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What is mathematical modelling?

A way of travelling securely from A to B.
A: Assumptions about the world.
B: Consequences of those assumptions

Mathematics is rigorous thinking.

Richard Feynman



Why do we do mathematical
modelling?

1, Explain data as simply as possible.
2, Link together levels of explanation.
3, To provide detailed descriptions.

4, To predict future outcomes.



1, Explaining data simply

Provide one or two simple rules from which
everything else is derived.

This is qualitative modelling, but necessarily
some comparison to data.

Explanation ratio: Explained/Assumptions

Dawkins: http://richarddawkins.net/articles/2236



1, Explaining data simply

INC 1,000 kg .05 )5 m/e/s

Newton’s second law

F = —(mv)

dt*
Heat equation
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Predator-prey models.
I = If(I) y)
E.I = yg(r,yf)




2, Linking levels of explanation

Large aggregates cannot be understood by
simple extrapolation from the behaviour of a
few particles.

Need mathematical models to integrate our
understanding from one level to the next.

Explanation ratio may be lower, but more
accurate.



according to the idea: The elementary
entities of science X obey the laws of

science Y.
X Y

solid state or elementary particle

many-body physics physics
chemistry many-body physics
molecular biology chemistry
cell biology molecular biology
psychology physiology
social sciences psychology

But this hierarchy does not imply
that science X i1s “just applied Y.” At
each stage entirely new laws, concepts,
and generalizations are necessary, re-
quiring inspiration and creativity to just
as great a degree as in the previous one.
Psychology is not applied biology, nor
is biology applied chemistry.

P. W. Anderson (1972) Science



2, Linking levels of explanation
Cellular Automata




2, Linking levels of explanation
Cellular Automata

Meinhardt, H. 1995 Algorithmic Beauty of Sea Shells
Cellmorphs: http://aimfeld.ch/cellmorphs/cellmorphs.html



3, Detailed descriptions

Put everything we know down in one place.
Quantitative modelling.
Test that this knowledge is self-consistent.

Find out if we really do understand how the
system works.



3, Detailed descriptions

Ubiq=ubiquitous; Mat = maternal; activ = activator; rep = repressor,
unkn = unknown; Nucl. = nuclearization; x = B-catenin source;

nB-TCF = nuclearized b-B-catenin-Tcfl; ES = early signal;

ECNS = early cytoplasmic nuclearization system; Zyg. N. = zygotic Notch
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4, Predicting the future

Stainforth et al., Nature 2005



Why do we do mathematical
modelling?

Decreasing | 1 Explain data as simply as possible.

level of
abstraction | 2, Link together levels of explanation.

Increasing 3, To provide detailed descriptions.

level of
description | 4, To predict future outcomes.




Why do we do mathematical

modelling?
Qualitative  [*4 Explain data as simply as possible
comparison ! '
between . .
systems 2, Link together levels of explanation.

—

Quantitative |3 To provide detailed descriptions.
description

of particular-‘ .
system 4, To predict future outcomes.

—




Why do we do mathematical
modelling?
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1, Explain data as simply as possible.
Fun! —
2, Link together levels of explanation.

—

—3, To provide detailed descriptions.

Hard work =
4, To predict future outcomes.
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Why do we do mathematical
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Hard work =

modelling?
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1, Explain data as simply as possible.

2, Link together levels of explanation.

—

—3, To provide detailed descriptions.

4, To predict future outcomes.
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Course structure

Four two hour lectures.

Eight/nine two hour labs. These are a central
part of the learning experience.

Two exercise sheets due May 9th and June
Oth.

Programming in Matlab preferred.

This is not a programming course but we will
help with programming.



Two exercise sheets

Each exercise sheet has three 'projects’, each
consisting of a series of questions.

After each question is a number of points associated
with the question.

The total points over all the questions is 100.

To pass the course (grade 3) you must correctly answer
guestions amounting to at least 50 points. In order to
get grade 4 you must get 75 points. In order to get a
grade 5 you must correctly answer some of the
qguestions labelled grade 5 work and have answered at
least 75 points.



ok

Projects

. Particles in boxes. State-based simulations; stochastic

simulations; mean-field approximations.

. Fads and fashions. Co-operative phenomena; tipping

points; bifurcation diagrams.

Population dynamics. Randomness and chaos;
Lyapunov exponent and Entropy.

Cellular automata. Complex patterns from simple
rules; box counting dimension

Forest fires. power laws; self-organised criticality.

Self-propelled particle models. Aggregation in space;
phase transitions; flocking birds.






’Classical’ models

* Ordinary differential equation models.
* Stochastic differential equations.

e Partial differential equations.

* Markov chain models

Usually a whole course or number of courses will be
dedicated to looking at these models.

These types of models are also essential in
modelling complex systems.



‘Complex systems’ models

To model complex systems we do not take any particular ‘classical’
model as our starting point.

We are going to use techniques from the above approaches combined
with computer simulations in order to better understand complex
systems.

The basic approach we are going to take is that of writing down an
algorithm which describes how our complex system works and use
this algorithm to better understand the system.

This algorithm becomes a computer simulation which we run to see
how the system behaves. But the algorithm can also be related to
more 'traditional' mathematical models in order that we can better
analyse the system.



A simple example

Lets assume we want to model the spread of an
epidemic disease.

 Each individual can have one of two states
'susceptible’ or 'infected'.

* When infected we say that each individual has a
probability p per day of recovering.

* They also have a probability g of making contact
with another randomly chosen individual.

* When contacted the other individual will catch
the disease, if they do not already have it.



States of the model

Susceptible

Infected: g of
making contact

>

Infected

Recover: p




Assumptions

Discrete time steps (e.g. Days).

Can contact and recover within the same time
step.

All people equally likely to contact each other.
No seasonality, environmental effects,

differences between individuals or anything
else!



Matlab code

function x = runepidemic(p,q,N,T)
x=zeros(T,1); JNumber of individuals infected initially.
x(1)=1;

#For all time steps

for

end

t=1:T

%#Find the number recovering per time step using binomial distribution
recover=binornd (x(t),p);

%#Find the number infecting others using binomial distribution
contacted=binornd (x(t),q);

%Now find number of contacted indivduals who are not infected already.
%Here we have to be careful to take in to account of the fact that
%#if the same individual is contacted twice, they are only infected
honce. We first make a random list of all the individuals contacted
contacts=ceil (rand(contacted,1)*N) ;

%Now find the unique set of contacted individuals
contacts_unique=unique(contacts);

%Then finally consider only those contacts which are not infected
%halready

contacted_s=sum(contacts_unique>x(t));

%Update infected population

x(t+1)=x(t)-recover+contacted_s;



Number of infections

Simulation outcome

1

1000 1500 2000
Time

2500



Mean-field model



Equilibrium infected population

100

Bifurcation diagram
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Infection probability: q
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Bifurcation diagram

How the simulation behaves at equilibrium as
we change a parameter.

Often number of inviduals or a transition rate is
changed.

Can summarise total model behaviour in one
figure.



Branching process model



Proportion of times disease does not spread

Branching process model
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"Heat map’ of final distribution
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Code

The code to generate the figures on the previous
slides can be found at

www2.math.uu.se/~david/MCS/

runepidemic(p,q,N,T) takes paramters p and g,
the population size N and the T time steps to
run the simulation and returns number of
infected.

simepidemic produces the above figures.



Why state-based model?

This is meant to be a course about complex models but the current example has been

rather simple. Indeed, we have been able to turn it in to a differential equation
model and a Markov chain model, both of which give a good insight in to the
models behaviour. Why then would we ever use an individual-based or state-based
model if we can use simple models like this?

The reason is that we may now wish to add more complex aspects to our model.

We might want to make individuals have different characteristics which make them
more or less likely to go to catch the disease.

We might construct a social network or spatial arrangement for their interactions,
whereby certain individuals are more likely to contact particular other people.

We might want the individuals' chance of contracting a disease depend on their

past record of infection. Individuals won't contact others if they have been infected
recently.

All of these aspects would lead to complications which would make differential

equation models or Markov chain models difficult to analyse.



But don’t throw away what you have
learnt.

So if all complexities make the simple models unwieldy, why not limit our work to state-based and
individual-based models? Why not just build in all the details we want in to the simulation and run
them?

There are two important answers to this question

Approximation By keeping a set of simplified models which give an approximate description of a
simulation we can understand why certain outcomes occur. If we see for example that a more
complex model reaches a certain equilibrium we can use a mean-field approximation to understand
why this particular equilibrium is reached.

Measures Many of the analytic tools from standard mathematical models can be applied to
understanding simulation models. For example, the Lyapunov exponent in dynamical systems,
concept of entropy from stochastic processes, the fractal dimension from measure theory are all
useful tools for characterising models of complex systems. Concepts such as bifurcation diagrams
where we measure a simulations response to a consistent change of one variable are key to
understanding the behaviour of simulations.

It is these two aspects of approximation and measure which | will frequently return to when we try to
understand complex systems.

Without an ability to approximate and measure a simulation model it is impossible to quantify its
behaviour and understand its predictions.



Mathematics and Simulation

Are not different things!



