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Abstract. We study the limit of a generalized random field generated by
uniformly scattered random balls as the mean radius of the balls tends to 0 or
infinity. Assuming that the radius distribution has a power law behavior, we
prove that the centered field, conveniently renormalized, admits a limit.
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1 Setting

We propose a first step to a unified frame including and extending both the situations of
[4] and [2]. We start with a family of grains X; + B(0, R;) in R? built up from a Poisson
point process (X, R;); in R? x R*. Equivalently one can start with a Poisson random
measure N on R? x R* and associate with each random point (x,7) € R?x R* the random
ball of center x and radius r. We assume that the intensity measure of N is given by
dxF(dr) where F is a o-finite non-negative measure on R* such that

/ r‘F(dr) < 4oo0. (1)

1.1 Assumptions on F

We introduce the asymptotic power law behavior assumption on F', near 0 or at infinity,
we will use in the following. For § > 0 with § # d,

H(3) : F(dr) = f(r)dr with f(r) ~ Car™"7' | as r — 0977
where by convention 0% = 0 if > 0 and 0% = 400 if a < 0.

Let us remark that according to (1), it is natural to consider the asymptotic behavior
of F around 0 for # < d and at infinity for G > d.

1.2 Random field

We consider random fields defined on a space of measures, in the same spirit as the
random functionals of [4] or the generalized random fields of [1] (see therein the links
between “generalized random fields” and “ponctual random fields”). Let M! denote the
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space of signed measures y on R? with finite total variation ||u||; = |u|(R?), with |u| the
total variation measure of p. Since for all p € M,

[ B dePlar) < 1BO.) % lull < [ P < +oc
RIXR+ R+
one can introduce the generalized random field X defined on M! as

po (o) = [ p(Blar) Nido,dr). @)

RIxR+

We introduce the following definition, which coincides with the usual definition of
self-similar ponctual random fields.

Definition 1.1. A random field X defined on M is said to be self-similar with index H
of
Vs >0, (X ) S s (X ) where p(A) = p(s™ A).

2 Scaling limit

Let us introduce now the notion of “scaling”, by which we indicate an action: a change of
scale acts on the size of the grains. The following procedure is performed in [4] where grains
of volume v are changed by shrinking into grains of volume pv with a small parameter p
(“small scaling” behavior). The same is performed in [2] in the homogenization section,
but the scaling acts in the opposite way: the radii r of grains are changed into r/e (which
is a “large scaling” behavior). Note also that both scalings are performed in the case of
a-stable measures in [3].

Let us multiply the intensity measure by A > 0 and the radii by p > 0. We denote
by F,(dr) the image measure of F'(dr) by the change of scale r — pr, and consider the
associated random field on M! given by

/Rd - p(B(z,r)) Na,p(de,dr)

where N, ,(dz,dr) is the Poisson random measure with intensity measure AdzF),(dr) and
p € M. Results are expected concerning the asymptotic behavior of this scaled random
balls model when p — 0 or p — +00. We choose p as the basic model parameter, consider
A = \(p) as a function of p, and define on M* the random field

X0 = [ n(Blar) Ny (do.dr)
RIxR+
Then, we are looking for a normalization term n(p) such that the centered field converges

in distribution,
X,() = E(X,()) s
n(p)
and we are interested in the nature of the limit field W. Let us remark that the random

field X, is linear on each vectorial subspace of M* in the sense that for all ys, ..., u, € M*
and aq,...,a, € R, almost surely,

w(.) (3)

X, (arpn + oo+ anpin) = a1 X, (p1) + oo+ an X, ().
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Hence, the finite-dimensional distributions of the normalized field (X,(.) — E(X,(.))) /n(p)
converge toward W whenever

E (exp (Z-Xp“‘) ;(E;)(Xﬂ(“”)) — E (exp (i)

for all y in a convenient subspace of M*.

To study the limiting behavior of the normalized field (X,(.) —E(X,(.))) /n(p) we
need to impose some assumptions on the measure ;. € M!. For o > 0 with o # d let us
define the space of measures

{ne MY [ou [zalz = 217D u|(d2)]ul(d2') < +oo} if o> d
Ma - )
{uwe MY [z @ D|u|(d2) < +o00 and [, p(dz) =0} ifa<d

where || is the total variation measure of . Let us consider the kernel on R? x R,

|z — 2|7~ for 2 # 2 ifao>d
Ko(z,2') = :
Lz D 4 | lemd) — | — D)) ifa < d

Then, for a € (d — 1,2d) with « # d, for any p € M,, the kernel K, is defined and non

negative || x |u| everywhere, with

[ ] Kl lul@)lel@) < +oc.
Rd JRd
For g € (d — 1,2d) with § # d, we finally define the enlarged spaces

U M. ifg>d
L a€(B,2d)
My =

U M, itg<d

ae(dilvﬁ)

Theorem 2.1. Let F' be a non-negative measure on R™ satisfying H(3) for f € (d—1,2d)

with 3 # d. For all positive functions X such that n(p) := /(p)p? — T the limit
p—05—
Xo(p) = E(Xp(1))  sad
— cgW,
n(p> i Cp 5(:“)

holds for all p € Mg, in the sense of finite dimensional distributions of the random
functionals. Here Wpg is the centered Gaussian random linear functional on Mg with

EWa(Waw)) = [ [ Kole,utama), (@)
and cg is a positive constant depending on [3.

Remark 2.2. For 8 € (d — 1,2d) with 3 # d, the field W5, defined on Mg, is %
self-similar with 45° < 0 for 8 € (d,2d) and 52 € (0,1/2) for 8 € (d — 1,d).



Proof. For € M! let us define the functions ¢, and ¢ on Rt by

() = /R ¥ (%‘;’)T”) dz, and () = —% /Rd,u(B(a:,r))de,

where
U(v) =€ — 1 —iv. (5)

The characteristic function of the normalized field (X,(.) — E(X,(.))) /n(p) is then given

N E (exp (iXp(M) = (Ep))(XPW»)) = exp ( /R ) )\(p)gpp(r)Fp(dr)) .

According to the power law behavior of the density F' we have the following result, which
is inspired by Lemma 1 of [4].

Lemma 2.3. Let F' be a non-negative measure on RY satisfying H(3) for 5 > 0 with
B # d. Assume that g is a continuous function on R™ such that for some 0 < p < 3 < q,
there exists C' > 0 such that

lg(r)] < C'min(r?,rP).

Then -
/ g(r)E,(dr) ~ C’gpﬁ/ g(r)yr=P=tdr as p — 0°74.
R+ 0
We apply Lemma 2.3 with the function ¢. Since u € M?, the function ¢ is continuous
on R*. Moreover, the next lemma shows that ¢ satisfies the required upper bound.

Lemma 2.4. Let o € (d — 1,2d) with o # d. If p € M, then there exists ¢ > 0 such
that

/]Rd H (B(l', T))Q dx < Cmin(rd7 Ta)_

Therefore, for B € (d —1,2d) with 3 # d, when p € Mg

/ / 1 (B(z, ) r P tdadr < +oo.
R+ JRd

Proof. Since p € MY, [oqpt(B(x,r))*dz < [B(0,1)]||u3r?. We use Lemma 6 of [4] to
conclude for p € M, with a € (d,2d). When u € M, with a € (d — 1,d), we conclude
using the fact that, since [, pu(dz) = 0, we can write

2 . 1 / . ) /
[u@antar= [ [ S+ o) =6 - ) p(dz)(a),
where
bz, 1) = /R (s () - 1p0:(0))° da, (6)
is such that ¢(z,r) < 2¢|B(0,1)] |z|2*r%, for all (z,7) € R x RY. O

When F satisfies H(3) for 3 € (d—1,2d) with 3 # d, let us choose u € M. According
to Lemma 2.4, there exists a > 0 such that |o(r)] < cmin(r?, r®), with o > 3 if 3 > d
and a < #if § < d. Therefore ¢ satisfies the assumptions of Lemma 2.3 and

lim, [ o0IN@In() Eldr) =Gy [ oty ar

p—08=2 R+ R+
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since n(p) = v/ A(p)p°.

We define the function A,(r) = Ap)p,(r) — M(p)n(p) 2¢(r) and observe that

The following result, inspired by Lemma 2 of [4], will play the role of the Lebesgue’s
Theorem to ensure convergence of the integrals.

Lemma 2.5. Let F be a non-negative measure on Rt satisfying H(B) for f > 0 with
B #d. Let g, be a family of continuous functions on R*. Assume that

pli(%l_d P’g,(r) =0, and p°|g,(r)] < Cmin(rP,r),

for some 0 <p < B <qand C >0. Then

lim gp(r)F,(dr) = 0.

p—00=7 Jr+

Let us verify that A, given by (7) satisfies the assumptions of Lemma 2.5. For yu € M*,

the function A, is continuous on R*. Because ’\I/(v) - (—%)‘ < % and

[ Bl da < ik [ n(Bar)lds < Calulitr’

we get

M) (o, )] < S )

Moreover, since |V (v)| < %, by Lemma 2.4 when 1 € Mg, there exists a € (8,2d) if
B>d, ae(d—1,0)if § < d such that

Therefore, when € Mg for 8 € (d — 1,2d), with 8 # d,

lim A,(r)E,(dr) = 0.

Since i /R e(r)Ey(dr) = Cs /R e,

where W () is the centered Gaussian random variable with

B(V0?) = Co [ [ wBlen)r* dad (8)
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which is finite using Lemma 2.4. Let us prove that the covariance of W satisfies (4).
By linearity, it is enough to compute the variance of W. When 5 € (d,2d), for u x p
almost all (z,2') € R x RY, the function r — |B(z,7) N B(z/,r)| is in L' (R*,r7~1dr).
Therefore we can define the kernel,

K(z,2') = / |B(z,7) N B(',r)|r™77tdr = C(B)Ks(z, 7).
R+
By changing the order of integration in (8), we conclude W Jdd Wy with ¢ = (C5C(3))"2.
When 8 € (d — 1,d), the function r — [B(z,r) N B(Z,r)| is not in L' (RT,r=#~1dr)
anymore. However, since u € Mg, we have Jga 1t(dz) = 0, and we can write

[nBaar= [ [ 36+ ot otz - 2 utazyuta),

where ¢(z,7), given by (6) is in L' (R*,r=7~!dr), for all z € R?. Therefore we can define
the kernel K (z,2') = 1 (k(z) + k(z') — k(2 — 2)), with

K(z) = » gb(z,r)r_’g_ldr = C(B)Ks(z, 2).

Then, also in this case W fdd W5 with ¢ = (C5C(8))"?, which concludes the proof.
[

Let us mention that similar arguments allow us to state an intermediate scaling result

Theorem 2.6. Under the assumptions of Theorem 2.1, when \(p)p® pﬁd 00 , for

some oo > 0, the following limit holds in the sense of finite dimensional distributions of

the random functionals

X, (1) = B(X, (1) ™ Ts(1100),

for all p € Mg. Here Jg is the centered random linear functional on Mg defined as

/[R d /R ) r)) Na(dz, dr),

where ]f\\f;; is a compensated Poisson random measure with intensity Cgdzr=""1dr, and pg,

is defined by piyy(A) = 1 (O'O_IA).

We should also obtain what is called the small-grain scaling in [4]. In this particu-
lar case, the limit is an independently scattered (3-stable random measure on R¢ with
Lebesgue measure and unit skewness.
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