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Abstract

We consider an auction in which a seller invites potential buyers to a
sealed-bid first-price auction, without disclosing to the buyers the number
of extended invitations. In the presence of a fixed invitation cost for each
invited bidder, the whole auction can be described as a game, where the
set of players consists of all bidders together with the seller. In a setting
with fully observable common values we show the existence of a Nash
equilibrium in mixed strategies. In this equilibrium, the seller should
invite precisely one or two potential buyers with certain probabilities, and
each invited buyer should place a randomized bid according to a certain
distribution.
Key words: game theory; auctions; unknown competition; randomized
strategies.
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1 Introduction

In sealed-bid auctions there is often a natural uncertainty about the number of
bidders. For example, consider a house owner who wants to contract a painter
to repaint a house. Naturally, to get a good price, the house owner should ask
as many painters as possible. However, if each invitation has an associated cost,
then there will be a trade-off between inviting many contractors to obtain a
competitive price and fewer ones to keep the total invitation cost small. From
the painters’ perspective, this yields an uncertainty about the number of invited
bidders. Another example is provided by option trading by large financial insti-
tutions. The standard industry trading method is that a seller asks a number of
counterparties - typically investment banks or market makers - to come in with
prices at which they are willing to do a specific trade. Again, if each invitation
comes with a cost (for example, a loss in goodwill among bidders who do not win
the auction), then there is from an invited bidder’s perspective an uncertainty
about how many other bidders are invited.
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A standard setting in auction theory is the model where bidders have in-
dependent private values (IPV), in which each bidder assigns a private value
to the good. While the distribution of the value for each bidder is common
knowledge, the actual value (the realisation of the random variable) is known
only to each individual bidder. Another standard auction setting is the one
with interdependent values where each bidder receives a random signal, and the
value of the good for a given bidder is a function of his own (known) signal
and the remaining bidders’ (unknown) signals; if all players have the same value
function, and if this function is symmetric, then all bidders agree on a common
value of the good. For an introduction to and discussion of different auction
models we refer to the textbook [8].

There is a growing strand of literature that study auctions with unknown
competition. In [10] it is shown that concealing the number of bidders is, on
average, beneficial for the seller if bidders have constant risk aversion in an
IPV setting. In [4] different auctions with interdependent values and with an
unknown number of bidders are analysed. In particular, revenue equivalence
for five different types of auctions is derived. In contrast to [10] and [4], the
article [9] instead examines the buyer’s point of view by comparing how the risk
aversion affects the buyer’s preferences regarding the auction type. The article
[2] shows that an increase in the number of potential bidders in a procurement
auction may lead to higher procurement costs, and the authors of [5] exam-
ine information aggregation in common value auctions. Finally, [1] considers
estimation of first-price auctions for a set-up where the number of potential
bidders is random, and in [7] a statistical study is performed to test for possible
deviations of individual behaviour from theory.

In the current paper we study the effect of uncertain competition on sealed-
bid first-price auctions under the assumption of a fully observable common value
of the good. While combining the assumptions of an observable value and a
common value of the good would lead to degenerate bidding strategies in the case
of known competition, it turns out that the setting with uncertain competition
is rich enough to obtain a non-degenerate equilibrium in mixed (randomized)
strategies. Our choice to work within this rather simplistic framework allows
us to fully analyse a setting where the seller pays a fixed cost for each invited
bidder. In this game, the set of players consists of the bidders and the seller. In
particular, we derive conditions under which a Nash equilibrium exists; this Nash
equilibrium is symmetric for invited bidders, whereas the equilibrium strategy
for the seller is specified by a distribution on the number of bidders to be invited.
Interestingly, this distribution assigns mass only to one and two, meaning that
the seller should never invite more than two bidders.

Moreover, we study asymmetric versions of the auction game. Such situa-
tions occur if invited bidders assign different values of the good or estimate the
probability of competition differently. Again we provide a Nash equilibrium in
mixed strategies, both among bidders and in situations when the seller is also
included in the set of players.

The paper is organised as follows. In Section 2 we study the basic symmetric
version of the sealed-bid first-price auction in which the number of bidders is
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unknown. In particular, we prove existence and uniqueness of a symmetric
equilibrium for the bidders in mixed strategies. In Section 3, we show that in
the presence of an additive invitation cost for the seller, there is an auction
equilibrium which includes also the seller as one of the players. In particular,
we show that there exists a probability distribution on the number of invited
bidders that in equilibrium should be used by the seller, and that the seller
should not invite more than two bidders. Sections 4-6 extend the basic version
studied in Sections 2-3 by treating asymmetric cases. Section 4 contains a
study of bidders with asymmetric, but still fully observable, private values and
probability distributions of the number of bidders. This is used to study two
examples of asymmetric auction games: an auction game where one of the
bidders is given priority (Section 5), and an auction game where bidders have
different values (Section 6).

2 The auction from the bidders’ perspective

In this section we study a sealed-bid first-price auction from the perspective of a
bidder who does not know the exact number of competing bidders. We assume
that there are n − 1 additional potential bidders, and we refer to the bidder
under consideration as Player 1. We also assume that n ≥ 2 so that there is at
least one additional potential bidder.

We distinguish between the number of potential bidders, n, and the number
of (actual) bidders, which is a random variable with values in {1, 2, ..., n}. More
presicely, Player 1 estimates the probability that exactly k bidders exist to be pk,
k = 1, ..., n. Here pk ≥ 0,

∑n
k=1 pk = 1 and 0 < p1 < 1 so that the probability

of being the only bidder and the probability of at least one more bidder are
both strictly positive. We also assume that the game is symmetric in the sense
that each of the other bidders (if any) estimates the probability that there are
exactly k − 1 additional bidders to be pk.

Furthermore, we assume that all bidders agree on the value of the good and
that this value is a known constant v > 0. If the highest bid is x ∈ [0, v] (and
is unique), then the profit for the bidder with the highest bid is v − x, and the
profit is 0 for all other bidders. If the highest bid x is not unique, then the profit
v − x is split evenly between the corresponding bidders. Thus, if Player 1 bids
x, and there are k additional bidders with bids y1, y2, ..., yk, then the profit for
Player 1 is

v − x
1 +

∑k
i=1 1{x=yi}

1{x≥max1≤i≤k yi}.

Definition 1 A mixed strategy for a bidder is a distribution funtion F on
[0, v], i.e. a non-decreasing and right-continuous function such that F (0) ≥ 0
and F (v) = 1. We denote by F the collection of such functions.

For a pair (F,G) ∈ F2 of mixed strategies, let (X,Y1, ..., Yn−1) be a vector
of independent random variables with F (x) = P(X ≤ x) and G(y) = P(Yi ≤ y),
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i = 1, ..., n−1. If Player 1 bids X and all other bidders (if any) use independent
bids with distribution G, then the corresponding expected profit for Player 1 is

J (F,G) := p1E[v−X]+

n−1∑
k=1

pk+1E

[
v −X

1 +
∑k
i=1 1{X=Yi}

1{X≥max1≤i≤k Yi}

]
. (1)

We refer to the game described above between bidders, but with no seller, as
the bidders’ game.

Definition 2 A pair (G,G) ∈ F2 of mixed strategies is a symmetric Nash
equilibrium in the bidders’ game if

J (F,G) ≤ J (G,G)

for all F ∈ F .

Lemma 3 If (G,G) ∈ F2 is a symmetric Nash equilibrium, then G is contin-
uous with G(0) = 0 and G(v−) = 1.

Proof. Let G(0−) := 0 and assume that G(a) − G(a−) = η > 0 for some
a ∈ [0, v].

First, if a = v so that G(v) − G(v−) = η > 0, then consider the strategy
given by

G̃(x) =

{
G(x) + η if x ∈ [0, v)

1 if x = v.

We claim that G̃ is a strictly better response to G than G. In fact, the expected
profit for Player 1 increases with

J (G̃,G)− J (G,G) = ηv

n−1∑
k=0

pk+1
Gk(0)

k + 1
≥ ηvp1 > 0,

compare (1). Consequently, we cannot have a = v.
Similarly, if a ∈ [0, v), let ε ∈ (0, v − a) be a small number such that G is

continuous at a+ ε, and define Gε by

Gε(x) =

{
G(x) if x /∈ [a, a+ ε)
G(x)− η if x ∈ [a, a+ ε).

Then, given a random variable X with distribution function G, a random vari-
able Xε with distribution Gε can be constructed as Xε = X1{X 6=a} + (X +
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ε)1{X=a}. Consequently, the expected profit for Player 1 increases with

J (Gε, G)− J (G,G) = η(v − a− ε)
n−1∑
k=0

pk+1G
k(a+ ε)

−η(v − a)

n−1∑
k=0

pk+1E

[
1{X≥max1≤i≤k Yi}

1 +
∑k
i=1 1{X=Yi}

]

≥ η(v − a− ε)
n−1∑
k=0

pk+1G
k(a)

−η(v − a)p1 − η(v − a)

n−1∑
k=1

pk+1E
[

1{X≥max1≤i≤k Yi}

1 + 1{X=Y1}

]

=
η2

2
(v − a)

n−1∑
k=1

pk+1G
k−1(a)− ηε

n−1∑
k=0

pk+1G
k(a),

which is strictly positive if ε is small enough. Consequently, with such an ε, Gε

is a strictly better response to G than G is, so (G,G) is not an equilibrium.
Therefore a symmetric equilibrium (G,G) has to have a continuous distribution
function with G(0) = 0 and G(v−) = G(v) = 1.

By Lemma 3, if all bidders use a symmetric equilibrium strategy G, then
the probability that two bids coincide is 0. Consequently, the expression for J
then simplifies to

J (F,G) = p1E[v −X] +

n−1∑
k=1

pk+1E
[
(v −X)1{X≥max1≤i≤k Yi}

]
(if Player 1 uses the strategy F ∈ F). Furthermore, for a pair (G,G) ∈ F2 to
be a symmetric Nash equilibrium, one therefore expects that

p1(v − x) +

n−1∑
k=1

pk+1E
[
(v − x)1{x≥max1≤i≤k Yi}

]
= p1(v − x) + (v − x)

n−1∑
k=1

pk+1G
k(x)

is constant on the support of G. This leads to a candidate equilibrium (G,G)
defined implicitly by{

(v − x)
∑n−1
k=1 pk+1G

k(x) = p1x x ∈ [0, v(1− p1))
G(x) = 1 x ∈ [v(1− p1), v].

(2)

Note that for a fixed x ∈ [0, v(1− p1)] there is a unique solution G(x) ∈ [0, 1] to
(2). Moreover, the unique solution G to (2) is continuous and non-decreasing
on [0, v] with G(0) = 0 and G(v) = 1, so G ∈ F .
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Furthermore, and for future reference, we note that in the case n = 2 we
have p2 = 1− p1, and the function G in (2) can be explicitly written

G(x) =

{ p1x
(1−p1)(v−x) x ∈ [0, (1− p1)v)

1 x ∈ [(1− p1)v, v].
(3)

Theorem 4 The pair (G,G), where G is defined in (2), is a Nash equilibrium
in mixed strategies. Moreover, it is the unique symmetric equilibrium.

Proof. First we check that (G,G) is an equilibrium. If Player 1 bids x and all
other bidders use mixed strategies represented by the distribution function G,
then the expected profit for Player 1 is

(v − x)
n−1∑
k=0

pk+1G
k(x) =

{
p1v x ∈ [0, (1− p1)v)
v − x x ∈ [(1− p1)v, v].

Thus the maximal expected reward is p1v, and since the strategy G distributes
all mass on [0, (1− p1)v] where the expected profit is constant (and maximal),
there is no strategy giving a higher average profit than G. Thus the strategy G
is an optimal response if all other players use G, so (G,G) is a symmetric Nash
equilibrium.

For uniqueness, assume that (H,H) ∈ F2 is a symmetric Nash equilibrium in
mixed strategies. Then H is continuous on [0, v] with H(0) = 0 and H(v−) = 1
by Lemma 3. Next consider the function

h(x) = (v − x)

n−1∑
k=0

pk+1H
k(x),

i.e. the expected profit for Player 1 from bidding x in case the other bidders use
the strategy H. Then h is continuous on [0, v], and we denote its maximum h.

We claim that h ≡ h on the support of H. To see this, assume that x ∈
supp(H) and that h(x) < h. By continuity, h < h in some interval (x− ε, x+ ε),
and since x is in the support of H, we have H(x+ ε)−H(x− ε) > 0. Let x′ be
a point such that h(x′) = h. Then the strategy that puts all mass at x′ gives
an average profit h, which strictly exceeds the expected profit from playing H,
so (H,H) is not an equilibrium.

If y ∈ (0, v) with h(y) < h, then y /∈ supp(H) so H is constant in an
open interval containing y. Therefore h is strictly decreasing on that interval,
and by continuity of h it follows that the whole interval (y, v] belongs to the
complement of supp(H). This proves that supp(H) = [0, x] for some x ∈ [0, v].
Consequently, h(x) = h on [0, x], so

h = h(0) = p1v

and

(v − x)

n−1∑
k=0

pk+1H
k(x) = p1v (4)
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for x ∈ [0, x]. The only continuous function H ∈ F with H(0) = 0 of the form
(4) is H = G specified in (2), which completes the proof.

Remark 5 It is easy to check that the game degenerates in the excluded cases
p1 = 0 and p1 = 1. In fact, if p1 = 1, i.e. if there is only one bidder, then there
is no competition, and hence the optimal strategy for the bidder is to bid 0. On
the other hand, if p1 = 0, then each bidder knows that there is at least one more
bidder, and a situation with pre-emption appears. The symmetric equilibrium
in this case consists of bids of size v, thus generating no profit at all.

Remark 6 Recall the classical IPV auction in which each bidder has an in-
dependent private value drawn from a distribution with a continuous density;
the case with a known number of bidders can be found in the classical reference
[11], and for extensions to an unknown number of bidders, see [4], [9] and [10].
In that setting, an equilibrium strategy is obtained if each bidder bids a certain
deterministic function of her/his private value.

Assume that the private values are drawn from a distribution with a con-
tinuous distribution function H : [0, v] → [0, v], and that any invited bidder
estimates the probability of being the only bidder to be p and the probability that
there is exactly one more bidder to 1− p. Then the expected profit for Player 1
if bidding y is

p(x− y) + (1− p)(x− y)H(β−1(y)).

Here β : [0, v]→ [0, v] is a strictly increasing function that is used by the second
bidder (if invited) to map his/her private value into a bid, and x is the private
value of Player 1. Optimizing over the bid y and using β(x) = y for a symmetric
equilibrium (for details, see [4] or [8, Chapter 3.2]), one obtains

β(x) =
(1− p)(xH(x)−

∫ x
0
H(z) dz)

p+ (1− p)H(x)
. (5)

Now assume that private values are distributed uniformly on [v − ε, v]. By
(5), the symmetric equilibrium strategy consists of bidding β(x) if the private
value is x ∈ [v − ε, v], where

β(x) =
(1− p)(x2 − (v − ε)2)

2ε− 2(1− p)(v − x)
.

Take y < (1 − p)v, and let X be a random variable that represents the private
value of an invited bidder. Then straightforward calculations show that for ε <
2((1− p)v − y)/(1− p) we have

P(β(X) ≤ y) = ε−1
(
y − v + ε+

√
y2 − 2(v − ε

1− p
)y + (v − ε)2

)
,

so
P(β(X) ≤ y)→ py

(1− p)(v − y)
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as ε → 0. Thus, as the support of the distribution of private values collapses
to {v}, the equilibrium bid in the IPV setting converges in distribution to the
corresponding Nash equilibrium determined in Theorem 4; to wit, the equilib-
rium in the auction with a known value v coincides with the equilibrium in the
IPV setting where values are uniformly distributed on an infinitesimal interval
[v−, v].

Remark 7 Our setting with a known common value v but with unknown com-
petition is strategically equivalent to a setting with known competition and inde-
pendent private values with a discrete distribution pδ0 + (1 − p)δv, where δa is
a point mass at a. In fact, for n = 2 the equilibrium in (3) was obtained in [6,
pages 386-389], but with no discussion about uniqueness.

3 The seller’s perspective

In this section we view the whole auction as a game, thus including also the seller
as a player. The seller’s strategy amounts to determining how many bidders to
invite, but with the assumption that each invitation is made at a cost c ∈ (0, v).
Naturally, the seller wants to invite many bidders to ensure that the winning
bid is sufficiently high, but not too many in order to control the total cost.

If the total number of potential bidders is n, then a mixed strategy of the
seller consists of a distribution on the set {1, 2, ..., n}, which is represented by an
n-tuple q = (q1, q2, ..., qn) with qk ≥ 0 and

∑n
k=1 qk = 1. Here qk represents the

probability that the seller invites exactly k bidders, thereby infering a total cost
ck. We also assume that the seller has no preferences between various potential
bidders. More precisely, if the seller decides to invite k bidders, then any of
the

(
n
k

)
possible configurations of bidders is equally likely (asymmetric cases are

studied in Sections 4-6 below).
Note that the fact that a bidder receives an invitation affects the probability

distribution of the number of invited bidders. Denote by

Π = {q ∈ [0, 1]n : qk ≥ 0 and

n∑
k=1

qk = 1}

the set of strategies for the seller. The following proposition provides the link
between a mixed strategy q of the seller and the distribution p of the number
of invited bidders from an invited bidder’s perspective.

Proposition 8 Let q ∈ Π. Then, from an invited player’s perspective, the
distribution of invited players is given by p = (p1, ..., pn), where

pk =
kqk∑n
k=1 kqk

, k = 1, ..., n. (6)
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Proof. Straightforward calculations give

pk = P(exactly k invited bidders|Player 1 invited)

=
P(exactly k invited bidders and Player 1 invited)

P (Player 1 invited)

=
qkk/n

(
∑n
k=1 kqk)/n

=
kqk∑n
k=1 kqk

,

which proves the claim.
It follows from Proposition 8 that if the seller uses a strategy q ∈ Π, then an

invited bidder will use the strategy G = Gq specified in (2) where p = (p1, ..., pn)
is given by (6). For the relation (6) we write p = p(q).

Let Y1, ..., Yk be independent random variables with distribution function
Gq. The expected profit for the seller if inviting precisely k bidders is then

βqk := E[Y1 ∨ Y2 ∨ ... ∨ Yk]− ck (7)

for k = 1, ..., n. Consequently, the expected profit for the seller associated with
a strategy q ∈ Π is

βq :=

n∑
k=1

qkβ
q
k.

A pair (G, q) ∈ F × Π is a Nash equilibrium for the full auction game if (G,G)
is a symmetric equilibrium for the bidders’ game with p = p(q) and if for any k
with qk > 0 we have βqi ≤ β

q
k for all i ∈ {1, ..., n}.

Lemma 9 Assume that Y1, ..., Yk are independent and identically distributed
with distribution function Gq, and that the support of the distribution contains
at least two points, and let βqk := E[Y1 ∨ Y2 ∨ ... ∨ Yk]− ck as above. Then

βqk − β
q
k−1 < βq2 − β

q
1 , k = 3, ..., n. (8)

Proof. Using that x ∨ y − x = 0 ∨ (y − x) is decreasing in x, we have

(Y1 ∨ ... ∨ Yk−1) ∨ Yk − Y1 ∨ ... ∨ Yk−1 ≤ Yk−1 ∨ Yk − Yk−1.

Moreover, the inequality is strict if Y1 ∨ ... ∨ Yk−1 ≥ Yk > Yk−1, which happens
with positive probability. Taking expected values thus yields

E[Y1 ∨ ... ∨ Yk − Y1 ∨ ... ∨ Yk−1] < E[Yk−1 ∨ Yk − Yk−1],

which implies (8).

Proposition 10 Assume that n ≥ 3 and that q∗ is an equilibrium strategy for
the seller. Then q∗k = 0 for k = 3, ..., n.
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Proof. Assume that q∗ is an equilibrium strategy. First we claim that

q∗1 > 0. (9)

Indeed, if q∗1 = 0, then there are at least two invited bidders. Therefore, by
pre-emption, every invited bidder will bid v, and the expected profit for the
seller is then at most v− 2c. However, given that all invited bidders bid v, then
an optimal response for the seller is to invite only one bidder, which has an
expected profit v − c. Since v − c > v − 2c, this strategy is strictly better than
q∗, which is a contradiction. This proves (9).

Now assume that q∗k > 0 for some k ≥ 3 (if n = 2 there is nothing to prove;
therefore we may without loss of generality assume that n ≥ 3). The expected
profit for the seller is

n∑
i=1

q∗i βi.

However, modifying the strategy q by defining qε by qεi = q∗i for i /∈ {1, 2, k−1, k}
and 

qε1 = q∗1 − ε
qε2 = q∗2 + ε
qεk−1 = q∗k−1 + ε
qεk = q∗k − ε

for small ε > 0 (in the case k = 3 we set qε2 = q∗2 + 2ε), the expected profit for
the seller becomes

n∑
i=1

qεiβi =

n∑
i=1

q∗i βi + ε(β2 − β1 − (βk − βk−1)) >

n∑
i=1

q∗i βi,

where the inequality comes from Lemma 9. This contradicts the optimality of
q∗, so q∗k = 0 for k ≥ 3.

In view of Proposition 10, we only need to look for equilibrium strategies for
the seller on the form q∗ = (q, 1−q, 0, ..., 0) with q ∈ (0, 1). With a slight abuse of
notation, we will therefore refer to a number q ∈ (0, 1) as a strategy of the seller.
The corresponding belief for an invited bidder is then given by p = ( q

2−q ,
2−2q
2−q )

(see Proposition 8). Recalling (3) above, the equilibrium strategy of an invited
bidder is then

G(x) =

{ p1x
(1−p1)(v−x) x ∈ [0, (1− p1)v)

1 x ∈ [(1− p1)v, 1]
(10)

=

{
qx

2(1−q)(v−x) x ∈ [0, 2(1−q)2−q v)

1 x ∈ [ 2(1−q)2−q v, 1].

The corresponding expected profit for the seller if inviting precisely one bidder
is then

β1 =

∫ 2(1−q)
2−q v

0

xG′(x) dx− c = v

(
1 +

q

2(1− q)
ln

q

2− q

)
− c. (11)
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Similarly, the expected benefit for the seller if inviting two bidders is

β2 =

∫ 2(1−q)
2−q v

0

x(G2)′(x) dx− 2c (12)

= v

(
1− 2q

1− q
+

q2

2(1− q)2
ln

2− q
q

)
− 2c.

Consequently, the seller is indifferent between inviting one and inviting two
bidders precisely when β1 = β2, i.e. when q satisfies

c

v
=
−q

1− q
+

q

2(1− q)2
ln

2− q
q

. (13)

Defining

f(q) :=
−q

1− q
+

q

2(1− q)2
ln

2− q
q

,

one can check that f > 0 on (0, 1) with f(0+) = 0 and f(1−) = 0. By continuity,
there exists a maximum q ∈ (0, 1), and we denote by f = f(q) the maximal value
of f .

Theorem 11 For c ∈ (0, f ], denote by q∗ a solution to (13) in (0, 1), and let
G∗ be given by (10) with q = q∗. Then (G∗, G∗, q∗) is a Nash equilibrium.

Proof. First assume that all invited bidders use the mixed strategy G∗. By
construction, the seller is then indifferent between inviting one or two bidders,
so there is no strategy for the seller that strictly dominates the strategy q∗.

Next, assume that Player 1 is invited to the auction, that the seller uses the
strategy q∗ and that Player 2 uses the mixed strategy G∗ if invited. By the same
argument as in the proof of Theorem 4, G∗ is an optimal strategy for Player 1.
From the above, and by symmetry, (G∗, G∗, q∗) is a Nash equilibrium.

Remark 12 Since f > 0 on (0, 1) with f(0+) = 0 and f(1−) = 0, the equation
f(q) = c/v has multiple solutions if c < f . Note that the expected benefit βi for
the seller if inviting exactly i bidders, i = 1, 2 (see (11) and (12), respectively)
is decreasing in the probability q to invite only one bidder. Therefore, the seller
prefers the equilibrium (G∗, G∗, q∗) where q∗ is the smallest solution of (13)
to any other equilibrium on this form. Also, if q̂ ∈ (q∗, 1) solves (13) and all
bidders use Ĝ defined as in (10) with q = q̂, then the seller is indifferent between
inviting one or two bidders. Consequently, the strategy q∗ is an optimal strategy
for the seller also if all invited bidders use Ĝ, so the equilibrium (Ĝ, Ĝ, q̂) will
not be used.

Remark 13 We end this section with pointing out the existence of a degenerate
Nash equilibrium, which exists for any invitation cost c ∈ (0, v). Denote by q = 1
the seller strategy of inviting precisely one bidder, and denote by G(x) = 1
for x ≥ 0 the degenerate strategy of always bidding zero. Then (G,G, q) is a
Nash equilibrium. Indeed, first assume that all invited bidders bid 0. Then the
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expected profit for the seller with a strategy q ∈ [0, 1] is −cq − 2c(1− q), which
is maximized for q = 1, so q is optimal for the seller. Similarly, if the seller
uses q, then the optimal response for an invited bidder is to bid 0, so (G,G, q) is
a Nash equilibrium. However, this equilibrium is of minor practical importance
since it yields a negative value for the seller.

4 An asymmetric auction set-up

In this section we consider an auction with asymmetric views on the value of the
good and/or on the probability of competition. We first consider the bidders’
perspective, and then extend to include the seller’s perspective in two examples
in Sections 5-6 below.

Assume in a two-player setting that Player 1 has value v1 and estimates
the probability of being alone in the auction to be p1, whereas Player 2 has
value v2 and estimates the probability of being alone in the auction to be p2.
However, we still assume complete information in the sense that all parameters
pi, vi, i = 1, 2 are known to both players.

Theorem 14 (Bidder perspective.) Assume that (1 − p1)v1 ≤ (1 − p2)v2.
Define the distribution functions F1 and F2 with support on [0, (1− p1)v1] by

F1(x) =

{
(1−p2)v2−(1−p1)v1+p2x

(1−p2)(v2−x) x ∈ [0, (1− p1)v1)

1 x ∈ [(1− p1)v1, v1]
(14)

and

F2(x) =

{ p1x
(1−p1)(v1−x) x ∈ [0, (1− p1)v1)

1 x ∈ [(1− p1)v1, v2].
(15)

Then the pair (F1, F2) of mixed strategies forms a Nash equilibrium.

Proof. Assume that Bidder 2 uses the mixed strategy F2 if invited. Then any
bid x ∈ [0, (1− p1)v1) gives Bidder 1 the constant average payoff

p1(v1 − x) + (1− p1)(v1 − x)F2(x) = p1v1,

and any bid x ≥ (1− p1)v1 gives a payoff

v1 − x ≤ p1v1.

Consequently, there is no strategy for Bidder 1 that is strictly better than the
mixed strategy F1.

Similarly, if Bidder 1 uses F1, then any bid x ∈ (0, (1−p1)v1) gives Bidder 2
an average payoff

p2(v2 − x) + (1− p2)(v2 − x)F1(x) = v2 − (1− p1)v1,

whereas a bid x = 0 gives

p2v2 +
(1− p2)v2F1(0)

2
< v2 − (1− p1)v1

12



and a bid x ≥ (1− p1)v1 gives

(v2 − x) ≤ v2 − (1− p1)v1.

Thus the mixed strategy F2, which distributes all mass on (0, (1 − p1)v1), is
optimal for Bidder 2, and hence (F1, F2) is an equilibrium.

Remark 15 Note that F1(0) = 1 − (1−p1)v1
(1−p2)v2 ≥ 0, so Bidder 1 may bid 0 with

positive probability. Also note that in the special case that v1 = v2 and p1 = p2,
the equilibrium in Theorem 4 is recovered.

Remark 16 It is straightforward to check that if p1 = p2 and v1 ≤ v2, then
F1 ≥ F2. Consequently, in such a setting the bidder with the smaller value will
bid more aggressively in the sense that the probability for a bid smaller than any
given threshold is bigger than for the other bidder. A similar feature has been
observed in the case of asymmetry among bidders in the independent private
value setting, e.g. see [8, Proposition 4.4].

Remark 17 Interestingly, the equilibrium strategy F2 of Bidder 2 does not
depend on the estimated probability p2 of being the only player (as long as
(1− p1)v1 ≤ (1− p2)v2).

5 The auction game with priority

In this section we consider a scenario with one seller and two potential bidders, in
which the seller gives priority to one of the bidders. More precisely, we assume
that Player 1 is known to be invited whereas Player 2 is invited only with a
given probability. The players have the same value v, but Player 1 estimates
the probability of being the only bidder to be p ∈ (0, 1), whereas Player 2 knows
that Player 1 is active. Moreover, the number p is known to both players.

In this setting, Theorem 14 applies (with p1 = p and p2 = 0), so (F1, F2) is
an equilibrium, where

F1(x) =

{ pv
v−x x ∈ [0, v(1− p))
1 x ∈ [v(1− p), v]

(16)

and

F2(x) =

{ px
(1−p)(v−x) x ∈ [0, v(1− p))

1 x ∈ [v(1− p), v].
(17)

Since Player 1 is given priority as described above, the seller either invites
one bidder (which then is automatically Player 1), or invites both bidders. A
mixed strategy for the seller is thus described by a number q ∈ [0, 1] which
represents the probability of inviting precisely one bidder (Player 1). Note that
if the seller uses a strategy q ∈ [0, 1], then the probability of competition from
Player 1’s perspective is p = q.

13



Denote by Xi a random variable with distribution function Fi, i = 1, 2 so
that X1 and X2 are independent. If the seller invites only one bidder, then the
expected profit is

β1 := E[X1]− c = v(1− p) + pv ln p− c,

and the expected profit from inviting two bidders is

β2 := E[X1 ∨X2]− 2c = v(1− 2p)− p2v

1− p
ln p− 2c.

The seller is indifferent between inviting one and inviting two bidders precisely
when β1 = β2, i.e. when

p+
p

1− p
ln p+

c

v
= 0. (18)

Define the function f(p) = −p − p
1−p ln p, and note that f > 0 on (0, 1) with

f(0+) = f(1−) = 0, and f is strictly concave. Denote by f the maximal value
of f , which is attained at a point p.

Theorem 18 (The auction game with priority.) Assume that c/v ≤ f ,
and denote by q∗ the unique solution of f(q) = c/v satisfying q ≤ p, and let
Fi, i = 1, 2 be defined as in (16)-(17) with p = q∗. Then (q∗, F1, F2) is a Nash
equilibrium for the auction game.

Proof. If the bidders use (F1, F2) if invited, then the seller is indifferent between
inviting one and two bidders, so q∗ is an optimal response. Similarly, if the seller
uses q∗ and Player i uses Fi (if invited), then F3−i is optimal for Player 3 − i
by Theorem 14. Thus (q∗, F1, F2) is a Nash equilibrium.

6 The auction game with different values

In this section we study an auction with two players who assign different values
to the good. More precisely, we assume that Player i assigns the value vi,
i = 1, 2, and without loss of generality we let v1 < v2. Furthermore, the seller
has three possible actions, namely to invite only Player 1, to invite only Player 2,
or to invite both Player 1 and Player 2. A mixed strategy for the seller is thus
described by a pair (q1, q2) with qi ≥ 0 and q1 + q2 ≤ 1, where qi denotes the
probability of inviting only Player i, i = 1, 2.

If the seller uses (q1, q2), then the probability pi from the perspective of
Player i to be the only bidder (if invited) is

pi =
qi

1− q3−i
, (19)

which can be inverted to yield

qi =
pi(1− p3−i)
1− pip3−i

. (20)
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By Theorem 14, if (1 − p1)v1 ≤ (1 − p2)v2, then Player i will use the strategy
Fi, where Fi is defined by (14)-(15) with pi as in (19).

Let Xi be a random variable with distribution Fi. For the seller to be
indifferent between inviting only Player 1 and inviting only Player 2, we need
that α1 = α2, where

αi := E[Xi]− c
is the expected profit for the seller if inviting only Player i. Straightforward
calculations show that

E[X1] =
1− p1
1− p2

v1 −
v2 − (1− p1)v1

1− p2
ln

v2
v2 − (1− p1)v1

and
E[X2] = v1 +

p1
1− p1

v1 ln p1,

respectively. Thus α1 = α2 if

p2 − p1
1− p2

v1 =
v2 − (1− p1)v1

1− p2
ln

v2
v2 − (1− p1)v1

− p1
1− p1

v1 ln
1

p1
,

which yields

p2 =
p1v1 + (v2 − (1− p1)v1) ln v2

v2−(1−p1)v1 −
p1

1−p1 v1 ln 1
p1

v1(1− p1
1−p1 ln 1

p1
)

=: h1(p1, v1, v2).

Furthermore,

E[X1 ∨X2] =
(1− p1 − p2)v1

1− p2
+
p1v2(p2(v2 − v1)− v2 + (1− p1)v1)

(v2 − v1)(1− p1)(1− p2)
ln

1

p1

+
p2v2(v2 − (1− p1)v1)

(1− p1)(1− p2)(v2 − v1)
ln

v2
v2 − (1− p1)v2

,

so the seller is indifferent between inviting both bidders and inviting only Player 2
if

c = E[X1 ∨X2]− E[X2]

=
−p1

1− p2
v1 +

p1
1− p1

(
v1 − v2 −

p1v1v2
(v2 − v1)(1− p2)

)
ln

1

p1

+
p2v2(v2 − (1− p1)v1)

(1− p1)(1− p2)(v2 − v1)
ln

v2
v2 − (1− p1)v2

=: h2(p1, p2, v1, v2).

We summarise our findings in the following theorem.

Theorem 19 (The seller perspective) Assume that (p∗1, p
∗
2) ∈ (0, 1)2 satis-

fies h2(p∗1, p
∗
2, v1, v2) = c, p∗2 := h1(p∗1, v1, v2) and (1− p∗1)v1 ≤ (1− p∗2)v2. Let

F ∗1 and F ∗2 be defined as in (14)-(15) with (p1, p2) = (p∗1, p
∗
2), and let

(q∗1 , q
∗
2) = (

p∗1(1− p∗2)

1− p∗1p∗2
,
p∗2(1− p∗1)

1− p∗1p∗2
)
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(compare (20)). Then (F ∗1 , F
∗
2 , (q

∗
1 , q
∗
2)) is a Nash equilibrium for the auction

game with different values.
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