
Weak convergence in l1. Shur’s theorem.

A Project in Functional Analysis

Marcus Westerberg

December 1, 2016

The goal of this project is to show that weak and strong convergence coincide on l1 and that this is not
true for E = L1, E∗ = L∞. Let E = l1 so that E∗ = l∞ and for x ∈ E write x = (x1, x2, . . . , xi, . . . ) and
for f ∈ E∗ write f = (f1, f2, . . . , fi, . . . ). Both spaces are equipped with their usual norms. Proposition
3.5 (ii) states that strong convergence implies weak convergence so one direction is already clear. The
other direction will first be proved for weak convergence to zero and then the proof will be generalized

to apply for all limits in E. In other words, let (xn) be a sequence in l1 such that xn
weakly−→ 0 (weakly

σ(E,E∗)), then what first needs to be shown is that ||xn||1 −→ 0. At the very end of this discussion
a counter example in E = L1, E∗ = L∞ will show that the conclusion does not generalise to the big-l
counterpart of l1.

Before we start, lets recollect some results from Brezis Functional Analysis, Sobolov Spaces and Partial
Differential Equations, Springer (2011).

Baire Category Theorem, Remark 1

Let (Xn) be a sequence of closed sets in X such that ∪∞i=1Xi = X then there exists n0 such that
IntXn0

6= ∅.

Proposition 3.5, parts (i-ii)

Let (xn) be a sequence in E, then

(i) xn
weakly−→ x in σ(E,E∗) iff 〈f, xn〉 −→ 〈f, x〉 ∀f ∈ E∗

(ii) xn −→ x strongly then xn
weakly−→ x in σ(E,E∗)

Theorem 3.16 (Banach-Alaougly-Bourbaki)

The closed unit ball BE∗ = {f ∈ E∗ : ||f || ≤ 1} is compact in the weak* topology σ(E∗, E)

Part I

Let f, g ∈ BE∗ so that ||f ||∞ ≤ 1, ||g||∞ ≤ 1 and define

d(f, g) =

∞∑
i=1

1

2i
|fi − gi|

The first task is to show that d is a metric on the closed unit ball BE∗ and that BE∗ is compact in the
topology induced by this metric.

To see that d is a metric we check that it satisfies the definition of a metric. Let f, g, h ∈ BE∗ , then

1. d(f, g) ≥ 0 since it is a sum of non-negative elements
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2. d(f, g) = 0 iff
∑∞
i=1

1
2i |fi − gi| = 0 iff |fi − gi| = 0 ∀i ≥ 1 i.e. fi = gi ∀i ≥ 1 which is equivalent

with ||f − g||∞ = 0 and thus f = g

3. d(f, g) = d(g, f) since
∑∞
i=1

1
2i |fi − gi| =

∑∞
i=1

1
2i |gi − fi|

4. d(f, g) ≤ d(f, h) + d(h, g) since
∑∞
i=1

1
2i |fi − gi| =

∑∞
i=1

1
2i |fi − hi + hi − gi| ≤

∑∞
i=1

1
2i |fi − hi| +∑∞

i=1
1
2i |hi − gi| by applying the triangle inequality for real numbers for each i.

Now, let B denote the topology induced by d. If X is a compact space and I : X −→ Y is a continuous
function then I(X) ⊂ Y is compact in the topology on Y , compare with Munkres, James R. Topology,
A First Course, Prentice-Hall (1974) theorem 5.5. If, moreover, I is surjective then I(X) = Y so Y is
compact. Now, let

I : (BE∗ , σ(E∗, E)) −→ (BE∗ ,B)

be the canonical injection Ix = x for x ∈ BE∗ . It is clearly both injective and surjective. Now, by theorem
3.16 the ball BE∗ is compact in the weak* topology σ(E∗, E), so to show that BE∗ is compact in B it is
enough to show that I is continuous. This will be done by showing continuity at every ”point” f0 ∈ BE∗ ,
again compare with Munkres (1974). Let Uf0 ⊂ BE∗ and Uf0 ∈ B be a neighbourhood of f0 in the metric
topology, then, to show continuity at f0, one must show that there exists Vf0 ⊂ BE∗ , Vf0 ∈ σ(E∗, E)
such that

I(Vf0) ⊂ Uf0 i.e. Vf0 ⊂ Uf0

To do this, first note that a basis of neighbourhoods around f0 ∈ BE∗ in B can be written on the
form

Uf0(ε) = {f ∈ BE∗ : d(f, f0) < ε}

for arbitrary ε > 0. Using the canonical basis (ei) on l1, then by proposition 3.12, a basis of neighbour-
hoods around f0 ∈ BE∗ in σ(E∗, E) can be written on the form

Vf0(δ, n) = {f ∈ BE∗ : |〈f − f0, ei〉| < δ ∀i = 1, . . . , n}

Note that, given f0 ∈ BE∗ and Uf0 ∈ B, we may find ε > 0 such that Uf0(ε) ⊂ Uf0 , with Uf0(ε) as above,
being an open ball around f0 in B. Next, also note that

|〈f − f0, ei〉| = |
∞∑
j=1

(fj − f0j )eij | = |fi − f0i |

so Vf0(δ, n) can be written on the form

Vf0(δ, n) = {f ∈ BE∗ : |fi − f0i | < δ, i = 1, . . . , n}

with δ > 0 and n ∈ N both arbitrary and vary independently of each other. Now, take an arbitrary
f ∈ Vf0(δ, n), then

d(f, f0) =

∞∑
i=1

|fi − f0i |
2i

<

n∑
i=1

δ

2i
+

∞∑
i=n+1

|fi − f0i |
2i

<

∞∑
i=1

δ

2i
+

∞∑
i=n+1

|fi|+ |f0i |
2i

< δ +

∞∑
i=n+1

||f ||1 + ||f0||1
2i

< δ + 2

∞∑
i=n+1

1/2i = δ + 2/2n

So if we choose n big enough and δ small enough such that δ+ 2/2n < ε. Then d(f, f0) < ε so f ∈ U0
f (ε).

Hence we have found a Vf0(δ, n) ∈ σ(E∗, E) contained in U0
f (ε) ∈ B, so

I(Vf0(δ, n)) = Vf0(δ, n) ⊂ Uf0(ε) ⊂ Uf0

Hence ∀f0 ∈ BE∗ and every Uf0 we can find Vf0 ∈ σ(E∗, E) containing f0 such that I(Vf0) ⊂ Uf0 , and
therefore I is continuous at every f0 ∈ BE∗ . Hence the unit ball is compact in the metric topology.
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Part II

Let ε > 0 be given and define

Fk := {f ∈ BE∗ : |〈f, xn〉| ≤ ε ∀n ≥ k} = {f ∈ BE∗ : |
∞∑
i=1

fix
n
i | ≤ ε ∀n ≥ k}

The next task will be to show that there exists some f0 ∈ BE∗ , a constant ρ > 0, and an integer k0 such
that if f ∈ BE∗ and d(f, f0) > ρ then f ∈ Fk0 .

Firstly, by compactness of BE∗ in the metric topology we see that BE∗ must be complete w.r.t d by
Heine-Borel theorem, theorem 3.1 in Munkres (1974)

Theorem 1 (Heine-Borel). A metric space is compact iff it is complete and totally bounded

Secondly, since BE∗ equipped with d is a complete metric space, we may use the Baire Category
Theorem as in remark 1 if we can find a suitable sequence of closed subsets. The subsets Fk are the
obvious choice since, as k increases, the restriction on the sets gets milder

f ∈ Fk =⇒ |
∞∑
i=1

fix
n
i | ≤ ε ∀n ≥ k =⇒ |

∞∑
i=1

fix
n
i | ≤ ε ∀n ≥ k + 1

so Fk ⊂ Fk+1 ⊂ . . . . Furthermore ∪∞i=1Fi = BE∗ , which follows from the fact that xn converges weakly
to zero, i.e. ∀f ∈ E∗ ∃N s.t. ∀n ≥ N we have |〈f, xn〉| ≤ ε, which means that for each f ∈ BE∗ there is
a k s.t. f ∈ Fk.

Now Fk is closed by the following argument: assume fm ∈ Fk and fm
d−→ f0 ∈ BE∗ , i.e.

d(f0, Fm) =

∞∑
i=1

|f0i − fmi |
2i

−→ 0 as m −→∞

then, since each term is non-negative, we must have convergence of components |f0i − fmi | −→ 0 as
m −→∞. Therefore, since fm ∈ Fk we have for all n ≥ k

|
∞∑
i=1

f0i x
n
i | = lim

m−→∞
|
∞∑
i=1

f0i x
n
i | ≤ lim

m−→∞
|
∞∑
i=1

fmi x
n
i |+

∞∑
i=1

|f0i −fmi ||xni | ≤ ε+

∞∑
i=1

lim
m−→∞

|f0i −fmi ||xni | = ε

by Lebesgue Dominated Convergence theorem with the appropriate counting measure and dominating
function 2|xni |, i.e.

f0, fm ∈ BE∗ so |f0i − fmi ||xni | ≤ (||f0||∞ + ||fm||∞)|xni | ≤ 2|xni | ∀n ≥ 1 with

n∑
i=1

2|xni | <∞

since xn ∈ l1. Thus |〈f0, xn〉| ≤ ε ∀n ≥ k so f0 ∈ Fk and we conclude that Fk is closed with respect to
the metric topology on BE∗ .

Finally, by Baire Category Theorem, there exists some k0 such that IntFk0 6= ∅ which means that
∃f0 ∈ IntFk0 ∈ Fk0 and IntFk0 is by definition open with respect to the metric topology, so ∃ρ > 0 such
that if f ∈ BE∗ and d(f0, f) < ρ then f ∈ Fk0 .

Part III

Fix an integer N such that 1
2N−1 < ρ. The aim is to prove that the following inequality holds

||xn||1 ≤ ε+ 2

N∑
i=1

|xni | ∀n ≥ k0
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By part 2 we may take an arbitrary f0 ∈ Fk0 and find a ρ > 0 such that if d(f, f0) < ρ then f ∈ Fk0 . A
special case of this is if f is on the form f = (f01 , . . . , f

0
N ,±1,±1, . . . ). Then, since f, f0 ∈ BE∗ and

d(f, f0) =

∞∑
i=N+1

| ± 1|
2i

=
1

2N−1
< ρ

we have that f ∈ Fk0 . Therefore, since the signs of f after index N were arbitrary, we have

|
∞∑
i=1

fix
n
i | = |

N∑
i=1

f0i x
n
i +

∞∑
i=N+1

±xni | ≤ ε =⇒ |
N∑
i=1

f0i x
n
i −

∞∑
i=N+1

|xni | | ≤ ε

for all n ≥ k, and since |f0i | ≤ ||f0||∞ ≤ 1 we have that

∞∑
i=N+1

|xni | ≤ ε+ |
N∑
i=1

f0i x
n
i | ≤ ε+

N∑
i=1

|f0i ||xni | ≤ ε+

N∑
i=1

|f0i ||xni | ≤ ε+

N∑
i=1

|xni |

for all n ≥ k. Adding
∑N
i=1 |xni | to both sides yields

||xn||1 =

∞∑
i=1

|xni | ≤ ε+ 2

N∑
i=1

|xni | ∀n ≥ k

Part IV

Note that xn
weakly−→ 0 and the natural basis (ei) is in E∗, so proposition 3.5 implies that we have

component-wise convergence |xni | −→ 0 as n −→∞. Applying this to the conclusion of part 3, we have

lim
n−→∞

||xn||1 ≤ ε+ lim
n−→∞

2

N∑
i=1

|xni | = ε

since the sum on the right hand side is finite where N was chosen independently of n. The conclusion is
that weak convergence to zero implies convergence in norm to zero, i.e. strong convergence to zero, when
E = l1, E∗ = l∞.

Part V

This conclusion does carry over to the general case, when (xn) is a sequence in l1 converging weakly
to x, i.e. for every f ∈ l∞ the sequence (〈f, xn〉) converges to some limit, then it is true that (xn)
converges to some limit strongly in l1. This follows from the fact that l1 is complete, since all of the
arguments in parts 2 and 3 are valid no matter how n,m tends to infinity and hold when replacing
∀n ≥ k with ∀n,m ≥ k. Since 〈f, xn〉 converges to some limit it is reasonable that for n,m big enough
|〈f, xn〉 − 〈f, xm〉| = |〈f, xn − xm〉| will be small. Indeed, let ε > 0 and define

Fk = {f ∈ BE∗ : |〈f, xn − xm〉| ≤ ε ∀n,m ≥ k}

Observe that for each given f we have 〈f, xn−xm〉 = 〈f, xn〉−〈f, xm〉 = yn−ym for a real sequence (yn).
The Cauchy criterion of convergence states that for real sequences convergence is equivalent with Cauchy
convergence, which in this case means that the convergence of 〈f, xn〉 = yn implies Cauchy convergence
of 〈f, xn〉 − 〈f, xm〉, which is exactly what defines Fk in this case.

Now, by the same method as above applied to the double indexed sequence xn−xm converging weakly
to zero, we see that Fk is closed in the metric topology (again, take a sequence fm converging to f and
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show f ∈ Fk as above with xn−xm) and that Baire Category theorem implies there is an index for which
the interior is non-empty. Therefore, as in part 3, ∃k0, N integers such that

||xn − xm||1 ≤ ε+

N∑
i=1

|xni − xmi | ∀n,m ≥ k0

and again, by using the standard basis of l∞, it is easy to see that lim
n,m−→∞

|xni − xmi | = 0 for each i.

Hence

lim
n,m−→∞

||xn − xm||1 ≤ ε+ lim
n,m−→∞

2

N∑
i=1

|xni − xmi | = ε

This means that given ε̂ > 0 we can find ε = ε̂/2 and an N (to be used as in the previous displays) to
derive and M (maximum of all lower bounds on the top-indices of the N terms in the previous display)
such that lim

n,m−→∞
||xn − xm||1 < ε̂ ∀n,m ≥ M . So (xn) is Cauchy in l1 so (xn) converges strongly to

some limit by completeness.

Part VI

Instead of looking at sequences, now consider E = L1(0, 1) so that E∗ = L∞(0, 1). The goal is to show
that weak convergence does not imply strong convergence by constructing a sequence un in E such that

un
weakly−→ 0 weakly σ(E,E∗) and such that ||un||1 = 1 for all n.
Define Un(x) = π

2 sin(2πnx) and let f ∈ L∞(0, 1). Note that |f | ≤ c a.e. for some c > 0, so∫ 1

0
|f | ≤

∫ 1

0
c = c and thus f ∈ L1(0, 1). The Fourier coefficients, and especially the sinusoidal part of the

Fourier coefficients, go to zero as n −→ ∞ by the Riemann-Lebesgue lemma, compare with theorem 2.2
in Vretblad, Anders, Fourier Analysis and Its Applications, Springer (2003).

Theorem 2 (Riemann-Lebesgue lemma). Let f ∈ L1(I) for an interval I, then

lim
n−→∞

∫
I

f(u)sin(nu)du = 0

In this case the Fourier coefficients for f are on the form bn = 〈f, dUn〉 = d〈f, Un〉 −→ 0 as n −→∞,
for some normalizing constant d > 0. So weak convergence of Un follows by proposition 3.5 since f was
an arbitrary element of the dual space. On the other hand, since sin is a periodic function

||Un||1 =

∫ 1

0

π

2
| sin(2πnx)|dx =

π

2

1

2πn

∫ 2πn

0

| sin(x)|dx =
π

2

n

2πn

∫ 2π

0

| sin(x)|dx =

π

2

2n

2πn

∫ π

0

| sin(x)|dx =
π

2

2n

2πn
2 = 1 , ∀n

This shows that ||Un||1 = 1 ∀n but Un
weakly−→ 0 so weak convergence does not imply strong convergence

in this setting.
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