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Purpose

Stochastic models for simplified wireless network

I Spatially distributed stations with emitters/receivers for
transmission over a common communication channel.

I Approach based on Poisson point processes for spatial
locations, signal strength, fading effects, session length

I Signal transmissions syncronized and slotted in time; one
symbol per slot.

I Signal power affected by Rayleigh fading, attenuation prop. to
traveled distance, and lognormal fading.

I Interference field: superposition effect of all stations.

I Signal to noise and interference ratio; compute or estimate
success probability.

I Balance between node density and node interference.



Model extentions

I Modeling scenario for Rayleigh fading based on Lévy gamma
subordinator processes relation to complex Gaussian
waveforms (continuous time).

I Sessions which are Poisson in both space and time.

I Short-tailed or heavy-tailed random session duration times.

I Scaling approximation to analyze the fluctuations in the
interference field. Brownian motion, fractional Brownian
motion, etc.



Outline
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Temporal-spatial traffic sessions
Fluctuations of interference field
Scaling analysis



Connectivity model

Move around (receiver) in
space: count number of nodes
within transmission range

Center balls B(x, r) of random radius r at locations x ∈ Rd of a Poisson
point measure, Lebesgue intensity λdx. Each ball has independent radius
R from distribution FR(r) = P (R ≤ r). Let Nλ(dx, dr) be a Poisson
point measure with intensity λdxFR(dr). The number of “successful
transmissions” received at y is

M1(y) =
∑

j

I{Rj > |Xj − y|} =
∫
Rd

∫ ∞

0

I{r > |x− y|}N(dx, dr)

= # balls containing y



If E(Rd) < ∞ then

EM1 =
∫
Rd

∫ ∞

0

I{r > |x|}n(dx, dr) = λ

∫ ∞

0

∫
Rd

I{r > |x|} dx FR(dr)

= λ

∫ ∞

0

|B(0, r)|FR(dr) = λ|B(0, 1)|E(Rd).

The moment generating function

log EeθM1 =
∫
Rd

∫ ∞

0

eθI{r>|x|} − 1) n(dx, dr)

= λ(eθ − 1)
∫
Rd

∫ ∞

0

I{r > |x|}n(dx, dr)

= λ(eθ − 1)|B(0, 1)|E(Rd)

shows that M1 is Poisson. For fixed R = r, a point is connected to at
least one network node with probability

P (M1 ≥ 1) = 1− e−λ|B(0,1)|rd

.



Pathloss model

With each node associate signal of power S. Attenuation over distance x
given by function a(x), e.g.

a0(x) = |x|−β , a1(x) = (1 + |x|)−β , β > d.

External noise W , threshold T , required signal to noise ratio:

SNR = S a(x)/W > T.

The # of nodes successfully received at the origin:

M2 =
∑

j

I{Sja(Xj) > TW} =
∫
Rd

∫ ∞

0

I{s a(x) > TW}N(dx, ds).



Pathloss model, cont’n

Using a0(x) = |x|−β ,

M2 =
∫
Rd

∫ ∞

0

I{(s/TW )1/β > |x|}N(dx, ds).

Thus, pathloss model equivalent to connectivity model with

R = (S/TW )1/β , FR(r) = P (S < TWrβ) = FS(TWrβ).

Hence

EM2 = λ|B(0, 1)|E[(S/TW )d/β ] = λ|B(0, 1)|T−d/βE(Sd/β) E(W−d/β).

Basic assumption on S: E(Sd/β) < ∞. Since β > d, suffices to have

ES < ∞. The additional moment condition for external noise is

somewhat artificial; singularity of a0.



Rayleigh fading

S exponential distribution, parameter µ. Motivation comes from
underlying picture of the signal as a complex waveform Z = X + iY with
Gaussian real and imaginary parts. If X, Y independent zero mean
Gaussian random variables with variance σ2, then power of the wave is
the squared amplitude X2 + Y 2, which is exponential with mean 2σ2. In
pathloss model:

P (R > r) = EP (S > TWrβ |N0) = E(e−µTWrβ

), r ≥ 0.



Some Poisson integral calculus

Ref’s: E.g. Kingman [Ki], Kallenberg [Ka].

Poisson point measure N =
∑

j δXj
defined on measurable state space

X. Intensity measure is a σ-finite measure n also defined on X. For any
A ⊂ X, the number of points in A, N(A) =

∑
j I{Xj ∈ A}, is Poisson

with mean n(A). For A1, . . . , An in X disjoint the variables
N(A1), . . . , N(An) are independent.

Let f : X → R be a measurable function. The stochastic integral of f
with respect to N , ∫

X

f(x) N(dx) =
∑

j

f(Xj),

exists with probability one if and only if∫
X

min(|f(x)|, 1) n(dx) < ∞.

For such f , the distribution of the Poisson integral is determined by the
characteristic function

E exp
{

iθ

∫
X

f(x) N(dx)
}

= exp
{∫

X

(eiθf(x) − 1) n(dx)
}

, θ ∈ R.



Poisson integral calculus, cont’n
In particular,

E

∫
X

f(x) N(dx) =
∫
X

f(x)n(dx),

Var
∫
X

f(x) N(dx) =
∫
X

f(x)2 n(dx)

The centered stochastic integral∫
X

f(x) N(dx)− E

∫
X

f(x)N(dx) =
∫
X

f(x) (N(dx)− n(dx))

with respect to the compensated measure Ñ(dx) = N(dx)− n(dx), has
characteristic function

E exp
{

iθ

∫
X

f(x) Ñ(dx)
}

= exp
{∫

X

(eiθf(x) − 1− iθf(x))n(dx)
}

.

The integral
∫
X

f(x) Ñ(dx) exists in L1 if and only if∫
X

min(|f(x)|, f(x)2) n(dx) < ∞.



Multicast model

Users located in Rd as Poisson point process with intensity λdx. Signal
of power S emitted at the origin. The users are potential receivers.
Transmission subject to attenuation pathloss, a0(x) = |x|−β , and
external noise W . The # of users that recieve the message is

M3 =
∑

j

I{S a(Xj) > TW} =
∫
Rd

I{S a(x) > TW}N(dx).

Characteristic function:

E(eiθM3) = E exp
{

λ(eiθ − 1)
∫
Rd

I{S > WT |x|β} dx
}

= E exp{λ(eiθ − 1)|B(0, 1)|(S/WT )d/β}.

Thus, M3 is mixed Poisson random with random intensity that depends

on non-fading signal to noise ratio S/W .



Interference model

The field of Poisson interference is the (stationary) shot noise process

Iλ(y) =
∑

j

Sja(Xj − y) =
∫
Rd

∫ ∞

0

s a(x− y)N(dx, ds), y ∈ Rd.

For Iλ = Iλ(0) with a = a0 we have

log E(eiθIλ) =
∫
Rd

∫ ∞

0

(eiθa(x)s − 1) n(dx, ds)

= λ|B(0, 1)|
∫ ∞

0

E(eiθS/rβ

− 1)rd−1 dr

= λ|B(0, 1)|
∫ ∞

0

E(eiθSt − 1)β−1t−d/β−1 dt

= λ|B(0, 1)|E(Sd/β)
∫ ∞

0

(eiθt − 1)β−1t−d/β−1 dt

= λ|B(0, 1)|E(Sd/β)C(sign θ) |θ|d/β .

Thus, Iλ is α-stable with stable index α = d/β < 1 (infinite mean).



Interference model, cont’n

Place source of signal power S at x ∈ Rd. Emitted signal is received at
the origin uncorrupted by interference if signal to interference and noise
ratio exceeds a threshold value

SINR =
S a(x)
W + Iλ

> T.

Assuming Rayleigh fading with S exponential of mean 1/µ,

P (S a(x) > T (W + Iλ)) = E(e−µTW/a(x))E(e−µTIλ/a(x)).

Here,

E(e−µTIλ/a(x)) = exp
{
−λCd,βE(Sd/β) (µT/a(x))d/β

}
= exp

{
−λCd,βΓ(1 + d/β) T d/β |x|d

}
= exp

{
− λ

dπ/β

sin(dπ/β)
T d/β |x|d

}



Node density balancing interference

Medium access control probability, [BBM’06]. No external noise, W = 0.
Assume each station which access the medium (prob p) expects to
transmit over fixed distance r with threshold T , to a destination user not
considered part of the network.
If accessing station is (Xj , Sj) and the user located at Yj , |Xj − Yj | = r,
then success if Sj a(Xj − Yj) > TIλp(Yj). Hence the expected # of
successful users in S ⊂ Rd equals

E
∑

Xj∈S

I{Sja(r) > TIλp(Yj)} =
∫
S

P (Sa(r) > TIλp)λpdx

= λp|S|P (Sa(r) > TIλp)
= λ′pr(λ′) |S|, λ′ = λp.

Thus, maximize λpr(λ) over λ.



Node density versus interference, cont’n

Claim: If ESp < ∞ for some p > d/β, then there exists an optimal node
intensity λmax which maximizes the performance of the network, under
given conditions.
Chebyshev:

pr(λ) = pλ1/dr(1) = P (S > Tλβ/drβI1) ≤ E(Sp)E(I−p
1 )

1
T pλpβ/drpβ

Here,

E(I−p
1 ) =

1
Γ(p)

∫ ∞

0

sp−1E(e−I1s) ds = · · · =

=
(β/d)Γ(pβ/d)

Γ(p)(|B(0, 1)|Γ(1− d/β)E(Sd/β)/d)pβ/d
< ∞.

Thus, if E(Sp) < ∞, some p > d/β, then

λpr(λ) ≤ const
1

λpβ/d−1
→ 0, λ →∞,



Traffic session modeling

Pitman-Yor (and others): There exists a two-parameter stochastic process
{Γv(t), v ≥ 0, t ≥ 0} which is a gamma subordinator process in t and a
squared Bessel diffusion in v.
Interpretation: Subordinator increments yield the cumulative increase of
energy pulses from a given emitter over time. For fixed t, Γv(t), v ≥ 0,
Γ0(t) = 0, is a squared Bessel diffusion with fractal dimension 2t and
variance parameter v/2. In particular,

Γv(k) =
k∑

j=1

(X2
j + Y 2

j ), (Xj , Yj) zero mean Gaussian, variance v/2,

meaning that Rayleigh fading stems from variations in squared amplitude
of complex Gaussian wave.



Rayleigh fading sessions

Let Nλ(dx, dγ) be Poisson point process in Rd ×D with intensity

measure λdxQ
a(x)
0 (dγ), where Qv

0(dγ) is the distribution for
subordinator paths {γ(t), t ≥ 0} of Γv(t).
The cumulative interference in y at time t is given by

Iλ(t, y) =
∫
Rd

∫
D

γ(t)a(x− y) Nλ(dx, dγ).

Using a = a0,

log E(eiθIλ(t)) =
∫
Rd

∫
D

(eiθγ(t) − 1) λdxQ
a(x)
0 (dγ)

= λ|B(0, 1)|E(Γ1(t)d/β) C(sign θ) |θ|d/β .



Lognormal fading

Multiplicative effect of wave shadowing. Changes slowly in comparison to
Rayleigh fading.
Assume the power observed at the origin of an emitter in x has lognormal
distibution Vx with distribution Fx(dv) and EVx = a1(x). Conditional on
Vx = v, assume the cumulative power is Γv(t), t ≥ 0.
Relevant Poisson measure Nλ(dx, dv, dγ) has intensity
λdxFx(dv)Qv

0(dγ), and

log E(eiθIλ(t)) =
∫
Rd

∫ ∞

0

∫
D

(eiθγ(t) − 1) λdxFx(dv)Qv
0(dγ)

= λ

∫
Rd

∫ ∞

0

E(eiθΓv(t) − 1) Fx(dv)dx

= λ

∫
Rd

E
[( Vx

1− iθVx

)t

− 1
]
dx.



Temporal-Spatial Interference

Signal transmitters:

I random locations
x ∈ S ⊂ Rd, Poisson

I initial times s ∈ R,
Poisson

I call holding times u, law
G(du)

Transmission sessions (s, x, u),
given by Poisson point
measure N(ds, dx, du) with
intensity λdsdxG(du)

xi

si

x

yi

t

y

sui



Temporal-Spatial Interference, cont

Interested in total spatial
interference, measured as received
power at origin. Two types of
fading reduce signal power:

I Lognormal fading;
multiplicative shadowing,
long term

I Rayleigh fading; multipath
interaction, short term

Model:

I Attenuation function,
g(x) = 1

(1+|x|)β

I V ∼ log N , EV=g(x), law
Fx(dv)

I Given V = v, power given
by Gamma subordinator
Γv(t), law Qv(dγ)

xi

si

x

yi

t

y

sui



Temporal-Spatial Interference, cont

The resulting signal of session (s, x, u) is a point (s, x, u, v, γ) given by a
Poisson point measure N(dsdx, du, dv, dγ) with intensity measure
λdsdxG(du) Fx(dv) Qv(dγ).

Introduce

Kt(s, u) =
∫ t

0

I{s < y < s + u} dy = |(s, s + u) ∩ (0, t)|,

which measures the fraction of the time interval [0, t] during which a
session that starts at time s and has duration u is active.

Interference process:

Iλ(t) =
∫
R×Rd

∫ ∞

0

∫ ∞

0

∫
D

γ(Kt(s, u))N(dsdx, du, dv, dγ).



Fluctuations
Fluctuations of the Poisson interferers around the mean level

EIλ(t) =
∫
R×Rd

∫ ∞

0

∫ ∞

0

EΓv(Kt(s, u))λdsdxFx(dv) G(du)

=
∫
R×Rd

∫ ∞

0

E(Vx)Kt(s, u) λdsdxF (du)

= λ

∫
Rd

EVx dx

∫ ∞

−∞

∫ ∞

0

Kt(s, u) ds F (du)

= λ

∫
Rd

EVx dx EU t,

are described by the compensated Poisson integral

Jλ(t) = Iλ(t)−EIλ(t) =
∫
R×Rd

∫ ∞

0

∫ ∞

0

∫
D

γ(Kt(s, u)) Ñλ(dsdx, du, dv, dγ),

where

Ñλ(dsdx, du, dv, dγ) = Nλ(dsdx, du, dv, dγ)−λdsdxG(du) Fx(dv) Qv
0(dγ).



Scaling Analysis

Investigate scaling limits of

log E(eiθJλ(t))

=
∫
R×Rd

∫ ∞

0

∫ ∞

0

E(eiθΓv(Kt(s,u)) − 1− iθΓv(Kt(s, u)))λdsdxG(du)Fx(dv)

=
∫
R×Rd

∫ ∞

0

∫ ∞

0

(e−Kt(s,u) log(1−ivθ) − 1− ivθKt(s, u))λdsdxG(du)Fx(dv).

We look at high-density limits, λ →∞, under time rescaling, t → at,
a →∞.



Finite variance call holding time

Suppose E(U2) < ∞. Then

log E(eiθb−1Jλ(at))

∼ −1
2

∫
R×Rd

∫ ∞

0

∫ ∞

0

(vθ

b

)2

(Kat(s, u)2 + Kat(s, u))λdsdxG(du)Fx(dv)

∼ −1
2
θ2

∫
Rd

E(V 2
x ) dx

∫ ∞

−∞

∫ ∞

0

(Kat(as, u)2 + Kat(as, u)) dsG(du)

∼ −1
2
θ2

∫
Rd

E(V 2
x ) dx (E(U2) + E(U)) t,

since
Kat(as, u) → u I{0 < s < t}, a →∞.

The distributional limit of Jλ(at)/
√

λa is Brownian motion with variance∫
Rd E(V 2

x ) dx E(U2 + U).



Scaling analysis, heavy tails

Assume that distribution G(du) for call durations has a regularly varying
tail at infinity, 1−G(u) = L(u)u−γ , L a slowly varying function, γ,
1 < γ < 2 the index of regular variation. Then U has finite mean but
infinite variance.

Three possible scaling regimes given by relative speed at which λ and a
tend to infinity. We consider

I Fast connection rate: λ/aγ−1 →∞, b2 = λa3−γ

I Intermediate connection rate: λ/aγ−1 → 1, b = a

I Slow connection rate: λ/aγ−1 → 0, bγ = λa

Put differently: While increasing the density of nodes, trace the system

along appropriate time scale. Which fluctuations build up?



Scaling analysis, heavy tails, cont’n

One can show that in each of the three cases

log E(eiθJλ(at)/b)

∼
∫
R×Rd

∫ ∞

0

∫ ∞

0

(eivθKat(s,u)/b − 1− ivθKat(s, u)/b) λdsdxG(du)Fx(dv).

For fast connection rate

log E(eiθJλ(at)/b)

∼ −1
2

∫
Rd

EV 2
x dx

∫ ∞

−∞

∫ ∞

0

(aθKt(s, u)/b)2 λads G(adu)

∼ −1
2
θ2

∫
Rd

EV 2
x dx

∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 ds u−γ−1du.

A Gaussian distribution. Which one?



Scaling analysis, heavy tails, cont’n

Here ∫ ∞

−∞

∫ ∞

0

Kt(s, u)2 ds u−γ−1du

=
∫ t

0

∫ t

0

dydy′
∫ ∞

|y−y′|
(1− |y − y′|/u) u−γ−1

= const
∫ t

0

∫ t

0

dydy′|y − y′|−(γ−1) = const t3−γ .

In general, we obtain the finite-dimensional distribution of fractional

Brownian motion with Hurst index H = (3− γ)/2.



Scaling analysis, heavy tails, cont’n

Intermediate scaling yields

log E(eiθJλ(at)/a)

→
∫
R×Rd

∫ ∞

0

∫ ∞

0

(eivθKt(s,u) − 1− ivθKt(s, u)) dsdxu−γ−1Fx(dv),

which is the characteristic function of

Yλ(t) =
∫
R×Rd

∫ ∞

0

∫ ∞

0

Kt(s, u) Ñ(dsdx, du, dv), t ≥ 0,

where Ñ is a compensated Poisson measure with intensity measure
dsdxu−γ−1Fx(dv). The covariance structure of this process is same as
that of FBM with Hurst index 3− γ.

Finally, the limit in the case of slow connection rate is a stable Lévy
process with stable index 1/γ.
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