") and J]") is the shortest. 
The length of J(o n) is A,(1 +a(J"q)))  which behaves asymptotically like const x 2~. 
The conclusion that the longest interval in J(0 ") has length bounded by const x 2~ 
holds even for all ~ on W~ since Y"~p still converges to 4- 

3. Proposition 4 remains true even for ~p not near q5 provided that ~p is near the 
unstable manifold W,, that ~pe~(~--), and that 3-~p(1) __< 0. This leads to the 
following picture of the "bifurcation" which occurs on the stable manifold : 

If ~pe ~(~-"), and if (Y"~p)(1)<0, then ~p admits a finite decreasing chain 

J(~) 3 J  (z) 3 ... DJ (") 

of invariant sets ; J(") is a sort of approximate Cantor set ; it is a union of 2" disjoint 
closed intervals permuted cyclically by ~p. If in addition ~p is not too far from qS, 
then the space between successive pairs of these intervals contains exactly one 
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periodic point  of  ~p. These periodic points have periods 1, 2, 4 . . . .  , 2 " -1 ;  there is 
exactly one cycle of  each of  these periods, and  they are all repelling. There are 
countably  many  orbits which fall onto  one of  these repelling orbits after finitely 
many  steps ; all others converge to J("). I f  we collapse each of  the intervals making 
up J(") to a point, all such tp's look the same - they have an at tracting periodic 
orbit  of  period 2" together with the simplest set of  repelling periodic orbits between 
them required by simple considerations of  connectedness. Each such ~ can thus be 
thought  of  as a sort of  semi-direct p roduc t  of  the simplest possible q~ which is 
superstable of  period 2" with the t ransformat ion ~--"~ scaled down and made  to 
act on  J~0 "). These Y"W's can of  course be very different e.g., may  on the one hand  
be superstable of  period 2 or  on the other  hand  admit  an absolutely cont inuous 
invariant  measure - but  the differences act  on a small spatial scale and  will 
therefore not  be very noticeable for large n. In  the limit n--, oe the approximate  
Can to r  set becomes a true Cantor  set which remains at tracting and which can 
crudely be thought  of  as a single at tract ing periodic orbit  of  period 2 ~ ; at the same 
time, the spatial scale of  the difference between ~/J's goes to zero and so the 
difference disappears entirely. 

Even if tp is not  near enough to W u for L e m m a  4 to apply, it will still be true 
that  F ' h p  is near enough for n larger than some n o. Thus, a l though we cannot  be 
sure that  the gaps between the intervals in j(,o) are free of extraneous recurrent 
behavior  for ~p, each gap produced in passing from j(,o) to J("), n > n o will indeed 
contain exactly one repelling periodic point. Fur thermore,  any extraneous re- 
current behavior  has to be fairly tame. It  is not  hard  to see that  any orbit  which 
never enters j(,o) must  be asymptotically periodic with period 1, 2, 4 . . . . .  or  2 "°. 

Note. a) In L e m m a  8.4 and Proposi t ion  8.5 the condit ion that  p be near to q5 can 
be replaced by the condit ion that  ~p have negative Schwarzian derivative. 

b) The computa t ional  p roof  of  Lemma 8.4 can be replaced by a simple 
conceptual  p roof  using the negativity of  the Schwarzian derivative. 
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Note added in proof. An alternate proof of existence of a fixed point for e = 1 has been provided by 
M. Campanino, H. Epstein, D. Ruetle, (to appear). For the extension of the results to multidimensional 
dissipative maps, see P. Collet, J.-P. Eckmann, H. Koch, J. Stat. Phys. (to appear) 


