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Abstract. - A multi-type system of n particles performing spatial mo-

tions given by a di�usion process on R

d

and changing types according to a

general jump process structure is considered. In terms of their empirical mea-

sure the particles are allowed to interact, both in the drift of the di�usions

as well as in the jump intensity measure for the type motions. In the limit

n ! 1 we derive a principle of large deviations from the McKean-Vlasov

equation satis�ed by the empirical process of the system. The resulting rate

function is shown to admit convenient representations.

In particular, the set-up covers a measure-valued model for an epidemic

of SIR-type among spatially di�using individuals. The infection rate is then

proportional to the number of infective individuals and their distances to the

susceptible one.

(*) Research supported by a Swedish Natural Sciences Research Council grant, contract

F-FU 09481.

1. Introduction

1.1 Purpose. The purpose of this report is to provide a multi-type exten-

sion, allowing weak interaction in both space and type, of the well-known re-

sults of Dawson and G�artner (1987) [DG] regarding large deviations from the

McKean-Vlasov limit for weakly interacting di�usions. This is achieved by

integrating more systematically the previous work Djehiche and Kaj (1994)

[DK], in which a large deviation result is derived for a class of measure-valued

jump processes, with the setting of the Dawson-G�artner large deviation prin-

ciple. Necessarilly, some aspects of such an extension will be mere notational

rather than substantial. We will try to focus on those parts that are less
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evident and to point out some techniques from [DK] which can be used as

an alternative to those of [DG].

We do not strive for maximal generality, the intention is rather to demon-

strate the broad scope of the path-valued approach to large deviations as

developed in [DG], in particular to show that it encompasses some natural

models for spatial epidemics. As a motivation for this work the further ques-

tion then arises whether one can apply large deviation techniques to study

threshold limit theorems for epidemics, see e.g. Martin-L�of (1987) and An-

dersson and Djechiche (1994), in a similar manner as Dawson and G�artner

(1989) apply their results to study the phase-transition behaviour of a mean

�eld interaction Curie-Weiss model.

1.2 Model. Fix a set E � R

d

and let B

E

denote the �-algebra on E

generated by the Borel subset topology. The product space R

d

� E is the

one-particle state space and we consider paths of the form t 7! x

t

= (u

t

; z

t

),

t 2 I := [0; T ], where u

t

is a di�usion process on R

d

and z

t

a Markov

jump process with piecewise constant and rightcontinuous trajectories taking

values in E. We interpret a system x = (x

1

; : : : ; x

n

) of n such particles by

saying that at time t 2 I the ith particle occupies the position u

i

t

and is of

type z

i

t

. This information is captured by the empirical distribution. Hence,

let M denote the set of probability measures on R

d

� E equipped with

the topology of weak convergence and total variation norm k�k. The point

measure

�

n

t

=

n

X

i=1

�

x

i

t

;

represents a realization of the state at time t.

To introduce the space and type motions we quote [DG] and [DK] re-

spectively. However, we restrict to the time-homogeneous case. Furthermore,

to simplify the presentation we restrict the class of di�usions signi�cantly to

the case of bounded drift and covariance coe�cients. Let C

2;0

(R

d

�E) denote

the set of bounded continuous functions f(x) = f(u; z) twice continuously

di�erentiable in u. For a given n-particle state x, let

Lf

i

(x) = Lf(x

i

; �) =

1

2

d

X

k;l=1

a

k;l

(u

i

)

@

2

f(u

i

; z

i

)

@u

k

@u

l

+

d

X

k=1

b

k

(u

i

; �)

@f(u

i

; z

i

)

@u

k

denote the di�usion generator for t 7! u

i

t

. Assume that the matrix fa

k;l

(u)g

is strictly positive de�nite for each u 2 R

d

and that for each k; l the map a

k;l

:

R

d

! R is bounded and locally H�older continuous. Moreover, assume that

the functions (x; �) 7! b

k

(x; �) : R

d

�M ! R are bounded and continuous

in x and uniformly continuous in �. Following [DG], introduce the notations

(r

a

f)

k

=

d

X

l=1

a

k;l

@f

@u

k

; (r

a

f;r

a

g) =

d

X

k;l=1

a

k;l

@f

@u

k

@g

@u

l
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and

jr

a

f j

2

= (r

a

f;r

a

f) :

Regarding the type motion, let the jump measure on E have the form

�

i

(x; dy) = �(x

i

; dy ;�) = (x

i

; �)�(x

i

; dy) ; x 2 (R

d

�E)

n

; y 2 E ;

where the jump intensity measure (x

i

;�) dt gives the rate of a change from

type z

i

for a particle at u

i

when the system is in state x. Moreover, if a

change of type occurs then it is of the form z

i

! y 2 B with probability

R

B

�(x

i

; dy), all B 2 B

E

. Assume � 7! (�; �) is uniformly continuous and

assume there is a constant C such that for each n and 1 � i � n

sup

x2E

n

Z

E

�

i

(x; dy) � C :

Write

�f(x; y) := f(u; y) � f(u; z) ; x = (u; z) 2 R

d

�E ; y 2 E :

and de�ne

Af(x

i

;�) =

Z

E

�f(x

i

; y) �

i

(x; dy) :

Let C

1;2;0

(I�R

d

�E) denote the set of bounded continuous functions f

t

(x) =

f

t

(u; z) continuously di�erentiable in t and twice continuously di�erentiable

in u. The total motion generator acting on C

1;2;0

(I � R

d

� E) can then be

written

�

@

@t

+ L +A

�

f

t

=

@f

t

@t

+

1

2

d

X

k;l=1

a

k;l

@

2

f

t

@u

k

@u

l

+

d

X

k=1

b

k

@f

t

@u

k

+

Z

E

�f

t

d� :

1.3 Martingale problem. We introduce the empirical distribution process

t 7! X

n

t

=

1

n

n

X

i=1

�

x

i

t

2 M ; t 2 I :

Denote the natural duality betweenM and the set C of bounded continuous

functions on R

d

�E by

h�; fi =

Z

f(u; y)�(du 
 dy) ; f 2 C ; � 2 M :

Let D(I;M) denote the path space of c�adl�ag functions from I into M fur-

nished with the usual Skorokhod topology and C(I;M) its subset of uni-

formly continuous paths. The trajectories of X are realized in the canonical

probability space [D(I;M); (F

t

)

t2I

], where F

t

, t 2 I, denotes the �ltration

of �-algebras generated by the process t 7! x

t

.
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Proposition 1.1. Suppose that weakly interacting generators Lf(x;�) and

Af(x;�), x 2 R

d

� E, are given such that the di�usion coe�cients a and

b and the jump measure � satis�es the conditions stated above. For each n

and each �

0

2 M, there exists a measure P

n

with P

n

(X

n

0

= �

0

) = 1 such

that for each f in C

1;2;0

(I �R

d

�E),

hX

n

t

; f

t

i = hX

n

0

; f

0

i +

Z

t

0

D

X

n

r

;

@

@r

f

r

+Lf

r

(� ;X

n

r

) +Af

r

(� ;X

n

r

)

E

dr +M

f

t

;

whereM

f

= (M

f

t

)

t2I

is a (P

n

;F

t

)-martingale. For f; g in C

1;2;0

(I�R

d

�E)

the predictable quadratic variation of M

f

and M

g

is given by

hhM

f

�

;M

g

�

ii

t

=

1

n

Z

t

0

D

X

n

r

;

�

r

a

f

r

(�);r

a

g

r

(�)

�

+

Z

�f

r

(�; y)�g

r

(�; y) �(�; dy ;X

n

r

)

E

dr :

Suppose X

n

0

converges weakly to some �

0

2 M. Then X

n

converges

weakly in D(I;M) to a deterministic path � 2 C(I;M) which is the unique

solution of the McKean-Vlasov equation

(1.2) h�

t

; f

t

i = h�

0

; f

0

i +

Z

t

0




�

r

;

@

@r

f

r

+ Lf

r

(� ; �

r

) +Af

r

(� ; �

r

)

�

dr :

Proof; references: For the di�usion part see [DG], section 5.1, noting

that we avoid the main di�culties regarding the inductive topology setting

by imposing bounded coe�cients. Similarly, the assumption of bounded

jump rates considerably simpli�es the task of showing that the martingale

problem is well-posed. In the pure jump case, a more general situation was

studied by Feng (1994) using the inductive topology approach. For complete

proofs under general assumptions in closely related models including both

continuous and jump processes, see e.g. Oelschl�ager (1984) and Graham

(1992). tu

We next consider the general martingale problem

F (X

n

t

) = F (X

n

0

) +

Z

t

0

G

n

F (X

n

s

) ds +M

F

t

;

for functionals F (�) = F (h�; fi), F 2 C

2

(R), � 2 M and f 2 C

2;0

(R

d

�

E), where M

F

t

is a (P

n

;F

t

)-local martingale and the in�nitesimal measure

generator G

n

acts on probability measures � 2 M by

G

n

F (�) =




�;Lf(�)

�

F

0

(h�; fi) +

1

2n




�; jr

a

f j

2

�

F

00

(h�; fi)

+ n

D

�;

Z

�

F (�+

1

n

�

y

�

1

n

�

�

) � F (�)

�

�(�; dy ;�)

E

:
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The corrresponding Hamiltonian operator is de�ned as

H

n

(�; f) = e

�h�;fi

G

n

e

h�;fi

:

Hence

H

n

(�; f) =




�;Lf(�)

�

+

1

2n




�; jr

a

f j

2

�

+

D

�;

Z

n

�

e

�f=n

� 1

�

d�(�)

E

:

It turns out that the scaled Hamiltonian

(1.3)

H(�; f) := lim

n!1

1

n

H

n

(�; nf)

=




�;Lf(�)

�

+

1

2




�; jr

a

f j

2

�

+

D

�;

Z

�

e

�f

� 1

�

d�(�)

E

;

is a central quantity for the large deviation result (in this case

1

n

H

n

(�; nf)

is independent of n).

2. Large deviations result

2.1 Weak form McKean-Vlasov equation. By consideringM as a sub-

set of the Schwartz space D

0

of real distributions on R

d

� E, the notion of

absolutely continuous maps t 7! �

t

2 D

0

can be made precise, see [DG],

section 4.1. For a discussion relevant to jump processes, see [DK], section

2.1. We will not recall these matters here, but use freely the time derivatives

_�

t

= lim

h!0

h

�1

�

�

t+h

� �

t

�

for almost all t 2 I ;

existing in the distribution sense and satisfying the integration by parts for-

mula

Z

t

0




_�

r

; f

r

�

dr = h�

t

; f

t

i � h�

0

; f

0

i �

Z

t

0




�

r

;

@

@r

f

r

�

dr :

Here f 2 C

1

0

(I � R

d

� E), the set of smooth test functions compactly sup-

ported on R

d

� E. Introduce a formal adjoint L

�

(a; b) of the di�usion gen-

erator L with coe�cients a and b and a formal adjoint A

�

(�) of the type

generator A corresponding to the jump measure �. The McKean-Vlasov

equation (1.2) takes the weak form

_�

t

= L

�

(a; b)�

t

+A

�

(�)�

t

; almost all t 2 I ;

where again b and � may depend interactively on �

t

.

Next we introduce for any given path t! �

t

2 M two function spaces.

First the set L

2

(I; �) = L

2

�

I�R

d

�E; dr �

r

(dx)

�

of square-integrable func-

tions f : I �R

d

�E ! R

d

with

kfk

2

2

=

Z

T

0




�

r

; jf

r

j

2

�

dr <1 ;
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where j � j refers to the 'Riemannian structure' generated by the matrix a as

in section 1.2. Second the Orlicz space

O(I; �) = O

�

I �R

d

�E

2

; ds�

s

(dx)n(x; dy)

�

of strictly positive functions g on I �R

d

�E for which the norm expression

kgk = inf

n

� > 0 :

Z

I

D

�

r

;

Z

�

g

r

�

log

g

r

�

�

g

r

�

+ 1

�

d�

E

dr � 1

o

is �nite.

Given a, b, � and the unique solution t 7! �

t

, according to Proposition

1.1, we now de�ne a set H consisiting of all deterministic paths t 7! �

t

with

the following properties:

(i) �

0

= �

0

,

(ii) the map t 7! �

t

de�ned on I is absolutely continuous,

(iii) there exists h 2 L

2

(I; �) and g 2 O(I; �) such that the path � is the

unique solution of the weak McKean-Vlasov equation

_�

t

= L

�

(a; b + ah

t

)�

t

+A

�

(g

t

�)�

t

; almost all t 2 I ;

that is,




_�

t

; f

�

=

D

�

t

; Lf(�

t

) + h

t

� r

a

f +

Z

�f g

t

d�(�

t

)

E

;

for f 2 C

1

0

(R

d

� E) and almost all t. We call H the set of paths

admissible for �.

2.2 A large deviation theorem. The following is a version of Theorems

I and II in [DK] for the extended interacting multitype di�usions model.

Theorem 2.1. Suppose a, b and � are given as above. Fix �

0

6= 0 and let

� be the McKean-Vlasov limit solution of equation (1.2). For � 2 D(I;M)

with �

0

= �

0

and such that t 7! �

t

is absolutely continuous de�ne

S(�) =

Z

T

0

sup

f2C

1

0

(R

d

�E)

n

h _�

t

; fi � H(�

t

; f)

o

dt ;

where H(�; f) is the scaled Hamiltonian de�ned in (1.3). Put S(�) = 1

otherwise. For any measurable set A in D(I;M), put

P

n

(A) = P

n

(X

n

2 AjX

n

0

= �

0

) :

Then
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(i) for each open subset G of D(I;M),

lim inf

n!1

1

n

logP

n

(G) � � inf

�2G

S(�) ;

(ii) for each closed subset F of D(I;M),

lim sup

n!1

1

n

logP

n

(F ) � � inf

�2F

S(�) ;

(iii) the level sets f� 2 D(I;M) : S(�) � Ng, N > 0, are compact.

Moreover,

(2.2)

S(�) = sup

f

n

h�

T

; f

T

i � h�

0

; f

0

i �

Z

T

0




�

r

;

@

@r

f

r

�

dr �

Z

T

0

H(�

r

; f

r

) dr

o

;

where the supremum is over all f 2 C

1;2;0

(I �R

d

�E). Finally, S(�) <1 if

and only if � 2 H, the set of paths which are admissible for �, and if � 2 H

then

(2.3) S(�) =

Z

T

0

D

�

r

;

1

2

jh

r

j

2

+

Z

�

g

r

log g

r

� g

r

+ 1

�

d�

E

dr :

Remark. The basic representation of S in [DG] (when g = 1) is in terms of

the dual form of the squared L

2

(�

r

)-norm of h:

S(�) =

1

2

Z

T

0

sup

f2C

1

0

(R

d

)




�

r

; h � r

a

f

�

2




�

r

; jr

a

f j

2

�

=

1

2

Z

T

0

sup

f2C

1

0

(R

d

)




_�

r

� L

�

(a; b)�

r

; f

�

2




�

r

; jr

a

f j

2

�

:

We do not know of a similar representation in the multitype case.

2.3 SIR-epidemics. Consider the case when E is discrete and only con-

sists of three states E = [susc, inf, rem] for the possible types S=susceptible,

I=infective or R=removed and the space motion extends with a cemetry posi-

tion y to

_

R

d

= R

d

[ y. The motion t 7! x

i

t

signi�es that among n individuals

the ith follows the type cycle susc!inf!rem while di�using according to

u

i

t

, until z

i

t

hits rem when it is brought to position y. Using self-contained

notations the empirical process may be written

1

n

n

X

i=1

�

x

i
=

1

n

�

jSj

X

i=1

�

(S)

u

i

+

jIj

X

j=1

�

(I)

u

j

+

jRj

X

k=1

�

y

�

:
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Furthermore, if f is a bounded continuous function on

_

R

d

�E put '

1

(u) =

f(u; susc), '

2

(u) = f(u; inf) and extend by letting f(u; rem) = f(y; rem) =

0. Then write ' = ('

1

; '

2

) and

hX

n

t

; 'i = hS

n

t

; '

1

i+ hI

n

t

; '

2

i :

In general, h�;'i = h�

1

; '

1

i+ h�

2

; '

2

i, where �

1

and �

2

are measures on R

d

.

To de�ne the type interaction, let

�(u; v) : R

d

�R

d

7! R ;

be a bounded, continuous and nonnegative function. Then introduce a func-

tion �(u; v) = (�

1

(u; v);�

2

(u; v)), u; v 2 R

d

, by setting

�

1

(u; v) = 0 ; �

2

(u; v) = �(u; v)

Because the type only changes from susceptible to infective and from infective

to removed, the jump measure � is determined by the rate function (x

i

;�).

We choose the following weakly interacting rates

((susc; u

i

) ;�) = h�;�(u

i

; �)i = h�

2

; �(u

i

; �)i ; ((inf; u

i

) ;�) = � > 0 :

Hence, if X

n

is the state at some �xed time when there are jIj infective

particles at positions u

j

, then

�((susc; u

i

); inf ;X

n

) = hI

n

; �(u

i

; �)i =

1

n

jIj

X

j=1

�(u

i

; u

j

)

is the rate at which a susceptible particle at position u

i

contracts the disease.

By the second assumption we have adopted the standard model of constant

removal rate

�((inf; u

i

); rem ;X

n

) = � :

To concretize the martingale problem for this model one should note

that now

Z

t

0

D

X

n

r

;Af

r

(� ;X

n

r

)

E

dr =

Z

t

0




S

n

s


 I

n

s

; �('

2

� '

1

)

�

ds� %

Z

t

0

hI

n

s

; '

2

)i ds ;

and

Z

t

0

D

X

n

r

;

Z

�f

r

(�; y)�g

r

(�; y) �(�; dy ;X

n

r

)

E

dr

=

Z

t

0




S

n

s


 I

n

s

; �('

2

� '

1

)

2

�

ds + %

Z

t

0




I

n

s

; '

2

2

�

ds :
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Moreover,

H(�;') =




�;L'(�)

�

+

1

2




�; jr

a

'j

2

�

+




�

1


 �

2

; �(e

'

2

�'

1

� 1)

�

+ %




�

2

; (e

�'

2

� 1)

�

:

Therefore, as a corollary of Theorem 2.1 we obtain a large deviation principle

for the SIR-epidemics with rate function

S(�) =

Z

T

0




�

r

; jh

r

j

2

�

+

Z

T

0

�




�

1

r


 �

2

r

; �

�

g

1

r

log g

1

r

� g

1

r

+ 1

��

+ %




�

2

r

;

�

g

2

r

log g

2

r

� g

2

r

+ 1

��

�

dr :

Here h 2 L

2

(�) and g = (g

1

; g

2

) 2 O(�; �) are such that for smooth ', � is

a solution of




_�

t

; '

�

=




�

t

; L'(�

t

) + h

t

� r

a

'

�

+




�

1

t


 �

2

; � ('

2

� '

1

) g

1

t

�

�




�

2

t

; '

2

g

2

t

�

:

3. Proofs

Section 3.1 is devoted to properties of the integral S and the space H which

can be derived without reference to large deviation estimates. Then we start

to prove that the function S(�) actually is a large deviation rate function.

According to the general Theorems 5.2 and 5.3 in [DG] it su�ces to derive

local lower and upper bounds and check the exponential tightness property.

In sections 3.2-3.5 we give proofs for the independent case with locally frozen

interaction. The change-of-measure applied to "switch on" true interaction

is the topic of section 3.6.

3.1 Representation of S. We show �rst that S(�) has the representation

(2.2).

For �xed � 2 D(I;M), introduce for f 2 C

1;2;0

(I � R

d

� E) and 0 �

s � t � T the functionals

J

s;t

(f) = h�

t

; f

t

i � h�

s

; f

s

i �

Z

t

s




�

r

;

@

@r

f

r

�

dr �

Z

t

0

H(�

r

; f

r

) dr ;

with the Hamiltonian H de�ned in (1.3). Similarly, put

`

s;t

(f) := h�

t

; f

t

i � h�

s

; f

s

i �

Z

t

s




�

r

;

@

@r

f

r

+ Lf

r

+Af

r

�

dr :

Hence

(3.1) J

0;T

(f) = `

0;T

(f) �

Z

T

0

D

�

r

;

1

2

jr

a

f

r

j

2

+

Z

� (�f

r

) d�

E

dr :
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Observe that for all f 2 C

1

0

(I �R

d

�E),

`

s;t

(f) =

Z

t

s

�

h _�

r

; f

r

i �




�

r

;Lf

r

+Af

r

�

�

dr :

By approximation this implies that `

s;t

(f) can be obtained from `

0;T

(f) by

restricting to f non-zero on [s; t] only. Now, for any smooth f ,

S(�) =

Z

T

0

sup

f2C

1

0

(R

d

�E)

n

h _�

t

; fi �H(�

t

; f)

o

dt

�

Z

I

�

h _�

r

; f

r

i � H(�

r

; f

r

)

�

dr = J

0;T

(f) :

Hence the right hand side of (2.2) is bounded by S(�):

sup

f2C

1;2;0

(I�R

d

�E)

J

0;T

(f) � S(�) :

Before proving the opposite inequality we introduce some more notation.

The Orlicz space O(I; �) is obtained from the pair of Young functions

� (t) = e

t

� t� 1 ; �

�

(s) = (s + 1) log(s + 1)� s ; s > �1 :

In fact, � and �

�

de�ne a pair of topologically dual Orlicz spaces (L

�

(I; �) ; k�

k

�

) and (L

�

�

(I; �) ; k�k

�

�

) of functions on I�R

d

�E

2

. Then O(�; �) consists

of all functions g = 1 +

~

h with

~

h in L

�

�

.

Consider the product space L

2

(I; �)�L

�

(I; �) equipped with the norm

k(f;

~

f )k = max

�

kfk

2

; k

~

fk

�

	

and its dual product L

2

(I; �) � L

�

�

(I; �) with norm

k(h;

~

h)k

�

= khk

2

+ k

~

hk

�

�

:

For our application typical elements of L

2

(I; �) � L

�

(I; �) will be (equiv-

alence classes) of the form (r

a

f;�f), in one-to-one correspondence with

f 2 C

1;2;0

(I �R

d

�E).

Lemma 3.2.

S(�) � sup

f2C

1;2;0

(I�R

d

�E)

J

0;T

(f) :

Proof: For f 2 C

1;2;0

(I �R

d

�E) put c = k(r

a

f;�f)k. By (3.1),

1

c

`

0;T

(f) � J

0;T

(f=c) +

Z

T

0

D

�

r

;

1

2

�

�

r

a

f

r

kr

a

fk

2

�

�

2

+

Z

�

�

�f

r

k�fk

�

�

d�

E

dr

� J

0;T

(f=c) +

1

2

+ 1 :
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We can assume that the supremum on the right side in the lemma is �nite.

Hence

`

0;T

(f) � const k(r

a

f;�f)k ;

and therefore `

0;T

can be viewed as a bounded linear functional on the linear

space L

di�

of all pairs (r

a

f;�f) in L

2

(I; �) �L

�

(I; �).

By the Riesz representation theorem there exists a unique element (h;

~

h)

in the closure in L

2

(I; �) � L

�

�

(I; �) of the dual linear space of L

di�

, such

that

`

0;T

(f) =

Z

T

0

D

�

r

; h

r

� r

a

f

r

+

Z

~

h

r

�f

r

d�

E

dr ; f 2 C

1;2;0

(I �R

d

�E) :

In particular, for f 2 C

1

0

(R

d

�E) and 0 � s < t � T and putting g =

~

h+1,

h�

t

; fi = h�

s

; fi +

Z

t

s

D

�

r

; Lf + h

r

� r

a

f +

Z

g

r

�f d�

E

dr :

From this it follows that � is absolutely continuous, c.f. [DG]. Moreover, for

almost all t, we have the McKean-Vlasov equation

(3.3) h _�

t

; fi =

D

�

t

; Lf + h

t

� r

a

f +

Z

�f g

t

dn

r

E

:

Now, by (3.3) and (1.3), computing Legendre transforms

S(�) =

Z

T

0

sup

f2C

1

0

(R

d

�E)

D

�

r

; h

r

� r

a

f +

Z

~

h

r

�f d�

�

1

2

jr

a

f j

2

�

Z

� (�f) d�

E

dr

�

Z

T

0

D

�

r

;

1

2

jh

r

j

2

+

Z

�

�

(

~

h

r

) d�

E

dr :

However, for smooth f we have also

J

0;T

(f) =

Z

T

0

D

�

r

;

1

2

jh

r

j

2

+

Z

�

�

(

~

h

r

) d�

E

dr

�

Z

T

0

D

�

r

;

1

2

�

�

h

r

�r

a

f

�

�

2

+

Z

�

�

�

(

~

h

r

) + � (�f

r

) � h

r

�f

r

�

dn

r

E

dr :

By Young's inequality and approximation in L

2

(I; �) � L

�

(I; �), therefore

(3.4) sup

f2C

1;2;0

(I�R

d

�E)

J

0;T

(f) =

Z

T

0

D

�

r

;

1

2

jh

r

j

2

+

Z

�

�

(

~

h

r

) d�

E

dr ;

which �nishes the proof of the lemma. tu
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Lemma 3.5. For any � 2 D(I;M), absolutely continuous and with �

0

= �

0

,

� 2 H if and only if S(�) <1. If � 2 H then (2.3) holds.

Proof: Suppose S(�) < 1. Then the supremum of the functional J

0;T

in

(2.2) is �nite. It was then a byproduct of the proof of the previous lemma

that � solves equation (3.3) for h and g such that � is admissible for �, that

is, � 2 H.

Conversely, suppose � 2 H. Then there exists h 2 L

2

(I; �) and g 2

O(I; �), with

~

h = g � 1 2 L

�

�

(I; �), such that (3.3) and hence (3.4) hold.

But since �

�

has the growth property

sup

t

�

�

(at)=�

�

(t) <1 for some a > 1 ;

the integral

Z

T

0

D

�

r

;

Z

�

�

(

~

h

r

) d�

E

dr =

Z

T

0

D

�

r

;

�

Z

g

r

log g

r

� g

r

+ 1

�

d�

E

dr

is �nite, see e.g. Neveu (1975), Appendix. Therefore, by (3.4), S(�) < 1

and (2:3) holds.

tu

3.2 Independent case, Cram�er transformation.

We start to prove Theorem 1.1 in the case when the processes t 7! x

i

t

are

independent. Hence �x a path b� in D(I;M) and consider the system with

locally frozen interaction b�. This means that the di�usion generator L has

variance matrix a and drift vector b(b�) and the jump measure is of the form

b� = �(x

i

; y ; b�).

For � 2 D(I;M) and f 2 C

1;2;0

(I �R

d

�E), de�ne

K

t

(�; f) = h�

t

; f

t

i � h�

0

; f

0

i �

Z

t

0




�

r

;

@

@r

f

r

�

dr ;

and consider the signed measure paths

f 7! K

n;f

t

:= K

t

(X

n

; f) ; t 2 I:

Then for each F

t

-predictable and P

n

- a:s: bounded function (c

t

)

t2I

,

�

n;f

t

(c) := exp

�

n

Z

t

0

c

r

dK

n;f

r

� n

Z

t

0

H

r

(X

n

r

; c

r

f

r

) dr

	

; t 2 I;

is a (P

n

;F

t

)-martingale. The martingale (or for more general c, the local

martingale) �

n;f

t

(c) is called the Esscher-Cram�er transform or generalized

Cram�er transform. The relation

�

n;f

t

(c) =

dP

n

�

dP

n

�

�

�

F

t

;
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de�nes a new probability measure P

n

c

which is equivalent to P

n

and under P

n

c

subsequent martingales (local martingales) can be derived. In fact, introduce

the derivatives

H

0

t

(�; cf) =




�;Lf

�

+ c




�; jr

a

f j

2

�

+

D

�;

Z

�fe

c�f

db�

E

;

H

00

t

(�; cf) =




�; jr

a

f j

2

�

+

D

�;

Z

(�f)

2

e

c�f

db�

E

:

Then, for each (�

t

)

t2I

, F

t

-predictable and P

n

- a:s: bounded, the process

M

n

t

=

Z

t

0

�

r

dK

n;f

r

�

Z

t

0

�

r

H

0

r

(X

r

; c

r

f

r

) dr

is a (P

n

c

;F

t

)-martingale on I with predictable quadratic variation

hhM

n

ii

t

=

1

n

Z

t

0

�

2

r

H

00

r

(X

r

; c

r

f

r

) dr ;

compare [DK], Lemmas 4.1 and 4.2.

Next we identify a speci�c predictable function c = �

n

for which P

n

�

n

will be used to derive the lower large deviation bound. As usual f

+

= f _ 0

and f

�

= (�f)_0 denote positive and negative parts of a realvalued function

f . The notation f

�

refers to either of the two functions.

Lemma 3.6. Let t 7! �

t

be absolutely continuous. Fix a function f 2

C

1;2;0

0

(I �R

d

�E) which satis�es



�

(f) := inf

t2I

n

jr

a

f

t

j

2

+

Z

(�f

�

t

)

2

d b�

t

o

� c

1

> 0 ;

jh _�

t

; f

t

ij � c

2

; for almost all t 2 I :

Then there exists a unique function �

t

= �(�

t

; _�

t

; f

t

; t), such that for almost

all t 2 I

h _�

t

; f

t

i = H

0

(�

t

; �

t

f

t

) ;

and a unique progressively measurable process t 7! �

n

t

= �(X

n

t

; _�

t

; f

t

; t),

almost all t 2 I, with

h _�

t

; f

t

i = H

0

(X

n

t

; �

n

t

f

t

) :

Moreover, there is a constant K such that for all n

j�

t

j _ j�

n

t

j �

�

�

�

h _�

t

; f

t

i

�

�

+

�

�

h�

t

;Af

t

+Lf

t

i

�

�

�

�

(

+

^ 

�

) � K ;
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and �

n

is continuous in X

n

.

Proof: This is a straightforward extension of [DK], section 4.2. We have

indicated the inequality which we use together with the uniform bounds on

a, b and � to obtain the constant K. tu

Two of the martingalesM

n

with c = �

n

are used in the proofs below. First,

taking �

t

= �

n

t�

,

(3.7)

M

1;n

t

:=

Z

t

0

�

n

r�

�

dK

n;f

r

�H

0

r

(X

n

r

; �

n

r

f

r

) dr

�

=

Z

t

0

�

n

r�

�

dK

n;f

r

� h _�

r

; f

r

i dr

�

hhM

1;n

�

ii

t

=

1

n

Z

t

0

(�

n

r

)

2

H

00

r

(X

n

r

; �

n

r

f

r

) dr :

Second, take �

t

= 1 and f

t

= '. Since then

M

2;n

t

:= K

n;'

t

�

Z

t

0

H

0

r

(X

n

r

; �

n

r

') dr = hX

n

t

; 'i � h�

t

; 'i

is a martingale under P

n

�

n

, we have E

n

�

n

hX

t

; 'i = h�

t

; 'i. Also

hhM

2;n

�

ii

t

=

1

n

Z

t

0

H

00

r

(X

n

r

; �

n

r

') dr :

Here

(3.8) H

00

r

(X

n

r

; �

n

r

') =

D

X

n

r

; jr

a

'j

2

+

Z

(�f)

2

e

�

n

�f

db�

E

� K

1

:

3.3 Lower bound in the independent case. The following proposition is

the analog of [DK], Proposition 4.6. To demonstrate the method we repeat

the proof partially.

Proposition 3.9. Fix � 2 D(I;M) and let V be an open neighbourhood

of �. Then

lim inf

n!1

1

n

logP

n

(V ) � �S(�) :

We can suppose S(�) < 1 and �

0

= �

0

. In the course of the proof of

Lemma 3.2 is was seen that � is then absolutely continuous. Take f 2

C

1;2;0

0

(I � R

d

� E) as in Lemma 3.6. The proof of the following lemma is

identical to [DK], Lemma 4.7.
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Lemma 3.10. Put

�

n

T

=

Z

T

0

n

�

�

H

r

(�

r

; �

r

f

r

)�H

r

(X

n

r

; �

n

r

f

r

)

�

�

+ jh _�

r

; f

r

ij j�

n

r

� �

r

j

o

dr :

Then

�

�

�

Z

T

0

�

n

r

dK

n;f

r

�

Z

T

0

H

r

(X

n

r

; �

n

r

f

r

) dr

�

�

�

� S(�) + jM

1;n

T

j+�

n

T

:

For � > 0, set

V

�

=

n

� 2 V : sup

t2I

k�

t

� �

t

k < �

o

:

The next two lemmas are also direct adaptions from [DK], Lemma 4.7 and

4.8. The proof of the �rst lemma uses the continuity of �

n

in X

n

and the

second lemma is an application of Lenglart-Rebolledo's inequality for M

2;n

,

using the bound (3.8).

Lemma 3.11. For any " > 0 there is a �

0

> 0 such that if � � �

0

and

X

n

2 V

�

, then �

n

T

� ".

Lemma 3.12. For every � > 0,

lim

n!1

P

n

�

n

�

X

n

62 V

�

�

= 0 :

Proof of Proposition 3.9: By Lemma 3.10,

�

n;f

T

(�

n

) � e

nS(�)

expn

�

jM

1;n

T

j+�

n

T

	

:

Therefore

P

n

(V ) =

Z

X

n

2V

�

n

T

(�

n

)

�1

dP

n

�

n

� expf�nS(�)g�

n

;

where

�

n

=

Z

X

n

2V

exp

�

� n jM

1;n

T

j � n�

n

T

	

dP

n

�

n

:

Restrict to V

�

and further to the set of paths for which jM

1;n

T

j � �. Then

�

n

� e

�n�

Z

X

n

2V

�

; jM

1;n

T

j��

e

�n�

n

T

dP

n

�

n

:
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For " > 0 and � � �

0

, by Lemma 3.11

�

n

� e

�n (�+")

P

n

�

n

�

X

n

2 V

�

; jM

1;n

T

j � �

�

:

Now

P

n

�

n

�

X

n

2 V

�

; jM

1;n

T

j � �

�

� P

n

�

n

�

X

n

2 V

�

�

�P

n

�

n

�

jM

1;n

T

j > �

�

:

By Doob's inequality for the martingale in (3.7) using (3.8),

P

n

�

n

�

jM

1;n

T

j > �

�

�

�

�2

n

K

2

K

1

T :

By this estimate and Lemma 3.12 we can now choose n

0

and �

n

! 0, such

that

P

n

�

n

�

X

n

2 V

�

; jM

1;n

T

j � �

�

�

1

2

; n � n

0

:

Then

1

n

log�

n

� �(�

n

+ ")�

1

n

log 2!�" ; n!1 ;

and �nally,

lim inf

n!1

1

n

logP

n

(V ) � �S(�) + lim sup

n!1

1

n

log�

n

= �S(�)� " :

Let " go to zero to �nish the proof. tu

3.4 Upper bound in the independent case.

Proposition 3.13. Fix � 2 D(I;M). For every � > 0, there exists an open

neighbourhood V of � such that

lim sup

n!1

1

n

logP

n

(V ) � �S(�) + �

provided S(�) < 1. If S(�) = 1 the assertion holds with �� on the right

side of the inequality.

Proof: We follow [DK], Proposition 4.7. Fix � > 0. For �

0

> 0, put

V = V (�

0

) :=

n

� : sup

t2I

sup

f2C

1;2;0

(I�R

d

�E)

jh�

t

� �

t

; f

t

ij < �

0

o

:

In this proof we use the notation J

s;t

(�; f) = J

s;t

(f). From section 3.2

we know that �

n;f

t

(1) = expnJ

0;t

(X

n

; f) is a P

n

-martingale. Use 1 �

E

n

�

�

n;f

T

(1) ; X

n

2 V

�

to see

exp�nJ

0;T

(�; f) � E

n

h

exp�n

�

�

J

0;T

(X

n

; f) � J

0;T

(�; f)

�

�

; X

n

2 V

i

:
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But simple estimates show that for X

n

2 V there is a constant C

1

such that

jJ

0;T

(X

n

; f) � J

0;T

(�; f)

�

�

� C

1

�

0

:

Choose �

0

= �=C

1

to get a set V for which

exp�nJ

0;T

(�; f) � e

�n �

P

n

(V ) :

Hence

1

n

logP

n

(V ) � �J

0;T

(�; f) + �

and therefore, by (2.2) if S(�) <1,

lim sup

n!1

1

n

logP

n

(V ) � � sup

f2C

1;2;0

(I�R

d

�E)

J

0;T

(�; f) + � = �S(�) + � :

If S(�) =1, by (2.2) we can �nd f 2 C

1;2;0

(I�R

d

�E) such that J

0;T

(f) �

2�. tu

3.5 Exponential tightness.

The basic estimate needed to prove compactness of the level sets for S is

covered by the following

Proposition 3.14. For each m � 1 there is a compact set E

m

in D(I;M)

such that

P(X

n

=2 E

m

) � exp�nm :

In [DG], Lemma 5.6, a method was developed to obtain such bounds. For

jump processes Feng (1994), Lemma 3.9, gave a similar result. Proposition

4.11 in [DK] follows these ideas very closely. It is tedious but straightforward

to extend the proofs to the multitype situation. Since the ideas are clear from

the given references we feel it is superuous to repeat them here.

3.6 Large deviation estimates for the dependent case.

We have proved the theorem for jump measures bn(x; dy) with respect to some

�xed b�. Let

b

P

n

denote the law corresponding to the frozen interaction bn and

let P

n

now denote the probability law in the general case. The common

method to lift this restriction and obtain the result for the interaction model

is to follow Shiga and Tanaka (1985) and apply a Girsanov tranformation to

go from

b

P

n

to P

n

. Again we are somewhat sketchy and refer to [DK], section

5, and the references there. However, we give the form of the derivative

dP

n

�

d

b

P

n

and a rather complete proof of the lower bound.

For an n�particle motion x = (x

1

t

; : : : ; x

n

t

)

t2I

, let

�

i

t

= u

i

t

� u

i

0

�

Z

t

0

b(u

i

s

; b�

n

s

) ds ; hh�

i

�

; �

i

�

ii

t

=

Z

t

0

a(u

i

s

) ds ;
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denote the d�dimensional continuous

b

P

n

-martingale corresponding to the

di�usion part and N

t

(x

i

) the counting process for the total number of jumps

inE starting at x

i

, i.e. N

t

(x

i

) is compensated under

b

P

n

by

R

t

0

R

E

b�(x

i

s

; dy) ds.

De�ne

A

n

t

(x) =

n

X

i=1

n

Z

t

0

�

b(x

i

r

; X

n

r

)�b(x

i

r

; b�

r

)

�

� d�

i

r

+

Z

t

0

log

(x

i

r�

; X

n

r�

)

(x

i

r�

; b�

r�

)

dN

r

(x

i

r

)

o

;

and

B

n

t

(x) =

n

X

i=1

Z

t

0

n

1

2

�

�

b(x

i

r

; X

n

r

)�b(x

i

r

; b�

r

)

�

�

2

+

�

(x

i

r

; X

n

r

)�(x

i

r

; b�

r

)

�

o

dr :

Moreover, for any real �, put

B

n;(�)

t

(x) =

n

X

i=1

Z

t

0

n

�

2

2

�

�

b(x

i

r

; X

n

r

)� b(x

i

r

; b�

r

)

�

�

2

+

�



r

(x

i

r

;X

n

r

)



r

(x

i

r

; b�

r

)

�

�

� 1

o

dr :

Then by standard theory the change of measure from

b

P

n

to P

n

is absolutely

continuous with Radon-Nikodym derivative

dP

n

d

b

P

n

�

�

�

F

t

= exp

�

A

n

t

�B

n

t

	

;

and, for any � 2 R,

Y

(�)

t

:= expf�A

n

t

�B

n;(�)

t

g ; t 2 I ;

is a (

b

P

n

;F

t

)-local martingale and thus a supermartingale.

To prove the lower bound Proposition 3.9 in the general case use �rst

the uniform continuity in � of b and  to �nd for all � > 0 a neighborhood

W of b� with W � V such that

jB

n

T

j � n� uniformly on W

and

jB

n;(��)

T

j � C(�) � n uniformly on W ;

where C(�) is a constant depending on � only. Then, for a pair of conjugate

exponents p; q > 1,

P

n

(V ) � P

n

(W ) =

b

E

n

�

exp

�

A

n

T

�B

n

T

	

; X

n

2W

�

� e

�n�

b

E

n

�

expA

n

T

; X

n

2W

�

� e

�n�

e

�n�C(�)=�

b

E

n

h

exp

�

A

n

T

+

p

q

B

n;(�q=p)

T

	

; X

n

2W

i

:
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Thus, by H�older's inequality and the supermartingale property of Y

(�q=p)

t

,

1

n

logP

n

(V ) � ��(1 + C(�)=�) + p

1

n

log

b

P

n

(W ) :

We know that Theorem 1.1 holds for

b

P

n

. Hence

lim sup

n!1

1

n

logP

n

(V ) � ��(1 + C(�)=�)� pS(b�) :

Take � ! 0 and then p! 1 to �nish the proof of Proposition 3.9 in the inter-

acting case. The proof of Proposition 3.13 is carried out similarly, compare

[DK], Lemma 5.3.
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