
The de Finetti problem with uncertain competition

Erik Ekström
Department of Mathematics, Uppsala University

Alessandro Milazzo
Department of Mathematics, Uppsala University

Marcus Olofsson
Department of Mathematics and Mathematical Statistics, Ume̊a University

September 26, 2022

Abstract

We consider a resource extraction problem which extends the classical de Finetti problem
for a Wiener process to include the case when a competitor, who is equipped with the
possibility to extract all the remaining resources in one piece, may exist. This situation is
modelled as a non-zero-sum controller-and-stopper game with incomplete information. For
this stochastic game we provide a Nash equilibrium with an explicit structure. In equilibrium,
the agent and the competitor use singular strategies in such a way that a two-dimensional
process, which represents available resources and the filtering estimate of active competition,
reflects in a specific direction along a given boundary.

1 Introduction

In the classical single-player de Finetti problem for a Wiener process, the value of a limited
resource evolves, in the absence of extraction, as

Yt = x+ µt+ σWt,

where µ and σ are positive constants and W is a standard Brownian motion. The de Finetti
problem – also known as the dividend problem – then consists of maximising

E
[∫ τ0

0
e−rtdDt

]
over all adapted, non-decreasing, and right-continuous processes D with D0− = 0, where τ0 :=
inf{t ≥ 0 : Yt − Dt ≤ 0} is the extinction time (or bankruptcy time). It is well-known (see,
e.g., Asmussen and Taksar [1] and Jeanblanc and Shiryaev [12]) that the optimal strategy D̃ is
given by D̃t = sup0≤s≤t(Ys − B)+, where (x)+ := max{x, 0} and B is a constant that can be
calculated explicitly.

In the current article, we study the de Finetti problem under an additional threat of compe-
tition. One interpretation of this uncertain competition is that the agent, who exerts the control
D to extract from the source Y , is subject to possible fraud. Another interpretation is that Y
represents the value of a common resource, but where currently only one agent is extracting;
unknown competition then corresponds to the possibility that other agents will decide to ex-
tract as well. We thus include the possibility that a competitor exists, and we assume that the
competitor has the capacity to extract all the remaining resources at once at a random time γ
of his choice.
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To model uncertain competition, we use a Bernoulli random variable θ indicating whether
the competitor exists (θ = 1) or not (θ = 0), and we consider the maximisation of

E
[∫ τ0∧γ̂

0
e−rtdDt

]
over singular controls D, where γ̂ := γ1{θ=1} +∞1{θ=0}. At the same time, the competitor
chooses γ to maximise the expected payoff

E
[
e−r(τ0∧γ)XD

τ0∧γ

]
,

where XD = Y −D represents the remaining resources after extraction.
The above game is a controller-and-stopper non-zero-sum stochastic game and we thus extend

the stream of literature on stochastic games of control and stopping; see, e.g., [13], [14], [3],
[15], [10], [4] and [7]. However, in contrast to most of the literature on stochastic games of
control and stopping, focusing on zero-sum games, we formulate and solve a non-zero-sum
game. Moreover, an important feature that distinguishes our game from the works mentioned
above is incomplete information, which in our framework stems from the fact that the existence
of the competitor is uncertain. We thus complement existing literature investigating the role of
uncertain competition in stochastic games. This strand of research can be traced back to the
non-dynamic setting of an auction game with uncertain competition, see Hirshleifer and Riley
[11, pages 386-389], and was more recently extended to a dynamic setting in [6] where a stopping
game with uncertain competition was studied. In [6] the term “ghost” was also introduced to
represent the players that may not exist. In Ekström et al. [8], the authors proposed and studied
a ghost game in a setting related to fraud detection and so called “salami slicing” fraudulence.
As in the current paper, a controller-and-stopper non-zero-sum game of ghost type is studied in
[8], but with the “ghost” role inverted. More precisely, in [8] the controller is a ghost whereas
in the current paper the stopper is a ghost. Our aim is thus to investigate the role of uncertain
competition in a singular stochastic control problem. To set the ground for potential further
studies, we have chosen the setting of the de Finetti problem, which is a well-known problem in
the singular control literature.

Since the competitor is equipped with a binary stopping control, inference about the ex-
istence of competition is based on observations of the events {γ̂ ≤ t}. Indeed, the strategies
that we consider are based on observations/calculations of the two-dimensional process (X,Π):
X = XD = Y − D is observed and represents the value of resources after extraction whereas
Π is calculated and represents the adjusted belief of active competition, i.e., the conditional
probability that θ = 1 given that stopping has not yet occurred (see Section 3.2). Remarkably,
our controller-and-stopper non-zero-sum game with incomplete information has an equilibrium
with a rather explicit structure. In this equilibrium the controller extracts resources and the
competitor stops at a randomised stopping time, specified in terms of a generalised intensity,
in such a way that the corresponding two-dimensional process (X,Π) reflects obliquely at a
given monotone boundary x = b(p) (see Figure 1). To construct this two-dimensional reflected
process, including a carefully specified reflection direction, we use the notion of perturbed Brow-
nian motion, (see, e.g., Carmona et al. [5] and Perman and Werner [16]). To the best of our
knowledge, it is the first time that a perturbed Brownian motion has been used as part of the
solution in a stochastic control problem. We also remark how the structure of the equilibrium
strategy, determined by this two-dimensional reflection, differs completely from the equilibrium
found in the controller-and-stopper “ghost” game in [8]. In fact, in equilibrium, the two players
act simultaneously when the sufficient statistic (X,Π) hits a certain boundary: the controller
exerts control in the (negative) x-direction and the ghost stopper exerts control in the (negative)
π-direction in such a way that the two-dimensional process (X,Π) reflects obliquely along the
boundary.

The paper is organized as follows. In Section 2 we provide the precise game formulation
of the de Finetti problem under uncertain competition. In Section 3 we review the standard
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single-player de Finetti problem and we provide properties of its game version that should hold in
equilibrium using heuristic arguments. Section 4 uses the notion of perturbed Brownian motion
to construct the candidate equilibrium. Our main result Theorem 11, in which the candidate
equilibrium is verified, is presented in Section 5. Finally, Section 6 illustrates our findings with
a numerical study.

2 Problem set-up

We begin by setting the mathematical stage necessary for our analysis. Throughout the paper,
we let (Ω,F ,P) be a complete probability space on which a standard Brownian motion W , a
Bernoulli random variable θ with P(θ = 1) = 1 − P(θ = 0) = p ∈ [0, 1] and a Uniform-(0, 1)
random variable U are defined. Moreover, W , θ and U are assumed to be independent.

We consider a stochastic game between Player 1 and Player 2 in which both players seek to
maximise certain quantities to be specified below. Let Y be a Brownian motion with drift given
by

Yt = x+ µt+ σWt,

where the initial condition satisfies x ≥ 0 and µ and σ are given positive constants. Denote
by FW = (FWt )0≤t<∞ the augmentation of the filtration generated by the Brownian motion W ;
this filtration will represent the information that Player 1 (the “controller”) is equipped with.

Definition 1 (Admissible controls for Player 1). An admissible control for Player 1 is a non-
decreasing, right-continuous, FW -adapted processes D = (Dt)t≥0 satisfying D0− = 0 and Dτ0 ≤
Yτ0 on {τ0 < ∞}, where τ0 := inf{s ≥ 0 : Ds ≥ Ys}. We denote by A1 the set of admissible
controls for Player 1.

For any strategy D ∈ A1, let X = XD := Y −D and define

τX0 := inf{t ≥ 0 : Xt ≤ 0}. (1)

To simplify the notation, we will often omit the superscript and simply write X instead of XD

and τ0 instead of τX0 .
In order to let Player 2 (the “competitor”) hide his existence, he will be equipped with

randomized stopping times. To define the strategies of Player 2, we denote by D the Skorokhod
space of cadlag paths on [0,∞).

Definition 2 (Admissible controls for Player 2). An admissible control Γ = (Γt(X))t≥0 for
Player 2 is a mapping (t,X) 7→ Γt(X) from [0−,∞)×D into [0, 1] which is progressively mea-
surable for the canonical filtration on D, non-decreasing and right-continuous in t, and satisfying
Γ0−(X) = 0. We denote by A2 the set of admissible controls for Player 2.

Given a pair of admissible strategies (D,Γ) ∈ A1 × A2, we define a randomized stopping
time γ as

γ := γΓ := inf{t ≥ 0 : Γt(X
D) > U}, (2)

where we recall that U is a random variable which is Unif(0,1)-distributed and independent of
θ and W . In accordance with the notation for X = XD, we will often omit the superscript and
simply write γ instead of γΓ.

Remark 3. We note that Player 2 selects a universal map Γ that he will apply to any given path
of X = Y −D to generate his randomized stopping time γ = γΓ in (2). In this way, Player 2 is
equipped with feed-back controls, and we will obtain a Markovian game structure.

Given a fixed discount rate r > 0 and a pair (D,Γ) ∈ A1 × A2, we define the payoffs for
Player 1 and Player 2 as

J1(x, p,D,Γ) := E
[∫ τ0∧γ̂

0
e−rtdDt

]
(3)
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and
J2(x, p,D,Γ) := E

[
e−r(τ0∧γ)Xτ0∧γ

]
, (4)

respectively, where τ0 = τX0 and γ = γΓ are defined as in (1)-(2), and

γ̂ :=

{
γ if θ = 1

∞ if θ = 0.

The integral in (3) is interpreted in the Lebesgue-Stieltjes sense, with∫ τ0∧γ̂

0
e−rtdDt :=

∫
[0,τ0∧γ̂]

e−rtdDt.

The inclusion of the lower limit 0 of integration thus accounts for the contribution to Player 1
from an initial push dD0 = D0 > 0.

Each player seeks to maximise their respective profit, and we are looking for a Nash equilib-
rium to this non-zero-sum game in the sense of the following definition.

Definition 4. A pair (D∗,Γ∗) ∈ A1 ×A2 is a Nash equilibrium (NE) if

J1(x, p,D∗,Γ∗) ≥ J1(x, p,D,Γ∗)

J2(x, p,D∗,Γ∗) ≥ J2(x, p,D∗,Γ)

for any pair (D,Γ) ∈ A1 ×A2.

Remark 5. Note that it is a consequence of our set-up that Player 1 has precedence over Player 2
in the sense that if a lump sum dDt > 0 is paid out at the same time t = γ̂ as Player 2 stops,
then Player 1 receives the lump sum, whereas Player 2 receives the reduced amount Yt − Dt.
Consequently, since Player 1 may choose a strategy with D0 = x, for any Nash equilibrium
(D∗,Γ∗) ∈ A1 ×A2 we must have

J1(x, p,D∗,Γ∗) = sup
D∈A1

J1(x, p,D,Γ∗) ≥ x.

Remark 6. Notice that for Player 2 we have chosen to maximise his expected payoff when he
is active, i.e., when θ = 1. Alternatively, one could set Player 2 to maximise

Ĵ2(x, p,D,Γ) := E
[
θe−r(τ0∧γ̂)Xτ0∧γ̂

]
.

The formulations for J2 and Ĵ2 have the following interpretations. Imagine that before the game
starts, at time t = 0−, neither player knows θ and that the value of θ will be revealed to Player
2 at time t = 0. Then, Ĵ2 is the expected payoff for Player 2 at time t = 0−, whereas J2 is the
expected payoff at time t = 0 when θ = 1. These games are referred to as the ex-ante version
of the game and the interim version of the game, respectively (see [2, 9] for classical theory
of games under incomplete information). Also notice that the two formulations are equivalent
as by independence one obtains Ĵ2(x, p,D,Γ) = pJ2(x, p,D,Γ) and so the second inequality in
Definition 4 can be equivalently replaced by Ĵ2(x, p,D∗,Γ∗) ≥ Ĵ2(x, p,D∗,Γ) for p > 0.

Proposition 7. For a given pair (D,Γ) ∈ A1 ×A2, we have

J1(x, p,D,Γ) = E
[∫ τ0

0
e−rt(1− pΓt−)dDt

]
,

where Γt := Γt(X
D).

4



Proof. By conditioning, we have

J1(x, p,D,Γ) = E
[ ∫ τ0∧γ̂

0
e−rtdDt

]
= pE

[ ∫ τ0∧γ̂

0
e−rtdDt

∣∣∣∣θ = 1

]
+ (1− p)E

[ ∫ τ0∧γ̂

0
e−rtdDt

∣∣∣∣θ = 0

]
= pE

[ ∫ τ0∧γ

0
e−rtdDt

]
+ (1− p)E

[ ∫ τ0

0
e−rtdDt

]
(5)

For every ρ ∈ [0, 1), let γ(ρ) := inf{t ≥ 0 : Γt(X) > ρ}. Then, by Fubini’s theorem, we have
that

E
[ ∫ τ0∧γ

0
e−rtdDt

]
= E

[ ∫ 1

0

∫ τ0∧γ(ρ)

0
e−rtdDtdρ

]
= E

[ ∫ τ0

0
e−rt

{∫ 1

0
1{t≤γ(ρ)}dρ

}
dDt

]
. (6)

Note that
{Γt− ≤ ρ} = {t ≤ γ(ρ)},

so ∫ 1

0
1{t≤γ(ρ)}dρ =

∫ 1

0
1{Γt−≤ρ}dρ = 1− Γt−. (7)

Combining (5), (6) and (7), we obtain

J1(x, p,D,Γ) = E
[∫ τ0

0
e−rt(1− pΓt−)dDt

]
.

3 Background material and heuristics

3.1 The single-player de Finetti problem

Note that if p = 0, then Player 1 acts under no competition and thus faces the standard de
Finetti problem for which the value function

V (x) := sup
D∈A1

E
[∫ τ0

0
e−rtdDt

]
(8)

and the optimal strategy D̃ are well known (see, e.g., [12]). To describe this solution in more
detail, let ψ be the unique increasing solution of

Lψ(x) = 0, x ≥ 0,

with ψ(0) = 0 and ψ′(0) = 1, where L denotes the differential operator

L :=
σ2

2
∂2
x + µ∂x − r. (9)

More explicitly,

ψ(x) =
eζ2x − eζ1x

ζ2 − ζ1
, (10)

where ζi, i = 1, 2 are the solutions of the quadratic equation

ζ2 +
2µ

σ2
ζ − 2r

σ2
= 0
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with ζ1 < 0 < ζ2. Setting

B :=
ln(ζ2

1 )− ln(ζ2
2 )

ζ2 − ζ1
, (11)

we have that ψ is concave on [0, B] and convex on (B,∞), and

V (x) =

{
ψ(x)
ψ′(B) , x ≤ B,
x−B + V (B), x > B.

(12)

Moreover,
D̃t = sup

s∈[0,t]

(
Ys −B

)+
(13)

is an optimal strategy in (8), i.e.,

V (x) = E
[∫ τ̃0

0
e−rtdD̃t

]
,

where X̃ := XD̃ and τ̃0 := τ X̃0 . We also remark that (X̃, D̃) is the solution of a Skorokhod
reflection problem with reflection at the barrier B.

3.2 Adjusted beliefs

We now return to our version of the game including a ghost feature as described in Section 2.
At the beginning of the game, from the perspective of Player 1 there is active competition (i.e.,
θ = 1) with probability p. As time passes, and if no stopping occurs, Player 1’s conditional
probability of competition Π will decrease. More precisely, at time t ≥ 0, assuming that the
strategy pair (D,Γ) ∈ A1 ×A2 is played, we have

Πt = ΠΓ
t := P(θ = 1|FWt , γ̂ > t) =

P(θ = 1, γ̂ > t|FWt )

P(γ̂ > t|FWt )

=
pP(γ > t|FWt )

(1− p) + pP(γ > t|FWt )
=
p(1− Γt(X

D))

1− pΓt(XD)
(14)

since P(γ > t|FWt ) = 1 − P(U ≤ Γt|FWt ) = 1 − Γt for Γ = Γ(XD). Moreover, since the initial
probability of the event {θ = 1} is p, we also have Π0− := p. Also note that solving for Γt in
the equation above gives

Γt = ΓΠ
t =

p−Πt

p(1−Πt)
, (15)

so there is a bijection between Π and Γ.

3.3 Heuristics

This section is intended to illustrate the heuristic arguments which lead to the formulation of a
Nash equilibrium for our problem. These heuristics will be rigorously supported in Theorem 11.

Since

J1(x, p,D,Γ) = E
[∫ τ0

0
e−rt(1− pΓt−)dDt

]
≤ E

[∫ τ0

0
e−rtdDt

]
≤ V (x)

for any strategy pair (D,Γ) ∈ A1×A2, it is clear that the risk of competition decreases the value
from the perspective of Player 1. On the other hand, to obtain a lower bound, let D̃ denote the
optimal control of the single-player de Finetti problem, see (13). Then,

J1(x, p, D̃,Γ) = E
[∫ τ̃0

0
e−rt(1− pΓt−)dD̃t

]
≥ (1− p)E

[∫ τ̃0

0
e−rtdD̃t

]
= (1− p)V (x)
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for any Γ ∈ A2. It is thus clear that

(1− p)V (x) ≤ J1(x, p,D∗,Γ∗) ≤ V (x) (16)

if (D∗,Γ∗) ∈ A1 ×A2 is a Nash equilibrium.
In this section we will provide heuristic arguments to obtain a candidate Nash equilibrium

(D∗,Γ∗) ∈ A1 ×A2. To do that, we make the Ansatz that

(a) there exists a non-increasing continuous boundary p = c(x) such that the overall effect of
the equilibrium strategy (D∗,Γ∗) ∈ A1 ×A2 amounts to reflection of the two-dimensional
process (X∗,Π∗) = (Y −D∗,ΠΓ∗) along this boundary (see Figure 1);

(b) the corresponding equilibrium value v of Player 1 satisfies

v(x, p) = (1− p)V (x), for p ≤ c(x). (17)

Note that by the bijection between Γ and Π we have that Π∗ = Π∗(XD) for every D ∈ A1 and
to obtain the reflection of (X∗,Π∗) along the monotone boundary c we need that

Π∗t = Π∗t (X
D) = p ∧ c

(
sup

0≤s≤t
XD
s

)
, for t ≥ 0. (18)

With a slight abuse of notation, Π∗ will be used to indicate both Π∗(XD) and Π∗(X∗) but this
will be clear from the context as it will depend on whether Player 1 plays an arbitrary admissible
strategy D ∈ A1 or the equilibrium strategy D∗.

Notice also that the Ansatz (17) coincides with the lower bound in (16) and that it thus
bears some resemblance with the equilibrium obtained in the ghost Dynkin game studied in [6].

Given this Ansatz, we further need to determine

(i) the boundary c;

(ii) the direction of reflection when the process (X∗,Π∗) is at the boundary;

(iii) the strategy pair (D∗,Γ∗) corresponding to the reflected process (X∗,Π∗).

(iv) the strategy for starting points (x, p) with p > c(x);

We do this below, and then the candidate Nash equilibrium that we produce is verified in
Section 5. Notice that we will not discuss item (iv) here as it is not relevant at this stage, but
it will be considered in Theorem 11.

First, let us consider a starting point (x, p) ∈ [0,∞) × (0, 1) with p ≤ c(x), and recall that
we expect in equilibrium that

(X∗t ,Π
∗
t ) =

(
Yt −D∗t , p ∧ c

(
sup

0≤s≤t
(Ys −D∗s)

))
,

for D∗ ∈ A1 to be specified. Since c is assumed to be continuous and non-increasing, we see
that

p ∧ c
(

sup
0≤s≤t

(Ys −Ds)
)
≤ c(Yt −Dt) (19)

for any choice D ∈ A1. By construction, Π∗ is continuous and we have

Γ∗t =
p−Π∗t
p(1−Π∗t )

and

dΠ∗t = − 1

1− Γ∗t
Π∗t (1−Π∗t )dΓ∗t (20)
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on {t ≥ 0 : Γ∗t < 1}, cf. (14) and (15).
Let γ̂∗ := γ∗1{θ=1} +∞1{θ=0}. Note that by the dynamic programming principle one would

expect that the process M = MD given by

Mt :=

∫ t∧γ̂∗

0
e−rsdDs + e−rtv(Xt,Π

∗
t )1{t<γ̂∗}

is an FW,γ̂∗-martingale if D = D∗ ∈ A1 is an optimal response to Γ∗ ∈ A2, and an FW,γ̂∗-
supermartingale if D ∈ A1 is any admissible response. Here, FW,γ̂∗ = (FW,γ̂∗)0≤t<∞ is the
smallest right-continuous filtration to which W and 1{·≥γ̂∗} are adapted, augmented with the

P-null sets of Ω. Moreover, by conditioning (cf. Proposition 7), M is an FW,γ̂∗-(super)martingale
if and only if

M̂t :=

∫ t

0
e−rs(1− pΓ∗s−) dDs + e−rt(1− pΓ∗t )v(Xt,Π

∗
t )

is an FW -(super)martingale.
Thus, by an application of Ito’s formula, we see that when Player 2 plays the equilibrium

strategy Γ∗ and (X∗,Π∗) is at the boundary we need that

(1− vx) dD∗t −
Π∗t

1− Γ∗t

(
(1−Π∗t )vp + v

)
dΓ∗t = 0 (optimality);

whereas, when Player 2 plays the equilibrium strategy Γ∗ and Player 1 plays any admissible
strategy D ∈ A1, we need that

(1− vx) dDt −
Π∗t

1− Γ∗t

(
(1−Π∗t )vp + v

)
dΓ∗t ≤ 0 (suboptimality),

We stress that Π∗ here stands for Π∗(X∗) in the optimality condition and Π∗(XD) in the
suboptimality condition. Note that we obtain from (17) that

(1− p)vp(x, p) + v(x, p) = 0

when p ≤ c(x). Thus, to satisfy the optimality condition we need to have vx(x, p) = 1 at the
boundary, and consequently the boundary p = c(x) should be defined by

(1− c(x))V ′(x) = 1

for x ∈ [0, B] where B is as specified in (11). Hence, for x ∈ [0, B] we have

c(x) =
V ′(x)− 1

V ′(x)
, (21)

from which it follows immediately that c(B) = 0, c′(x) < 0, and c′(x) → 0 as x ↗ B by (12).
Let p̂ := (V ′(0)− 1)/V ′(0). Then c : [0, B] → [0, p̂] is a continuous strictly decreasing bijection
and we denote its inverse by b : [0, p̂]→ [0, B], i.e.,

b(c(x)) = x, ∀ x ∈ [0, B]. (22)

From here on, we will refer to b (instead of c) as the boundary when it is more convenient to do
so. By convention, we also extend b and c by continuity and define b(p) = 0 for every p ∈ (p̂, 1],
and c(x) = 0 for x ∈ (B,∞).

Moreover, notice that since Π∗t ≤ c(XD
t ), for every admissible strategy D ∈ A1, we also have

that
vx(XD

t ,Π
∗
t ) = (1−Π∗t )V

′(XD
t ) ≥ (1− c(XD

t ))V ′(XD
t ) = 1,

so that the suboptimality condition is verified as well.
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Since Player 2 in equilibrium only stops at time points when (X∗,Π∗) is at the boundary,
we expect his equilibrium value u to be of the form u(x, p) = g(p)ψ(x), for some function g, and
to satisfy the condition u(b(p), p) = b(p). Consequently,

u(x, p) = b(p)
ψ(x)

ψ(b(p))
(23)

for x ≤ b(p). Furthermore, by dynamic programming principle arguments, the process

Nt = e−rtu(X∗t ,Π
∗
t )

should be a martingale when Player 1 plays the equilibrium strategy D∗. After applying Ito’s
formula this yields

− ux dD∗t + up dΠ∗t = 0 (24)

on the boundary, so the reflection direction of (X∗,Π∗) needs to be (up,−ux).
We now show how to construct the candidate Nash equilibrium (D∗,Γ∗) so that the corre-

sponding process (X∗,Π∗) reflects along the boundary c in the direction (up,−ux). To do that,
we first specify Γ∗ by setting

Γ∗t (X
D) =

p−Π∗t
p(1−Π∗t )

, for t ≥ 0,

(cf. (15)), where Π∗t = Π∗t (X
D) = p ∧ c(sup0≤s≤t(X

D
s )) for an arbitrary strategy D ∈ A1. The

process (XD,Π∗) then reflects at the boundary c but the direction of reflection is, for an arbitrary
strategy D ∈ A1, not necessarily equal to (up,−ux).

One should only push in X = Y −D when the process is at its current maximum (after the
first time it hits the boundary). Therefore, one would expect to choose D∗ so as to satisfy

dD∗t = λ(X̄∗t ) dX̄∗t ,

where X̄∗t := b(p) ∨ sup0≤s≤tX
∗
s and X∗ = Y − D∗, for some function λ to be determined.

Moreover, from (18) we have that, when Player 1 plays the equilibrium strategy D∗, Π∗t = c(X̄∗t ),
so (24) gives

λ(x) =
c′(x)up(x, c(x))

ux(x, c(x))
. (25)

Using (23), we then get

ux(x, c(x)) =
ψ′(x)

ψ(x)
x

and

up(x, c(x)) =
ψ(x)− xψ′(x)

ψ(x)c′(x)
,

so

λ(x) =
ψ(x)− xψ′(x)

xψ′(x)
. (26)

and since ψ(0) = 0 and ψ is concave on [0, B], we have ψ(x) ≥ xψ′(x) and so λ ≥ 0 on (0, B].
In the next section we study in detail the solvability of the equation

X∗t = Yt −
∫ t

0
λ(X̄∗s ) dX̄∗s

using the notion of perturbed Brownian motion, which will allow us to obtain the equilibrium
strategy D∗ for Player 1.
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4 A perturbed Brownian motion with drift

To construct the equilibrium strategy D∗ for Player 1 we will use the notion of perturbed
Brownian motion, which is a linear Brownian motion that gets an extra push when it hits
its current maximum. Here we provide what is needed for the study of our problem, and
refer to [5], [16] and the references therein for further details on such processes. First, define
Λ : [b(p), B]→ [0,∞) by

Λ(x) :=

∫ x

b(p)
λ(y) dy, (27)

where

λ(x) =
ψ(x)

xψ′(x)
− 1

as in (26) and the boundary b defined as in (22). Since λ ≥ 0 on (0, B], we note that Λ is
increasing. Note also that λ(x) is a bounded function for x ∈ [0, B] so Λ is well-defined. For
x ≤ b(p) we now consider the equation

Xt = Yt − Λ(X̄t), t ∈ [0, τB], (28)

where Yt = x+ µt+ σWt, X̄t := b(p) ∨ sup0≤s≤tXs, and τB = τXB := inf{t ≥ 0 : Xt ≥ B}. The
process X is then a perturbed Brownian motion with drift.

To construct a solution of (28), let

Ȳt := b(p) ∨ sup
0≤s≤t

Ys. (29)

Define the function f : [b(p),∞)→ [b(p), B] by the relations

Λ(f(y)) + f(y) = y, y ∈ [b(p),Λ(B) +B], (30)

f(y) = B, y > Λ(B) +B,

i.e., f is the inverse of the increasing function x 7→ y := Λ(x) + x for y ∈ [b(p),Λ(B) + B] and
then extended constantly for y > Λ(B) +B. Now define

Xt := Yt − Ȳt + f(Ȳt). (31)

Proposition 8. Assume that x ≤ b(p). Then the process X in (31) solves equation (28).

Proof. Let t ∈ [0, τB]. Since X̄t := b(p) ∨ sups∈[0,t]Xs we obtain, from (31), that X̄t = f(Ȳt)
as f(b(p)) = b(p). Consequently τB = inf{t ≥ 0 : Yt ≥ Λ(B) + B} and so, by (30), we have
f(Ȳt)− Ȳt = −Λ(f(Ȳt)). This leads to

Xt = Yt − Λ(X̄t),

which proves the claim.

Remark 9. The set-up in (28) of a perturbed Brownian motion is slightly more general than
what is used in most literature on perturbed Brownian motions; in fact, the typical choice of
perturbation used in the literature is linear, corresponding to a linear function Λ in (28). On
the other hand, we only deal with one-sided perturbation, in which case the solution can be
constructed explicitly as in (31) above. It is straightforward to check that the argument for
pathwise uniqueness of solutions of (28), cf. [5, Proposition 2.1], carries over to our setting.
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Remark 10. The function f defined in (30) is constructed in such a way that the process
Xt = Yt − Ȳt + f(Ȳt) is a perturbed Brownian motion with drift for t ∈ [0, τB] (as proved in
Proposition 8) and it is the Skorokhod reflection of the process Yt at the barrier B for t ∈ (τB,∞).
Indeed, for t ∈ (τB,∞), we have

Xt = Yt − Ȳt + f(Ȳt) = Yt − Ȳt +B

= Yt − sup
s∈[0,t]

(Ys −B) = Yt − sup
s∈[0,t]

(Ys −B)+, (32)

i.e., we have Xt = XD̃
t for t ∈ (τB,∞) where D̃ is defined as in (13).

5 Main result

In this section, we state and prove our main result: an explicit Nash equilibrium for our game.
To do that, let us fix (x, p) ∈ [0,∞)× [0, 1] and recall that Y is given by

Yt = x+ µt+ σWt.

First, define a new process Y ∧ by

Y ∧t := x ∧ b(p) + µt+ σWt = Yt − (x− b(p))+,

so that Y ∧ starts below the boundary b(p) (recall definition (22)). Then define Ȳ ∧ as in (29)
but with Y ∧ instead of Y , i.e.,

Ȳ ∧t := b(p) ∨ sup
0≤s≤t

Y ∧s .

Also, recall the definitions of Λ : [b(p), B]→ [0,∞) in (27) and f : [b(p),∞)→ [b(p), B] in (30),
and define D∗ ∈ A1 by D∗0− = 0 and

D∗t := (x− b(p))+ + Ȳ ∧t − f(Ȳ ∧t ), t ≥ 0. (33)

Setting
X∗t := Yt −D∗t ,

Proposition 8 applied with Y ∧ in place of Y yields

X∗t = Y ∧t − Ȳ ∧t + f(Ȳ ∧t ) = Y ∧t − Λ(X̄∗t ), t ∈ [0, τ∗B], (34)

where τ∗B = τX
∗

B := inf{t ≥ 0 : X∗t ≥ B}. Note that by construction we have dD∗t = Λ(X∗t )dX̄∗t
for t ∈ (0, τB].

Moreover, for a given path X = XD ∈ D (with D ∈ A1), define Z∗ = Z∗(X) by Z∗0− := p
and

Z∗t := p ∧ c
(

sup
0≤s≤t

Xs

)
, t ≥ 0 (35)

(cf. (18)), and define Γ∗ ∈ A2 by

Γ∗t (X) :=

{
1{t≥τB}, p = 0,
p−Z∗t
p(1−Z∗t ) , p > 0,

(36)

where we recall that τB := inf{t ≥ 0 : Xt ≥ B}.

Theorem 11. Let (x, p) ∈ [0,∞) × [0, 1]. The pair (D∗,Γ∗) defined above is a NE for the
stochastic game (3)-(4), with equilibrium values

J1(x, p,D∗,Γ∗) = v(x, p) :=

{
(1− p)V (x), x ≤ b(p),
(1− p)V (b(p)) + x− b(p), x > b(p),

J2(x, p,D∗,Γ∗) = u(x, p) :=

{
b(p) ψ(x)

ψ(b(p)) , x ≤ b(p),
b(p), x > b(p),

11



(with the understanding that b(p)ψ(x)/ψ(b(p)) = 0 for x = 0 also when b(p) = 0). Here, V
is the value of the single-player de Finetti problem given in (12), b is defined in (22) and ψ is
given by (10).

Proof. Step 1. We first prove that D∗ is an optimal response to Γ∗. Let D ∈ A1 be an arbitrary
strategy for Player 1 and set X := Y −D. Let Z∗ be defined as in (35) and Γ∗t := Γ∗t (X) as in
(36) accordingly .

If p = 0, then θ = 0 a.s. and so

J1(x, 0, D,Γ∗) = E
[ ∫ τ0

0
e−rtdDt

]
.

Namely, the optimization problem for Player 1 degenerates into the single-player de Finetti
problem, and D∗ coincides with its optimal solution D̃, as highlighted in Remark 10. Hence,
also v(x, 0) = J1(x, 0, D∗,Γ∗) ≥ J1(x, 0, D,Γ∗) for every D ∈ A1.

If x = 0, then J1(0, p,D,Γ∗) = 0 for every p ∈ [0, 1], D ∈ A1 and so, in particular, v(0, p) =
J1(0, p,D∗,Γ∗) for every p ∈ [0, 1].

Now let p ∈ (0, 1] and let us first consider 0 < x ≤ b(p) (note that this implies that p ∈ (0, p̂)
as b(p) = 0 for every p ∈ [p̂, 1]). By (36), we have

Z∗t =
p(1− Γ∗t )

1− pΓ∗t
, t ≥ 0.

Since Z∗ and Γ∗ are continuous and of finite variation, we obtain

dZ∗t = −p(1− Z
∗
t )

1− pΓ∗t
dΓ∗t , t ≥ 0.

Now define
ṽ(x, p) := (1− p)V (x) ∈ C2([0,∞)× [0, 1]).

By setting τ := τ0 ∧ T with T ≥ 0 and applying Ito’s formula to e−rt(1− pΓ∗t )ṽ(Xt, Z
∗
t ), we

have that

e−rτ (1− pΓ∗τ )ṽ(Xτ , Z
∗
τ ) = ṽ(x, p) +

∫ τ

0
e−rt(1− pΓ∗t )Lṽ(Xt−, Z

∗
t ) dt

−
∫ τ

0
e−rt(1− pΓ∗t )ṽx(Xt−, Z

∗
t ) dDc

t

+

∫ τ

0
σe−rt(1− pΓ∗t )ṽx(Xt−, Z

∗
t ) dWt

−
∫ τ

0
e−rtp

[
(1− Z∗t )ṽp(Xt−, Z

∗
t ) + ṽ(Xt−, Z

∗
t )
]
dΓ∗t

+
∑

0≤t≤τ
e−rt(1− pΓ∗t )

(
ṽ(Xt, Z

∗
t )− ṽ(Xt−, Z

∗
t )
)
, (37)

where L is defined as in (9) and Dc denotes the continuous part of D. Notice that ṽ(x, p) =
v(x, p) for x ≤ b(p) and that by definition of ṽ, we have for every t > 0

Lṽ(Xt−, Z
∗
t ) = 0 and (1− Z∗t )ṽp(Xt−, Z

∗
t ) + ṽ(Xt−, Z

∗
t ) = 0.

Hence, equation (37) becomes

v(x, p) = e−rτ (1− pΓ∗τ )ṽ(Xτ , Z
∗
τ ) +

∫ τ

0
e−rt(1− pΓ∗t )ṽx(Xt−, Z

∗
t ) dDc

t

−
∫ τ

0
σe−rt(1− pΓ∗t )ṽx(Xt−, Z

∗
t ) dWt

−
∑

0≤t≤τ
e−rt(1− pΓ∗t )

(
ṽ(Xt, Z

∗
t )− ṽ(Xt−, Z

∗
t )
)
. (38)
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For the summation term we have by the mean value theorem that∑
0≤t≤τ

e−rt(1− pΓ∗t )
(
ṽ(Xt, Z

∗
t )− ṽ(Xt−, Z

∗
t )
)

= −
∑

0≤t≤τ
e−rt(1− pΓ∗t )ṽx(ξt, Z

∗
t )∆Dt (39)

where ξt ∈ (Xt−, Xt) and ∆Dt := Dt −Dt−. By plugging (39) into (38), and using that ṽ ≥ 0
and ṽx ≥ 1, we obtain

v(x, p) ≥
∫ τ

0
e−rt(1− pΓ∗t ) dDt −

∫ τ

0
σe−rt(1− pΓ∗t )ṽx(Xt−, Z

∗
t ) dWt. (40)

Let
O := {(x, p) ∈ [0,∞)× [0, 1] : x ≤ b(p)} ∪ ((B,∞)× {0}) (41)

and note that (Xt−, Z
∗
t ) ∈ O for every t ≥ 0 (by construction of Zt) and that ṽx is bounded on

O (ṽx(x, p) = 1 for (x, p) ∈ (B,∞) × {0}). Thus, the stochastic integral above is a martingale
and by an application of the optional sampling theorem we have that

ṽ(x, p) ≥ E
[ ∫ τ0∧T

0
e−rt(1− pΓ∗t ) dDt

]
.

Letting T →∞ yields, by the monotone convergence theorem,

v(x, p) ≥ E
[ ∫ τ0

0
e−rt(1− pΓ∗t ) dDt

]
= E

[ ∫ τ0

0
e−rt(1− pΓ∗t−) dDt

]
= J1(x, p,D,Γ∗)

for every D ∈ D, where the last equality follows by Proposition 7.
Now notice that D∗t defined in (33) is continuous for every t ≥ 0, when x ≤ b(p), and that

the same holds for X∗t := XD∗
t . Let τ∗0 := τX

∗
0 , then equation (38) for D = D∗ and τ∗ := τ∗0 ∧ T

becomes

v(x, p) = e−rτ
∗
(1− pΓ∗τ∗)ṽ(X∗τ∗ , Z

∗
τ∗) +

∫ τ∗

0
e−rt(1− pΓ∗t )ṽx(X∗t , Z

∗
t ) dD∗t

−
∫ τ∗

0
σe−rt(1− pΓ∗t )ṽx(X∗t , Z

∗
t ) dWt

= e−rτ
∗
(1− pΓ∗τ∗)ṽ(X∗τ∗ , Z

∗
τ∗) +

∫ τ∗

0
e−rt(1− pΓ∗t ) dD∗t

−
∫ τ∗

0
σe−rt(1− pΓ∗t )vx(X∗t , Z

∗
t ) dWt,

where the last equality holds since ṽx(x, p) = 1 if x ≥ b(p) and dD∗t = 0 if X∗t < b(Z∗t ). Hence,
again by taking expected values, we obtain

v(x, p) = E
[
e−r(τ

∗
0∧T )(1− pΓ∗τ∗0∧T )ṽ(X∗τ∗0∧T , Z

∗
τ∗0∧T ) +

∫ τ∗0∧T

0
e−rt(1− pΓ∗t ) dD∗t

]
→ E

[ ∫ τ∗0

0
e−rt(1− pΓ∗t ) dD∗t

]
as T → ∞ by dominated convergence (the first term tends to 0 since ṽ(X∗τ∗0

, Z∗τ∗0
) = 0). Thus,

we have proved that

J1(x, p,D∗,Γ∗) = v(x, p) ≥ sup
D∈A1

J1(x, p,D,Γ∗), ∀ (x, p) ∈ O.

Let us now consider (x, p) ∈ ([0,∞)× [0, 1]) \ O =: Oc, i.e., x > b(p) with p 6= 0. Then,

v(x, p) = v(b(p), p) + x− b(p) = J1(b(p), p,D∗,Γ∗) + x− b(p) = J1(x, p,D∗,Γ∗).
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Thus, we are left to prove that also in this case

J1(x, p,D∗,Γ∗) ≥ J1(x, p,D,Γ∗), ∀D ∈ A1.

For (x, p) ∈ Oc, let the admissible strategy D ∈ A1 have an initial jump ∆D0 = x − y with
either b(p) ≤ y ≤ x or 0 ≤ y < b(p). In the former case, by definition (36) of Γ∗, we have that

J1(x, p,D,Γ∗) = (1− Γ∗0)J1(b(q), q,D,Γ∗) + x− y =
q(1− p)

p
V (b(q)) + x− y,

where q := c(y) ≤ p (and hence y = b(q)). Since V is concave with V ′(b(p)) = 1/(1− p), then

J1(x, p,D,Γ∗) ≤ q(1− p)
p

(
V (b(p)) +

y − b(p)
1− p

)
+ x− y

=
q

p

(
(1− p)V (b(p)) + y − b(p)

)
+ x− y

≤ (1− p)V (b(p)) + x− b(p) = J1(x, p,D∗,Γ∗).

If instead 0 ≤ y < b(p), then by a similar argument

J1(x, p,D,Γ∗) = J1(y, p,D,Γ∗) + x− y = (1− p)V (y) + x− y
≤ (1− p)V (b(p)) + x− b(p) = J1(x, p,D∗,Γ∗).

This concludes Step 1, i.e., shows that the strategy D∗ is an optimal response to Γ∗.
Step 2. We now prove that Γ∗ is an optimal response to D∗. Recall that

u(x, p) :=

{
b(p) ψ(x)

ψ(b(p)) , x ≤ b(p),
b(p), x > b(p),

set X∗ := XD∗ with D∗ defined in (33), τ∗0 := τX
∗

0 , and let

Z∗t := p ∧ c
(

sup
0≤s≤t

X∗s

)
, t ≥ 0, Z∗0− := p,

as in (35) with D = D∗.
Let p ∈ [0, 1] and assume x ≤ b(p). If p ∈ [p̂, 1], then b(p) = 0 and so x = 0 and the strategy

Γ ∈ A2 is irrelevant since the game stops immediately. It hence suffices to check p ∈ [0, p̂). For
notational convenience we treat the case p = 0 separately at the end and assume first p ∈ (0, p̂).
Note that X∗t ≤ b(Z∗t ) for every t ≥ 0 and that Z∗t , D∗t and X∗t are continuous for every t ≥ 0.
Define

ũ(x, p) := b(p)
ψ(x)

ψ(b(p))
∈ C2([0,∞)× (0, p̂)).

and let τ be any FW -stopping time s.t. τ ≤ τ∗B a.s., where τ∗B = inf{t ≥ 0 : X∗t ≥ B}. Define
τ∗ = τ∗ε,T := τ∗0 ∧ τ∗B−ε ∧ τ ∧ T for T, ε ≥ 0 arbitrary and note that Z∗t > 0 for t ∈ [0, τ∗). By

applying Ito’s formula to e−rtũ(X∗t , Z
∗
t ) we obtain

e−rτ
∗
ũ(X∗τ∗ , Z

∗
τ∗) = ũ(x, p) +

∫ τ∗

0
e−rsLũ(X∗s , Z

∗
s ) ds−

∫ τ∗

0
e−rsũx(X∗s , Z

∗
t ) dD∗s

+

∫ τ∗

0
σe−rsũx(X∗s , Z

∗
s ) dWs +

∫ τ∗

0
e−rsũp(X

∗
s , Z

∗
s ) dZ∗s .

By definition of ũ, we have that Lũ(X∗s , Z
∗
s ) = 0 for every 0 ≤ s ≤ τ∗ and by construction of

D∗ and Z∗ (recall (34)), we obtain∫ τ∗

0
e−rsũp(X

∗
s , Z

∗
s ) dZ∗s −

∫ τ∗

0
e−rsũx(X∗s , Z

∗
s ) dD∗s

=

∫ τ∗

0
e−rs

(
ũp(X

∗
s , Z

∗
s )c′(X∗s )− ũx(X∗s , Z

∗
s )λ(X∗s )

)
dX̄∗s = 0

(42)
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where the last equality holds by definition of λ in (25). Hence,

e−rτ
∗
ũ(X∗τ∗ , Z

∗
τ∗) = ũ(x, p) +

∫ τ∗

0
σe−rsũx(X∗s , Z

∗
s ) dWs. (43)

Since ũx is bounded on {(x, p) : x ≤ b(p)}, the stochastic integral in (43) is a martingale.
Since X∗ and Z∗ are continuous, applying the optional sampling theorem and using dominated
convergence yields

ũ(x, p) = E
[
e−rτ

∗
ũ(X∗τ∗ , Z

∗
τ∗)

]
→ E

[
e−r(τ

∗
0∧τ)ũ(X∗τ∗0∧τ , Z

∗
τ∗0∧τ )

]
,

as T →∞ and ε→ 0, so

ũ(x, p) = E
[
e−r(τ

∗
0∧τ)ũ(X∗τ∗0∧τ , Z

∗
τ∗0∧τ )

]
(44)

for any FW -stopping time τ ≤ τB a.s. Now, for any Γ ∈ A2, define the FW -stopping times

γ(ρ) := inf{t ≥ 0 : Γt(X
∗) > ρ}, ρ ∈ [0, 1),

and let γB(ρ) := γ(ρ) ∧ τ∗B ≤ τ∗B. Since ũ = u on {(x, p) : x ≤ b(p)}, equality (44) for τ = γB(ρ)
reads

u(x, p) = E
[
e−r(τ

∗
0∧γB(ρ))u(X∗τ∗0∧γB(ρ), Z

∗
τ∗0∧γB(ρ))

]
, ρ ∈ [0, 1).

Thus,

u(x, p) =

∫ 1

0
E
[
e−r(τ

∗
0∧γB(ρ))u(X∗τ∗0∧γB(ρ), Z

∗
τ∗0∧γB(ρ))

]
dρ (45)

≥
∫ 1

0
E
[
e−r(τ

∗
0∧γB(ρ))X∗τ∗0∧γB(ρ)

]
dρ

where the inequality holds because ψ(x) is concave for x ≤ B with ψ(0) = 0.
Last, we note that

e−r(τ
∗
0∧γB(ρ))X∗τ∗0∧γB(ρ) ≥ e

−r(τ∗0∧γ(ρ))X∗τ∗0∧γ(ρ) a.s. (46)

since X∗t ≤ B for all t > 0 and r > 0 and thus

u(x, p) ≥
∫ 1

0
E
[
e−r(τ

∗
0∧γ(ρ))X∗τ∗0∧γ(ρ)

]
dρ = J2(x, p,D∗,Γ).

If Γ = Γ∗, then by (36) we have that γ∗(ρ) ≤ τ∗B for every ρ ∈ [0, 1), where

γ∗(ρ) := inf{t ≥ 0 : Γ∗t (X
∗) > ρ}, ρ ∈ [0, 1)

and thus the inequality in (46) is an equality in this case. Moreover, Γ∗t only increases when Z∗t
increases and Z∗ = Z∗t := p ∧ c

(
sup0≤s≤tXs

)
so

u(X∗τ∗0∧γ∗(ρ), Z
∗
τ∗0∧γ∗(ρ)) = b(c(X̄τ∗0∧γ∗(ρ))) = X∗τ∗0∧γ∗(ρ)

in (45). Thus all the inequalities above become equalities and

u(x, p) = J2(x, p,D∗,Γ∗). (47)
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If p = 0, we have u(x, 0) = ũ(x, 0) = b(0) ψ(x)
ψ(b(0)) = B ψ(x)

ψ(B) and Z∗t = 0 for all t ≥ 0. Applying

Ito’s formula to e−rtu(X∗t , 0) between 0 and τ0 ∧ τ ≤ τ∗B and using the properties of ψ(x) gives

e−r(τ0∧τ)ũ(Xτ0∧τ , 0) = ũ(x, 0)−
∫ τ0∧τ

0
e−rsũx(X∗s , 0)dD∗s +

∫ τ0∧τ

0
e−rsσũx(X∗s , 0)dWs.

Taking expected value and arguing as above thus gives

u(x, 0) = E
[
e−r(τ0∧τ

∗
B)u(X∗τ0∧τ∗B

, 0)

]
= e−r(τ0∧τ

∗
B)Xτ0∧τ∗B = J2(x, 0, D∗,Γ∗)

and

u(x, 0) =

∫ 1

0
E
[
e−r(τ0∧γB(ρ))u(Xτ0∧γB(ρ), 0)

]
dρ ≥

∫ 1

0
E
[
e−r(τ0∧γB(ρ))Xτ0∧γB(ρ)

]
dρ

≥J2(x, p,D∗,Γ)

where we again have used convexity of ψ and the fact that any stopping time γ(ρ) > τ∗B yields
a lower payoff that τ∗B.

The above treats the case x ≤ b(p) so let us finalize the proof by considering x > b(p). We
have, for every Γ ∈ A2, that

u(x, p) = u(b(p), p) ≥ J2(b(p), p,D∗,Γ) = J2(x, p,D∗,Γ),

where the last equality holds by the precedence of Player 1 over Player 2 and since D∗0 = x−b(p)
for x > b(p). Similarly, we obtain

u(x, p) = u(b(p), p) = J2(b(p), p,D∗,Γ∗) = J2(x, p,D∗,Γ∗).

Hence, Γ∗ is an optimal response to D∗. Together with Step 1, this implies that (D∗,Γ∗) is
a NE and that the equilibrium values are v and u, respectively. This concludes the proof.

Remark 12. It is a remarkable feature of the equilibrium stratgey (D∗,Γ∗) that it allows the
process Π∗ to reach 0 in finite time, thereby completely ruling out the possibility that a competitor
exists if he did not stop the game yet. Indeed, let x ≤ b(p), then we have

X∗t = Yt − Ȳt + f(Ȳt)

and thus X̄∗t = f(Ȳt) where f is an increasing bounded function such that f(x) = B for all
x ≥ Λ(B) +B. Consequently, Π∗t = p ∧ c(X̄∗t ) = p ∧ c(f(Ȳt)) = c(B) = 0 for all

t ≥ τB = inf{s ≥ 0 : Ys ≥ Λ(B) +B},

the first time the unrestricted Brownian motion (with drift) Y reaches Λ(B) +B (which is finite
a.s.).

6 A numerical example

To provide the reader with further intuition, we conclude by looking at some numerical exper-
iments. Throughout the section, we consider parameters µ = 0.03, σ = 0.12, and r = 0.01.
The optimal strategy D̃ in the single-player de Finetti problem given by (13) then amounts to
reflection at B ≈ 1.12.

Note that whereas the qualitative form of the single-player strategy de Finetti problem is
fixed, the nature of the NE strategy for Player 1 varies depending on the value of p ∈ [0, 1]. To
be more precise, if Player 1 is certain that no competitor exists, i.e., if p = 0, then the problem
degenerates into the standard single-player de Finetti problem and the optimal strategy is D̃
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Figure 1: A simulated path of (Π∗, X∗) reflected along the boundary p 7→ b(p). The starting
point (p, x) ≈ (0.72, 0.13) is illustrated by the cross ×.

(and Player 2 would stop as soon as X hits B). On the other hand, if Player 1 has sufficient
evidence of the existence of a competitor, i.e., if p ∈ [p̂, 1] where p̂ := (V ′(0) − 1)/V ′(0), then
the agent extracts the whole resource immediately and the game terminates at t = 0. The most
interesting scenario is when p ∈ (0, p̂). In this case, the NE described in Theorem 11 amounts
to a (possible) initial lump sum extraction of size (x − b(p))+, and then continuous extraction
as to reflect the two-dimensional process (X∗,Π∗) along the boundary b, with reflection in the
prescribed direction (up,−ux). Figures 1 and 2 are derived with initial values p = 0.8 · p̂ ≈ 0.72

and x = b(p)
2 ≈ 0.13, putting us in the last of the three cases above.

Figure 3 shows the boundary p 7→ b(p) (or equivalently x 7→ c(x)) together with the direction
of reflection of the equilibrium process (X∗,Π∗). Note that b(0) = B and b(p̂) = 0. Figures 1 and
2 show a simulated path of the equilibrium process (X∗,Π∗) and the corresponding processes
Π∗, Γ∗, and D∗, respectively. Flat portions of Γ∗,Π∗, and D∗ correspond to X∗ being strictly
below the boundary b(Π∗). Note also that in Figure 1, the process Π∗ reaches 0 in finite time,
ruling out the existence of a competitor playing the equilibrium strategy if he did not stop yet,
see Remark 12.
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Figure 2: Auxiliary processes Π∗ (dashed), Γ∗ (dash-dot), and D∗ (dotted).

Figure 3: The boundary p 7→ b(p) and the direction of reflection for the equilibrium process
(X∗,Π∗). The top horizontal line is x = B ≈ 1.1 and represents the level at which to exert the
control in the single-player de Finetti problem.
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