Looking up

Looking up

Peer pressure

Peer pressure

$$P(N) = m(N^k/T^k - N^k).$$

$$m = 0.35$$
, $T = 2.13$, and $k = 6.66$.

Population dynamics

Consider the following model of a population of reproducing animals:

- Assume that a_t individuals are distributed randomly among n sites. This could for example be mites among bees or larvae among apples.
- At each site the individuals compete and reproduce. There are limited resources at the sites, so usually only a small number of individuals reproduce.
- The emerging individuals are then again distributed among the *n* sites and the process continues.

Scramble competition

Scramble competition assumes that one site can only sustain one individual but more than one leads to everyone dying. This gives the interaction function:

$$\phi(k) = \begin{cases} b & \text{if } k = 1\\ 0 & \text{otherwise} \end{cases}$$

where b is the average number of offspring.

Scramble competition

Contest competition

In contest competition a single individual takes all of the resource, but further individuals have no effect on this individual. This gives the following interaction function:

$$\phi(k) = \begin{cases} 0 & \text{if } k = 0 \\ b & \text{otherwise} \end{cases}$$

where b is the average number of offspring.

Contest competition

Mean-field approximation

b=6

b=10

b=20

Entropy

Entropy measures the degree to which the probability of the system is spread out over different possible states.

Lyapunov Exponent

Lyapunov exponent gives the rate at which nearby starting values of a model diverge.