Cellular Automata

Cellular automata (CA) models epitomize the idea
that simple rules can generate complex patterns.

A CA consists of an array of cells each with an
integer ‘state’.

On each time step a local update rule is applied to
the cells. The update rule defines how the a
particular cell will update its state as a funcion of
its neighbours state.

The CA is run over time and the evolution of the
state is observed.

Elementary cellular automata ===
Sissasus- .. -aassass

The elementary one dimensional CA is defined by
how three cells influence a single cell. For o
example,

1 Hi H | BN JiE EjEE hEEn
[] [] [] H H H H []

The rules can be expressed in binary form where a
O represents that a particular configuration gives
a white output and a 1 denotes a black output.

The above rule in binary is 00011110. Converting
this binary number to base-10, we call this rule
30.

We thus have a set of different rules for elementary
cellular automata from O up to 255.

Different rules

Elementary CA simulators are easily found on
the internet.

For example, a NetLogo implementation can be
found at

http://ccl.northwestern.edu/netlogo/

We will look at rules 254, 250, 150, 90, 110, 30
and 193 in this simulator.

Classifying elementary CA

An empirical observation is that cellular automata can be classied
according to the complexity and information produced by the
behavior of the pattern they produce:

Class 1 : Fixed; all cells converge to a constant black or white set
Class 2 : Periodic; repeats the same pattern, like a loop
Class 3 : Chaotic; pseudo-random

Class 4 : Complex local structures; exhibits behaviors of both class 2
and class 3; with long lived hard to classify structure.

This classication has a bit of a feeling of saying there are three types
we roughly understand plus one (class 4) we don't. In particular,
classes 1 to 3 can be charcterised by Entropy and the Lyapunov
exponent, this is less true of class 4.

Game of Life

Cellular automata can be extended to have longer range interactions, e.g. the
ve nearest neighbours determine the new state of the cell. They can also
be extended to two or more dimensions.

A particularly well studied 2D cellular automaton is called The Game of Life. In
this CA, each cell checks the state of itself and its eight surrounding
neighbors and then sets itself to either alive or dead (hence the name
'‘Game of Life'). If there are less than two alive neighbors, then the cell
dies. If there are more than three alive neighbors, the cell dies. If there are
2 alive neighbors, the cell remains in the state it is in. If there are exactly
three alive neighbors, the cell becomes alive. This is process is continued
indenitely.

Game of Life is also available at the NetLogo site.

Stable shapes, gliders etc...

There are many interesting patterns generated by this simple
rule. One of these is the glider. This set up travels in the same

direction as long as it doesn't crash with anything else.
Another pictured below is a glider gun, which creates a line of

gliders.

Measuring complexity

* The patterns arising from cellular automata
give us a lot to think about.

* We see a very simple set of rules generate
very complex patterns. Moreover, many of
these patterns are life-like. The problem is
dening what we mean by life-like and
qguantifying this idea.

* Doing this is by no means a completed scientic
activity.

Kolmogorov Complexity

One of the first definitions of complexity of a string of 1's and 0's was

proposed by Kolmogorov in the 1960s. This string may, for example, be
the output of a cellular automata.

The basic idea is that the length of the string's shortest description in
terms of a computer program is its complexity.

For example, an array of Os (i.e. 0000000::::) has low complexity,
because we can write a program that says 'keep writing Os'. All
periodic arrays have low complexity, since we can write a program
that says, for example, "write 0110 ten thousand times".

Kolmogorov Complexity

By Kolmogorov's denition, the strings which are most complex are
those which are most difficult to compact without losing
information. We denote Kolmogorov complexity with K.

This returns us to our second example of entropy. Imagine we can
divide our original string in to a finite set of components and label

these components A, B, C etc. (example on the board).

We can now replace A, B, C etc. with binary strings 1,01,001,0001, ...
with the most common strings receiving the shortest encoding.

S is the set of all possible letters and p, be the probability that letter s
appears then (by the argument in example 2 of entropy) the length
of this coding with be at most its Shannon Entropy plus 1.

H = —E p.log,(p,)+1

S&ES

Kolmogorov Complexity

Random strings then have the highest
complexity!

This goes against our intution of what we
mean by complexity.

There are however examples of strings with
high Entropy but low Kolmogorov complexity
(for example middle line of rule 30).

Maybe H-K is a good measure of complexity?
But then finding K for a given string is difficult!

Universal Computing

* One possible solution to defining complexity in
cellular automata is by saying that a CA rule is
complex if it it can act as a universal computing
machine.

* A universal computing machine (or universal
Turing machine) is a computer program that can
simulate any other arbitrary computer program
to produce the input that program would
produce.

* The main point comes down to whether one can
construct logical gates with a particular CA rule.

Rule 110

* [t turns out that both the 'Game of Life' and
even rule 110 from an elementary CA fullfil
the criteria for universal computation.

e Rule 110 is,

Rule 110

The pictures below give some feeling for how

structures in rule 110 can interact to build a

ing,

They show a right mov

ICE.

ting dev
a left moving,and a stationary strucuture

compu

T S
e ™l o e e e
e
e B e
r. F r.pr.pr.pr.prIpr.pr.pr. F r'
el
e e e e o N
e e

O
oL
T R o
RO i T e
Oy T o o b b
e e
e e S NN
vttt et et e
e
e e e e

rrrrrrrrrrrrrrrrrr¢
e Mg Bn B B B g B Baee
Rk R R R R R R,
[el v Y Y Y Y Y YT
el el el el el el Vel Ay
R g b g b Reseeg s
R g B g By By aes g
Mg g B s By Bhaeeep g B0
e B Ben Bn ' Bsser B g Bt
el el el el el el el %

[Tl Tyl Byl eyl T iy el ey 8
g g iy g lnssng g g b
[gl el % snnapg g g i

[gl gl Tl Sl el Sl ™S

e by R R R R R
| Bl gl b Al "Rl el el A
Fr.r.r.r....r.r.r.rr.r.r.r.r.rr.r
% r.F T e e [

Rule 110

R m
Aok b
bbby

S

ahpsininiiealn
rﬂr'r.rrrrrrrrrrrr..'..rrrrrr..rrrrrrrrﬂrrrrﬂrﬂrrrrﬂrr

e ettt e
ettty
atatabutatatatutatutatatats
AR A R e e et et
sebebebatatatubutboiatatninle!
bbby b

%
ey rrrrrrrrrr
Aabababahihihgh at!

ROR R R R AR TR R R R R R R R R R R R R R R R R R R
LS Sl Sl el S Sl Sl Sl o S S Sl Sl Sl e S Sl S el e S S S S Sl S S
ARoh o b b b bbb AR R AR AR R R R R R A AR LY
R e
e !
e e
Ay 0y Ay Ry
B T O A O O O O O O O O O o o
AR A A A
ATATATATATATATAT AT ATATATL AT AT AT
RoR R CRCR R SRR CRCRCRCRURCRTR SR R R
L & L S S LS o o S N ok
Ly ey Ly ey RUACARCA LY
% ahahahy! b hak
T O S U S O O O
PO O OO OOy A
A R
AT AT AT AT AT AT AT AT AT AT AT AT AT A LS
SRLOR SRR OR R SRR R R R R R R R R R R
el g % RoR R R R SRR R SR R R R R R R
CRCR AR TR A TR R R AT AR R A
SRTATAT AT ATATATRT AT AT AT A
b bRy
Cah e et abat bty
: AL
b

b

R R AT R R R A R Ly
'""r""""'r""""'r"
AIATATATATATATAT AT AT ATRTATAT R
AR TR T T A
.F""F'F"'F"".'F""’F

RoRCR R RTRTR L L S Sy 8 RoRCR R R
"" """" "' """""""’ ""'
e e L
A O O R O O O O S O T O O
B S O S O O O S O O O O O O O o G

either pass through each other or cause the formation

When interacting, depending on how they meet, they can
of the stationary shape.

Putting these sorts of shapes together allow a computer

program to be executed, although the complexity of

the program itself is likely to be enormous.

Universal Computing

* Although interesting, this classication of CA in
terms of how much computation they can do

has not really shed much light on the question
of how to denfine and measure complexity.

Box counting dimension

A property of the patterns made by "complex” CA is that they
appear to repeat on very dierent scales.

For example, rule 90 gives

Box counting dimension

This structure is identical to a geometric shape known as
Sierpinski triangle, which can also be constructed by the
following iteration.

The Sierpinksi triangle is one example of a fractal: "a rough or
fragmented geometric shape that can be split into parts, each
of which is (at least approximately) a reduced-size copy of the
whole," (Barnsley, Michael F., Fractals Everywhere 1993).

Box counting dimension

An important property of the Sierpinksi triangle and fractals in general
is self-similarity. As we zoom in on the Sierpinski triangle we see
another identical triangle and so on forever.

For the Sierpinski triangle constructed using the iterative method, this
is a consequence of the way we constructed it. For the cellular
automata construction we did not directly encode the self-similarity
in the resulting output, but we can now use that self-similarity to
analyse the structure.

The main tool for categorising fractals is their box-counting dimension.
The basic idea is this. We cover an object with square boxes of
some particular size and we ask what is the number of boxes
needed to cover all the black parts of the object.

Box counting dimension

Mathematically, let A be a shape or the output array from a CA, N_(A) be
the number of boxes of side length € needed to cover the shape. If there is a
number d so that

1
T ~ —
N(A) -
as € — (), we say that the box-counting dimension of A is d. For d to exist
we require that there is a positive constant k such that

N(A)

’
Py 1/ed

Taking the logarithm of both sides and solving for d gives

d = — lim 2N

e—0 Ine

This gives us a practical means of calculating the box counting dimension.
If we calculate N.(A) for successively smaller boxes ¢ then the slope of the
line in a plot of € vs In N.(A) gives the box counting dimension.

Box counting dimension

Box counting dimension

The box counting dimension of a matrix of 0’s and 1's can be calculated by
repeatedly covering the matrix with a square grid with decreasing lengths [
between the joins in the grid. Let N; be the number of squares in the grid
that contains at least one 1. The box counting dimension is

d=—1
tl—Ia% In(I)

In practice d can be calculated by plotting In(l) vs In(/N;) and using least
squares regression to find the slope of the straight line relationship between
them. Note that although we usually take the limit very small 1.e. [=1
or [= 2 tends to give a poor estimate of the box counting dimension since
the measured structure starts to be on the same scale as the measuring device.

4

http:fwww.math. ul.uon. edw/ ~framem!IMA/FEMatFrac/Lung1.gif

Power laws

Power laws in Nature

Y K

-

!‘l % *

100

10

10
10
10°

10

word frequency

(d)

books sold

s (g)

0.01 0.1 |
crater diameter in km

10’ 10"

net worth in US dollars

% (e)
10°
10’
lo() .

10 100 10t 10°

telephone calls received

10° (h)
10
10
10

10 100 100 10°

peak intensity

L (k)
10t 100 10°

name frequency

10° 10
web hits

10

2 3 4 5 6 7
earthquake magnitude

intensity
4
10 (1)
10°
10°
10’ 10° 10’
population of city

Some models producing power laws
and fractals

* |sing model at critical point.

* Self-organised criticality and forest fire
models.

e Preferential attachment.
* Diffusion limited aggregation.

* Highly optimised tolerance model.

We will look at the forest fire model in project 2
on exercise sheet 2.

See Newman (2005) for more on power laws.

