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ABSTRACT

We investigate conditions under which a model with stochastic demography or population structure
converges to the coalescent with a linear change in time scale. We argue that this is a necessary condition
for the existence of a meaningful effective population size. We find that such a linear time scale change
is obtained when demographic fluctuations and coalescence events occur on different time scales. Simple
models of population structure and randomly fluctuating population size are used to exemplify the ideas
and provide an intuitive feel for the meaning of the conditions.

INTRODUCTION

In population genetics, simplifying assumptions are nec-
essary in order to turn complex biological systems into
caricatures that are, on the one hand, simple enough to
analyze, and on the other hand, realistic enough to cap-
ture key features of the process under investigation. These
simple models often make assumptions that are clearly vi-
olated in most populations; yet they are of great impor-
tance since their simplicity allows one to make predictions
about the patterns of polymorphism that are expected un-
der these assumptions. Data can then be compared with
these predictions to detect deviations from the simplifying
assumptions. In other words, these simple models serve as
null models. The standard population genetic null model,
the Wright–Fisher model, and its retrospective cousin, the
standard coalescent, are examples of this.

These null models have proved surprisingly difficult to
reject, despite what appear to be major violations of the
assumptions. On the positive side, this means that they
manage to capture something essential about the way nat-
ural populations behave; in other words, they are robust
to changes in the assumptions and are therefore good ap-
proximations to real systems. More disturbingly, this lack
of sensitivity also implies that certain seemingly impor-
tant features of the population history cannot be detected
using polymorphism data.

The “robustness” of the coalescent process is one of the
three properties listed by Kingman (2000) as fundamental

1Corresponding author: Department of Conservation Biology
and Genetics, Evolutionary Biology Center, Uppsala University, S-
752 36, Uppsala, Sweden. E-mail: per.sjodin@ebc.uu.se

to this process. Even if a natural population does not
fulfill all the assumptions of the Wright–Fisher model, it
can sometimes behave in all important respects (i.e., those
that are observable from a sample, and hence derivable
from the genealogy) like a Wright–Fisher population. This
happens when the ancestral process can be approximated
by Kingman’s coalescent with the population size replaced
by a so-called coalescent effective population size, Ne.

The concept of effective population size predates the co-
alescent era and has traditionally been used to rescale a
given population model so that it behaves, with regard
to certain properties, as a simple Wright–Fisher model
with constant population size. The three properties of the
Wright–Fisher model most commonly used in defining ef-
fective population sizes are: (i) the probability of identity
by descent of two alleles chosen at random, (ii) the vari-
ance in offspring allele frequency and (iii) the leading non-
unit eigenvalue of the allele frequency transition matrix.
They correspond, respectively, to the “inbreeding effective
population size,” the “variance effective population size”
and the “eigenvalue effective population size.” In some
demographic models the three effective sizes are equal but
in others they can differ considerably or simply not ex-
ist (Ewens 1982; Orive 1993). Even when they can be
defined, they may lead to complex formulae involving de-
mographic parameters that are practically impossible to
measure.

We propose that the coalescent effective population size,
when it exists, provides a more general and consistent no-
tion of effective size that is less likely to be misused. Too
often, one reads of “the” effective population size without
reference to the particular notion being considered. Since
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the coalescent essentially embodies all of the information
that can be found in sampled genetic data, one can argue
that, if anything deserves the title of “the effective size,”
it is the coalescent effective size.

When population genetic data is consistent with
that expected under a neutral, panmictic, constant-size
Wright–Fisher model, one would like to say that there ex-
ists an effective population size. In fact, our point of view
is that the existence of an effective population size is equiv-
alent to a situation in which it is not possible to reject the
basic Wright–Fisher model. This condition is more infor-
mative than the classical concepts of effective size, even
in a theoretical setting, since the existence of, say, an in-
breeding effective size does not imply that the population
behaves like a Wright–Fisher model in any other respect.
By definition, the coalescent effective size only exists when
the scaling of time to retrieve the standard coalescent is
independent of time; but, when this is the case, the ap-
propriately re-scaled population behaves precisely as the
Wright–Fisher model in all respects. We shall therefore
assess conditions under which the coalescent effective size
exists, both analytically and through computer simula-
tions. In the simulations we use two simple demographic
models, one with randomly fluctuating population size,
and the other with subdivided populations linked by mi-
gration.

The coalescent, is a random tree that allows one to
characterize ancestral relationships between individuals
(genes) in a sample when the population size is (reason-
ably) large (Kingman 1982a,b,c). The probabilistic struc-
ture of Kingman’s coalescent (sometimes referred to as the
standard coalescent) is quite simple. If we start with a
sample of n individuals, we wait a random time Tn that is
exponentially distributed with mean 1/

(
n
2

)
. At this time,

two randomly chosen ancestral lineages coalesce, leaving
n − 1 distinct lineages. The lineages continue coalescing
in this way until we reach a single common ancestor for
the sample. We thus obtain a sequence Tn, Tn−1, . . . , T2

of inter-coalescence times that are independent and expo-
nentially distributed with

E[Tk] = 1/ck, k = 2, . . . n,

where

ck =
(

k

2

)
= k(k − 1)/2

is the number of ways to choose an unordered pair from
k objects. The time to reach the most recent common
ancestor is thus the sum

TMRCA = Tn + Tn−1 + · · ·+ T2

with expected value

E(TMRCA) =
n∑

k=2

1
ck

= 2(1− 1/n).

Since the standard coalescent corresponds to a neutral
Wright–Fisher model, the pairs of lineages that join at
coalescence times are always chosen at random. Thus, the
probabilistic structure of the coalescent tree is determined
by the pure death process that keeps track of the number
of ancestral lineages as time recedes into the past.

How Kingman’s coalescent relates to the ancestry in a
given population genetic model is described most easily
for the haploid Wright–Fisher model with fixed popula-
tion size N , and no selection or recombination. In this
panmictic model, when N is sufficiently large and time
is measured in units of N generations, the ancestry of a
sample is approximated by Kingman’s coalescent.

Thus to do a calculation for the Wright–Fisher model
one does the analogous calculation for the coalescent pro-
cess and then interprets t units of coalescent time to be
[Nt] generations, where [Nt] is the largest integer less than
or equal to Nt. For example, the mean time to go from k
lineages to k − 1 in the coalescent is E[Tk] = 1/ck. Thus,
in the Wright–Fisher model with population size N , it
takes on average N/ck generations for k lineages to coa-
lesce down to k− 1. With the appropriate scaling of time
this approximation works well beyond the Wright–Fisher
model and there are variations of the coalescent that in-
corporate the effects of selection, recombination, spatial
structure, and demographic variation.

Mathematically, the above can be expressed as follows.
Let A(t) denote the number of lineages in the standard
coalescent t units of (coalescent) time in the past, and
let AN (τ) be the number of ancestors τ generations in
the past for the discrete-time neutral Wright–Fisher model
corresponding to fixed population size N . Convergence to
the coalescent then means AN ([Nt]) → A(t), as N tends
to infinity. If we are dealing with a different population
model that has some quantity fluctuating over time, we
will say “averaging occurs” if the corresponding discrete-
time ancestral process satisfies AN ([Nt]) → A(ct) for some
constant c. This means that, after converting t units of
coalescence time to [Nt] generations, the ancestral process
for the discrete-time model can be approximated by the
standard coalescent with time speeded up by a factor c.
This scaling factor c then allows us to define the coalescent
effective population size by

Ne = N/c.

Notice that speeding up the coalescent by a factor c is
equivalent, as far as sample data is concerned, to mul-
tiplying the mutation rate by the factor 1/c. Thus, we
get the same genealogy as for a neutral, panmictic, con-
stant size Wright–Fisher model with a different mutation
rate. Indeed, if there is a scaling constant c such that the
appropriately-scaled ancestral process converges to A(ct),
then the sampled data cannot be distinguished from that
arising in a standard neutral Wright–Fisher model.
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In this paper, we seek to determine when, in the pres-
ence of stochastic demography (e.g., fluctuating popula-
tion size or spatial structure), we can define an effective
population size, Ne, that allows us to do, approximately,
all coalescent-based calculations in the same way as we
would for a Wright–Fisher model with size Ne. Our ap-
proach involves both theoretical analysis and simulations.

Our analytical results will provide general insight into
the effects of fluctuating population size and geographi-
cal structure on the genealogical process. We will see, for
example, that these effects can be averaged to get a co-
alescent effective size if population size fluctuations and
migration rates are sufficiently rapid. To get a feel for
how these limiting results apply to real populations and
to gauge their robustness, we use simulations. For this,
we quantify the effects of deviations from the standard
constant-size Wright–Fisher model with Fu and Li’s F
statistic (Fu and Li 1993), one of many statistics designed
to detect such deviations. The F statistic is defined by

F = F (π, ηs, S) =
π − ηs

(
n−1

n

)√
µF S + νF S2

,

where n is the sample size, π is the average number of
pairwise nucleotide differences (the average being over all
possible pairs in the sample), S is the number of segre-
gating sites, ηs the number of singletons (mutations that
appear in only one individual in the sample), and µF and
νF are constants given the sample size n. This construc-
tion yields an expected value that is nearly zero (actually,
it is slightly negative), assuming the standard model and
the infinitely many sites model , but is expected to de-
viate from zero when the assumptions are not met. For
example, fluctuating size tends to produce negative values
of F and population subdivision leads to positive F .

The rest of the paper is arranged as follows. In the next
section, we discuss the case of randomly fluctuating pop-
ulation size. We begin with a fairly thorough treatment
of the analytical results that describe when one can and
cannot get a coalescent effective population size. This is
followed by simulations of Fu and Li’s F for a special case
of the model. This section will be followed by a more ab-
breviated one dealing with population structure. Again,
we begin with an analytical discussion and follow it with
simulations in a special case. A discussion section sum-
marizes the results and in the Appendix we show how to
get the nonlinear time change for “intermediate” rates of
population size fluctuations.

FLUCTUATING POPULATION SIZE

In this section, we discuss the effects of stochastically
fluctuating population size on haploid, neutral, single-
locus gene genealogies. This differs in a fundamental way

from coalescent theory in the presence of deterministically-
varying population size.

If these size fluctuations are fast compared to the co-
alescent time scale, then they will affect the coalescent
only in an average sense. In this case there will be an
effective population size and the genealogy will be given
by Kingman’s coalescent with a linear time change. If,
on the other hand, “macroscopic” size fluctuations occur
on the same time scale as coalescences, then the resulting
genealogical process will be described by Kingman’s coa-
lescent run on a nonlinear, stochastic time scale. In this
case, there is no effective population size. The object that
one would like to think of as an effective size in this case
changes with time instead of being constant; essentially,
there is only an “instantaneous” effective size.

Fast fluctuations – averaging

One often sees in population genetics the claim that, when
population sizes fluctuate, there is an effective size given
by the harmonic mean of the possible sizes. To understand
when this works and, more importantly, when it does not,
let us begin with a simple calculation.

Suppose the sizes of a population have some fixed dis-
crete set of possible values, denoted by N1, N2, . . ., and
assume that these sizes are all multiples of some large
value N ; say Ni = xiN for each i, where the xi are fixed
positive numbers. As is typical in coalescent theory, we
think of N as a parameter which gives the magnitude
of population size. Denote by MN (0),MN (1),MN (2), . . .
the sequence of population sizes backwards in time; i.e.,
MN (0) is the size of the current generation, MN (1) is
the size of the previous generation, etc. The simplest
possible model of randomly fluctuating size would as-
sume that MN (0),MN (1),MN (2), . . . form an indepen-
dent, identically distributed sequence with probabilities
pi ≡ P(MN (τ) = Ni) for each time τ ≥ 0. Suppose for
simplicity that we have a Wright–Fisher model of repro-
duction, so that the probability of two randomly chosen
individuals in generation τ−1 having a common parent in
generation τ is 1/MN (τ). Then we compute the probabil-
ity that two individuals do not have a common ancestor
[Nt] generations in the past (i.e., their ancestral lineages
have not yet coalesced):

P(no coalescence in [Nt] generations)

= E
[ [Nt]∏

τ=1

(
1− 1

MN (τ)
)]

=
(
1−

∑
i

pi ·
1

xiN

)[Nt]

→ exp{−t
∑

pi/xi}
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as N → ∞. In the first equality, we conditioned on the
values of the population sizes and then averaged over all
possibilities; in the second equality we have used the as-
sumption that sizes were i.i.d. to bring the expectation
inside the product and turn the product into a power.

This calculation suggests that the pairwise coalescence
rate, when N is large, should be given by

∑
pi/xi. This

means that the pairwise coalescence probability in one
generation is of the form 1

N

∑
pi/xi. To match the

Wright–Fisher dynamics, this last quantity is set to one
over the effective population size; i.e., the effective size
Ne =

(∑
pi/Ni

)−1 is given by the harmonic mean of the
possible sizes.

The above calculations depend on population size being
independent between generations, which is hardly a real-
istic assumption. However, using the methods in Nord-
borg and Krone (2002), one can extend this to the case
where the sequence (MN (τ))τ≥0 is allowed to change every
generation according to a discrete-time Markov chain with
state space {N1, N2, . . .} and unique stationary distribu-
tion (π1, π2, . . .). Then, as in the i.i.d. example, the effects
of fluctuating size “average” between coalescence events,
this time giving an effective pairwise coalescence rate of∑

πi/xi and hence an effective size Ne =
(∑

πi/Ni

)−1

which is again a harmonic mean with the averaging being
done with respect to the stationary distribution. Jagers
and Sagitov (2003) obtain similar results for general re-
production models and stationary Markovian population
size with a finite number of states.

Slow fluctuations

Similarly, if the large changes in population size are suf-
ficiently slow compared to coalescence events, then in the
limiting (N → ∞) coalescent all the coalescences will oc-
cur before there are any changes in size. This means that
the limiting coalescent will correspond to a model in which
the population size does not change and hence, in a sim-
plistic way, one can think of having an effective size given
by the initial size. This situation does not, however, entail
averaging.

Intermediate fluctuations – no averaging

The remaining case, in which “large” changes in popu-
lation size occur on the same time scale as coalescence
events, has been treated mathematically by Kaj and
Krone (2003) (see also Donnelly and Kurtz 1999). In
this case, there will be no averaging of the effects of size
fluctuations, and hence there is no effective population
size. Rather, the size fluctuations on this scale directly af-
fect the time scale of the coalescent in a nonlinear, stochas-
tic manner. In other words, the coalescent in this setting
is given by a time change of Kingman’s coalescent, but

now the time change is a random process and not a linear
function of t, which is what would happen in the case of
averaging.

To make this precise, consider a single haploid popula-
tion with size MN (τ), τ generations in the past, and write

XN (τ) =
MN (τ)

N
(1)

for the relative size process, where N is a parameter that
we will take to be large. We assume that this process,
when run on the coalescent time scale, converges to a pro-
cess {X(t) : t ∈ [0,∞)} with state space I ⊆ (0,∞):

XN ([Nt]) =
MN ([Nt])

N
→ X(t), (2)

as N →∞.
We have in mind, primarily, three kinds of limit pro-

cesses:

• Case (i) (one-dimensional diffusion). X is a diffusion
process with state space given by some interval [a, b],
where a > 0.

• Case (ii) (jump process). X is a continuous-time
Markov jump process with bounded jump intensities
and state space I given by a discrete subset of (0,∞).

• Case (iii) (mixture). We can also consider combina-
tions of the above; i.e., diffusion plus occasional large
jumps. This includes as a special case determinis-
tic continuous size change (e.g., exponential decay,
reflecting exponential growth forward in time) with
occasional random jumps.

Note that Case (i) contains as a trivial special case
the usual models of deterministic size fluctuations as dis-
cussed, for example, in Griffiths and Tavaré (1994).
In other words, the diffusion coefficient is zero in such
models.

Intuitively, for the diffusion limit to occur, the scaled
size process XN (·) should make frequent (say every gen-
eration) small jumps (of order 1/N). For example, if
I = [a, b] is the state space for the limiting diffusion, the
state space for XN (·) might be of the form IN ≡ I ∩ ZN ,
where ZN = 1

N Z is the set of all integer multiples of 1/N .
A typical example of Case (ii) occurs when the process

XN (·) jumps within a fixed discrete set (possibly finite),
and the probability of jumping out of a given state in
one generation is of order 1/N . Then, for a given N , the
holding time in a given state is geometric with parameter
pN ∼ O(1/N). These geometric holding times converge
to exponential holding times as N → ∞. As we men-
tioned above, the thing to keep in mind in all these cases
is that “macroscopic” changes in population size occur on
the same time scale as coalescence events.
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We will show in the Appendix that, in the limiting co-
alescent, the pairwise coalescence probability during [0, t]
is determined by the cumulative coalescence intensity over
the time interval [0, t]:

Yt ≡
∫ t

0

1
X(s)

ds,

where X(t) is the scaled backward size process. Thus,
when there are k lineages, the coalescence intensity grows
like

(
k
2

)
Yt. In other words, if A(t) is Kingman’s coales-

cent process, the limiting coalescent in the above setting
is given by A(Yt). This is Kingman’s coalescent run ac-
cording to the nonlinear stochastic clock Yt. This can be
envisioned as moving up the standard coalescent tree at a
rate that varies according to what the current size is. No-
tice that the initial population size matters, unlike what
happens in the case of averaging. This dependence will
also be seen in the simulations when size fluctuations are
sufficiently slow.

Simulation results

We consider a simple model in which the population size
has two possible values and falls within the realm of Case
(ii) above. This model has been studied by Iizuka and
co-workers in the context of inbreeding (Iizuka 2001) and
heterozygosity (Iizuka et al. 2002) effective population
sizes. There are four parameters – two population sizes N1

and N2 (with N1 < N2), and two transition probabilities,
q1 and q2, giving the one-step probabilities of size changes
from N1 to N2 and from N2 to N1, respectively. Thus,
the size process describing the demographic process is a
discrete-time Markov chain with state space {N1, N2} and
unique stationary distribution π with π(N1) = q2/(q1+q2)
and π(N2) = q1/(q1 + q2).

The parameter values used in our simulations were
N2 = 104 and 105, while N1 was fixed at 103. For sim-
plicity, we set q1 = q2 and values used were 1, 0.75, 0.5,
10−0.5, 10−1, 10−1.5, . . . , 10−6. The mutation probability
per individual per generation was fixed at µ = 0.001. For
details about the simulations, see Appendix. Dependence
on initial size is one of the hallmarks of the non-averaging
case. It is tempting to think that one might obtain aver-
aging, and hence a linear time change in the coalescent,
by starting the demographic process at its stationary dis-
tribution. A heuristic argument for why this will not work
can be made along the following lines. Because q1 = q2,
we expect the demographic process to spend as much time
in state N1 as in N2. However, because N1 < N2, the co-
alescence rate is higher while the population size is N1.
The combined effect is that, conditional on a coalescence
event happening in generation τ , the population size of
generation τ is more likely to be N1, implying that the
distribution of the demographic variable at τ is no longer

given by the stationary distribution with which we started.
When the demographic process is much faster than coa-
lescence events, however, we would expect this effect to be
negligible, and the genealogy to behave as in a constant-
size null model.

As predicted, departure from the null model are de-
tected only when the fluctuations in population size are
intermediate. The range of q which corresponded to the
demographic process being sufficiently “intermediate” to
make rejecting the constant-size null model likely appears
to be given by the interval [1/N2, 1/N1] extended by one
order of magnitude on either side, i.e. [10−5, 10−2] for
N2 = 104, N1 = 103 and [10−6, 10−2] for N2 = 105,
N1 = 103 (figure 1). For q larger than 10/N1, fluctua-
tions are fast enough to give F values that are consistent
with a null model with an appropriately averaged constant
effective size. For q smaller than 1/(10N2), the size fluc-
tuations are slow enough to give F values consistent with
population size fixed at the initial value.

Not surprisingly, the extent to which F deviates from
zero increases as the difference between N1 and N2 in-
creases. As long as population size fluctuations are small,
they have little effect.

When size fluctuations do have an effect on F , the ef-
fect increases with sample size. This is expected because,
as the sample size increases, so does the time to the most
recent common ancestor. However, the phenomenon be-
comes less marked as the sample size gets very large. This
is a consequence of the fact that the expected time to the
most recent common ancestor reaches a limit as the sam-
ple size goes to infinity.

Figure 2 shows that F tended to be more negative when
the initial population size was the larger one (N2). The
reason for this is that the coalescence rate is smaller when
the population size is N2 (because N2 > N1). Thus, since
q1 = q2, a population size change before a coalescence
event is more likely when the population size is N2 than
when it is N1.

STRUCTURED POPULATIONS

In this section, we consider the effects of population sub-
division on genealogical processes and discuss under which
conditions averaging occurs. In other words, we seek con-
ditions under which one can think of the population as
being equivalent to a single panmictic unit with some con-
stant effective size. Here, population subdivision might re-
fer to geographical structure with, for example, fixed-sized
demes connected by migration. More generally, it refers to
any partitioning of the population into different “types”
of individuals, with a corresponding “migration” of types.
When appropriately scaled, the resulting ancestral process
often converges to a “structured coalescent” (Notohara
1990; Herbots 1997) in which lineages within a deme
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FIGURE 1.– F when N1 = 103, µ = 0.001 and q1 = q2.
Each point represents an average from ten thousand runs
starting with the stationary probability of being in N1. In
the top figure N2 = 104, and N2 = 105 in the lower figure.

can coalesce, as in the coalescent, and lineages occasion-
ally migrate between demes.

Our interest here is in finding conditions under which
the limiting genealogy can be thought of as a standard co-
alescent relative to a single effective population size. This
was discussed at length by Nordborg and Krone (2002),
and we refer to that paper and the references therein for
details. We contend ourselves with a brief summary of
the main ideas, followed by simulations for a special case
to get a feel for when these approximations work in finite
populations.

If migration between subpopulations is sufficiently fast
compared to the coalescent time scale, the effects of sub-
division will be felt in the coalescent only in an average
sense. Essentially, the migration process has time to reach

0 10 20 30 40 50 60
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FIGURE 2.– Fu and Li’s F , for fluctuating population
size, when N1 = 103, N2 = 105 and q1 = q2 = 10−4. The
upper curve corresponds to initial population size 103 and
the lower curve to initial population size 105.

equilibrium between coalescence events.
In this case there will be a coalescent effective popula-

tion size and the genealogy will be given by Kingman’s
coalescent with a linear time change. If, on the other
hand, migration events are “intermediate” in the sense
that they occur on the same time scale as coalescences,
then the resulting genealogical process will be described
by a structured coalescent. In this case, the genealogy
cannot be thought of a standard coalescent and there is
no coalescent effective population size.

To make this more precise, let us consider a scenario
in which a population is broken up into a finite number,
L, of demes and that the size of deme i is the constant
Ni = aiN where a1 + · · · + aL = 1; hence N is the
total population size. Since coalescence probabilities in
discrete-time structured models depend on the locations
of the lineages in addition to the total number of lineages,
the genealogy is a function of the backwards configuration
process, X(τ) = (X1(τ), . . . , XL(τ)), where Xi(τ) denotes
the number of ancestors in deme i, τ generations into the
past. This is a discrete-time Markov chain whose state
space consists of vectors x = (x1, . . . , xL) which specify,
at any time in the past, the number of ancestral lineages
in each deme. The configuration process evolves by (back-
wards) migration and coalescing of ancestors with the ap-
propriate probabilities as we move back in time one gen-
eration at a time. In general, coalescence probabilities
change when the configuration process changes. Let bij de-
note the probability that a given lineage “migrates” from
deme i to deme j one generation back in time. For exam-
ple, if the forward migration probabilities are denoted by
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mij , then we would have

bij =
Njmji∑
k Nkmki

. (3)

Suppose that lineages migrate (backwards) indepen-
dently of one other and that the backward migration pro-
cess determined by the bij ’s is irreducible and aperiodic
with stationary distribution γ = (γ1, γ2, . . . , γL). Finally,
assume that the above backward migration probabilities
scale like bij = βij/N

α, i 6= j, for some 0 ≤ α ≤ 1. Of
course, bii = 1 −

∑
j 6=i bij = 1 − N−α

∑
j 6=i bij . In this

case, we will say that bij has scaling exponent α.
Migration probabilities with scaling exponent α corre-

spond to migration events which take, on average, O(Nα)
generations to occur. In particular, when 0 ≤ α < 1, mi-
gration events occur much faster than coalescence events
(when N is large). In this case, Nordborg and Krone
(2002) show, under mild conditions, that the ancestral
process for the discrete-time model can be approximated
by a linear time change of the standard coalescent. The
coalescence rate when there are r lineages is given by(

r

2

) L∑
k=1

γ2
k

ak
.

Thus, there is a scaling constant

c ≡
L∑

k=1

γ2
k

ak
(4)

that gives the pairwise coalescence rate, and hence the
coalescent effective population size is

Ne =

(
L∑

k=1

γ2
k

akN

)−1

=

(
L∑

k=1

γ2
k

Nk

)−1

. (5)

Note that this can also be thought of as a kind of harmonic
mean size in which the weighting factor γ2

k represents the
stationary probability of finding two ancestral lineages to-
gether in deme k. Thus, when 0 ≤ α < 1, the structured
model can be thought of as a panmictic Wright–Fisher
model with population size Ne.

When the scaling exponent is α = 1, migration events
occur on the same time scale as coalescence events and
the stochastic nature of migration does not average out in
the limit. In this case, the discrete-time ancestral process
converges to a structured coalescent. This maintenance of
structure in the limiting genealogy results in, for example,
higher variance for sample data than that expected under
the standard coalescent; thus we do not expect the same
pattern of variation as under the null model.

The above discussion holds in much more generality and
we refer the reader to Nordborg and Krone (2002) for

a full discussion. For example, if the scaling exponents
are not all the same, all demes connected by fast migra-
tion (i.e., scaling exponents in the interval [0, 1)) collapse
down to an effectively panmictic group; all migration cor-
responding to scaling exponent 1 remains in the suitably-
reduced structured coalescent.

Simulations for structured populations

To emphasize the effects of scaling in subdivided popu-
lations, we employed the simplest possible model of geo-
graphical structure, with two subpopulations of equal size
connected by symmetric migration. Two cases of total
population size (twice the common subpopulation size),
103 and 104, were investigated and the scaled migration
rate (β = bN , where b is the common migration probabil-
ity) varied between 10−1.0 and 102.5, the exponent chang-
ing in increments of 0.5. The sample was divided equally
between the two demes; i.e., half of the lineages started in
one subpopulation and the remaining half in the other. As
we have seen, an effective size is expected to exist when
the migration rate is sufficiently fast.

As shown in figure 3, F did not differ much from the
value that would be expected under a panmictic null
model with scaled migration rate 101 or larger. This
was true for both subpopulation sizes. In other words, F
showed the effects of subdivision only for b < 10−2 (resp.,
b < 10−3) when N = 103 (resp., N = 104). Notice that
the dependence on sample size is prominent only when the
migration rate is very small.

We emphasize that the flat part of the graph corre-
sponding to fast migration is predicted by the theory. The
interesting thing about the simulations is that they point
out how fast the migration has to be and show the effects
of subdivision on F when migration is not fast enough.

DISCUSSION

We have shown that when demographic processes and co-
alescence events operate on similar time scales the coa-
lescent effective size does not exist. In other words, the
genealogy cannot be expressed by a linear time scaling of
the standard coalescent. As was already pointed out by
(Nordborg and Krone 2002), the coalescent effective
size is conceptually different from classical notions of ef-
fective size in that its existence implies that the properly
scaled ancestral process converges to Kingman’s coales-
cent with a linear time change. This is a strong condition.
Phenomena that can be reduced to an effective population
size in our sense are not detectable through polymorphism
data alone.

We have shown that convergence to the standard coa-
lescent (with a linear time change) is not always obtained
when the population size fluctuates randomly or when the
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FIGURE 3.– The upper graph shows F , under the mi-
gration model, when the population size is N = 103; the
lower graph corresponds to N = 104. β = bN where b is
the migration probability.

population is subdivided. Whether or not this happens,
and hence whether or not there is a coalescent effective
size, depends on the relative time scales at which coales-
cences and demographic processes are operating. This is
yet another illustration of the importance of time scales
first stressed in (Nordborg 1997) and then encapsulated
in Möhle’s theorem (Möhle 1998). In practice, our sim-
ulations suggest that the order of magnitude of the de-
mographic processes should be different from that of the
inverse of the population size for the standard coalescent
approximation to be sufficiently accurate. By “sufficiently
accurate” we mean that deviations from the null model are
not expected to be detected in genetic data. To monitor
this we used Fu and Li’s F and found that, for a simple

2-state population size model, the population size and co-
alescent processes operate on different time scales when
the probability of a state change is not in the range from
one order of magnitude less than the inverse of the smaller
population size to one order of magnitude more than the
inverse of the larger population size. For a simple model of
population structure the same is true when the probabil-
ity of migrating is not higher than the order of magnitude
of the inverse of the population size. Thus the results
of the two cases are similar; when there is one order of
magnitude or more difference between the probability of a
demographic change and the probability of a coalescence
event, an effective size can be assumed.

This study was partly made possible by a scholarship from
the Swedish-America foundation to PS which made visiting
MN at USC possible. Research by SK was supported in part
by NSF grant DMS-00-72198 and NIH grant P20 RR16448.
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APPENDIX

Nonlinear time change for intermediate size fluc-
tuations

Consider the fluctuating size model discussed in the main
text. Let AN (·) be the ancestral process defined by
AN (0) = n and AN (τ) = number of distinct ancestors
τ generations in the past, τ ≥ 1, where n is the original
sample size.

To find the coalescence rate for a pair of lineages, we
compute the probability (conditional on population size)
that no coalescence has occurred over [Nt] generations and

take a limit:

P(no coalescence in [Nt] generations|{MN (·)})

=
[Nt]∏
τ=1

(
1− 1

MN (τ)
)

=
[Nt]∏
τ=1

(
1− 1

NXN (τ)
)

(A1)

∼ exp
(
− 1

N

[Nt]∑
τ=1

1
XN (τ)

)
→ exp

(
−
∫ t

0

1
X(s)

ds
)
, (A2)

as N → ∞. This suggests that, in the limiting coales-
cent, the coalescence probability for a pair of lineages
during [0, t] is governed by an exponential random vari-
able with rate given by

∫ t

0
1

X(s) ds. Thus, as in Griffiths

and Tavaré (1994) for deterministic size fluctuations and
Kaj and Krone (2003) in the case of stochastic fluctua-
tions, we define the cumulative coalescence intensity over
the time interval [0, t] by

Yt ≡
∫ t

0

1
X(s)

ds.

This applies to any pair of ancestral lineages, so when
there are k lineages, the coalescence intensity grows like(
k
2

)
Yt. In other words, the limiting coalescent process

should be given by

lim
N→∞

AN ([Nt]) = A(Yt), (A3)

where A(t) is Kingman’s coalescent, and Yt is the in-
creasing, nonlinear stochastic time change. In a more
general context, this result was proven in Kaj and
Krone (2003) in terms of weak convergence for the bi-
variate process {(N−1XN ([Nt]), AN ([Nt]))}t≥0 towards
{(X(t), A(Yt))}t≥0, as N →∞.

Relative speed of fluctuations

Following Sano et al. (2004), we give another perspec-
tive on the three time-scaling regimes for the varying
size model, now starting from the limit result for the in-
termediate case and considering two extremes. To this
end, let a be a dummy variable signifying a change
in speed of the pre-limit process from XN ([Nt]) to
XN ([aNt]). Then {(N−1XN ([aNt]), AN ([Nt]))}t≥0 tends
towards {(X(at), A(a−1Yat))}t≥0 as N → ∞, in agree-
ment with the result quoted above. Here we recognize the
regime of slow demographic change by taking a very small.
Indeed, as a → 0,

1
a
Yat =

1
a

∫ at

0

1
X(s)

ds ≈ t · 1
X(0)
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so we have linear scaling with effective population size
X(0); i.e., on the coalescent time scale, the population
size never changes. Similarly, a very large corresponds to
the fast scaling regime. In this case, assuming that X(t)
is ergodic with a steady state X∞, the limit a →∞ gives

1
a
Yat = t

1
at

∫ at

0

1
X(s)

ds ≈ t · E(1/X∞),

which is linear scaling with effective population size given
by the harmonic mean 1/E(1/X∞).

Recall that X(s) represents the (limiting) scaled size
process. As is to be expected, the coalescence intensity
Yt increases at a faster rate when X(t) is smaller. Also,
during such periods in which Yt increases faster, there will
tend to be fewer mutations. This was brought out in ear-
lier calculations, as well as in the simulations.

The program

The simulation program, written in C++, can be obtained
from the authors upon request. The program simulates
the combined effect on F of the ancestral and demographic
processes. The models used for the demographic processes
were the simplest possible. Fluctuating population size
was modeled by a two-state Markov chain and popula-
tion structure by two equally sized subpopulations with
symmetric migration.

Generations were discrete and population sizes finite.
For each set of parameters, even sample sizes from 4 to 60
were simulated and the average value of F from ten thou-
sand runs was calculated. The program does not allow for
more than two lineages to coalesce at a time. This devi-
ation from the Wright–Fisher model will cause a negative
bias in F , but the effect is negligible for the parameter
values we used (results not shown: the sample size has to
be large relative to the population size for multiple coa-
lescences to the same individual to matter).

Every generation, a gene can mutate with a fixed prob-
ability. If no mutations occur in a given realization, F is
not defined. One can either define F as zero or disregard
these cases. We chose a mutation rate high enough so that
our results were unaffected by which method was used.


