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Abstract. We study generalized random fields which arise as rescaling limits of spa-
tial configurations of uniformly scattered random balls as the mean radius of the balls
tends to 0 or infinity. Assuming that the radius distribution has a power law behavior,
we prove that the centered and re-normalized random balls field admits a limit with
self-similarity properties. Our main result states that all self-similar, translation and
rotation invariant Gaussian fields can be obtained through a unified zooming proce-
dure starting from a random balls model. This approach has to be understood as a
microscopic description of macroscopic properties. Under specific assumptions, we also
get a Poisson type asymptotic field. In addition to investigating stationarity and self-
similarity properties, we give L2-representations of the asymptotic generalized random
fields viewed as continuous random linear functionals.

Introduction

In this work we construct essentially all Gaussian, translation and rotation invariant,
H-self-similar generalized random fields on Rd in a unified manner as scaling limits of
a random balls model. The self-similarity index H ranges over all of R \ Z and the
random balls model is of germ-grain type. It arises by aggregation of spherical grains
attached to uniformly scattered germs given by a Poisson point process in d-dimensional
space. By a similar scaling procedure, we obtain also non-Gaussian random fields with
interesting properties, in particular a model of the type ”fractional Poisson field”. Its
covariance functional coincides with that of the Gaussian H-self-similar field, so that
it fulfills a second order self-similarity property. Although not self-similar in law, this
Poisson field presents a property of ”aggregate similarity” which takes into account both
Poisson structure and self-similarity.

We observe two distinctly separate behaviors depending on whether the self-similarity
index H belongs to an interval of type (m,m + 1/2) or of type [m − 1/2,m) for some
integer m. In the first case, the scaling limit applies to random balls models with balls of
arbitrarily small radii. In the opposite case, the corresponding germ-grain models have
arbitrarily large spherical grains.

The scaling procedure which acts on the random balls model is based on the assump-
tion that the grains have random radius, independent and identically distributed, with a
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distribution having a power law behavior either in zero or at infinity. The resulting con-
figuration of mass, obtained by counting the number of balls that cover any given point
in space, suitably centered and normalized, exhibits limit distributions under scaling.
For the case of the random balls radius distribution being heavy-tailed at infinity, the
corresponding scaling operation amounts to zooming out over larger areas of space while
re-normalizing the mass. In the opposite case, when the radius of balls is given by an
intensity with prescribed power-law behavior close to zero, the scaling which is applied
entails zooming in successively smaller regions of space. Infinitesimally small microballs
will emerge and eventually shape the resulting limit fields. In particular, our results
unify and extend in some directions the previous works on similar topics in Kaj et al.
[15] (case H ∈ (−d/2, 0)) and Biermé and Estrade [4] (case H ∈ (0, 1/2)). Preliminary
and less general versions of some of the results presented here have appeared in Biermé
et al. [5] (case H ∈ (−d/2, 0)∪ (0, 1/2)). Let us emphasize that the main novelty of this
paper is the extension to any non-integer values of H and the complete description of
the asymptotic fields.

Dobrushin [9] characterized the stationary self-similar Gaussian generalized random
fields in their spectral form. In this work we obtain the subclass of such random fields
that are isotropic, since the random balls models under consideration are rotationally
symmetric. In order to obtain the whole range of self-similarity behavior it is necessary
to work not only with stationary random fields but with the wider class of generalized
random fields with stationary increments or stationary nth increments. In this sense our
approach also links to the line of work initiated by Matheron [18].

The paper is organized as follows. After having introduced the modeling framework
and the setting of the investigation we discuss in Section 2 some principles for scaling
limit analysis and state two main results, which cover a Gaussian limit regime and a
Poisson limit regime. Section 3 is devoted to the properties of the limiting random fields:
stationarity and self- or aggregate-similarity. The main results, in particular Theorem
4.7, are presented in Section 4 with the study of all self-similar, isotropic, stationary
generalized random fields. In particular we prove that all such Gaussian fields arise as
scaling limits of the random balls model. In Section 5 we give a pointwise representation
of the generalized self-similar fields with positive self-similarity index H > 0 and discuss
a few explicit examples.

1. Setting

We present first a unified framework which includes and extends both of the distinct
modeling scenarios studied in [15] and [4], respectively. Let B(x, r) denote the ball
in Rd with center at x and radius r and consider a family of grains Xj + B(0, Rj) in
Rd generated by a Poisson point process (Xj , Rj)j in Rd × R+. Equivalently, we let
N(dx, dr) be a Poisson random measure on Rd × R+ and associate with each random
point (x, r) ∈ Rd × R+ the random ball B(x, r). We assume that the intensity measure
of N is given by κdxF (dr) , where κ is a positive constant and F is a non-negative
measure on R+, σ-finite on (0,+∞). Moreover, we assume throughout the paper that
the ball radius intensity F (dr) is such that

(1)
∫

R+

rdF (dr) < +∞.
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Note that if F is a probability measure, this assumption implies that the expected volume
of a ball is finite.

For measurable sets A ⊂ Rd × R+, we let N(A) =
∫
AN(dx, dr) denote the number

of balls with random location and radius (x, r) contained in A and view the values of
A 7→ N(A) as integer-valued random variables on a probability space (Ω,A,P). We
recall the basic facts (see [17] chapter 10 for instance) that N(A) is Poisson distributed
with mean

∫
A κdxF (dr) (if the integral diverges then N(A) is countably infinite with

probability one) and if A1, . . . , An are disjoint then N(A1), . . . , N(An) are independent.
We also recall that for measurable functions k : Rd × R+ → R, the stochastic integral∫
k(x, r)N(dx,dr) of k with respect to N exists P-a.s. if and only if

(2)
∫

Rd×R+

min(|k(x, r)|, 1) dxF (dr) <∞.

1.1. Power-law assumption. For β 6= d we introduce the following asymptotic power
law assumption for the behavior of F near 0 or at infinity:

A(β) : F (dr) = f(r)dr with f(r) ∼ r−β−1 , as r → 0d−β,

where by convention 0α = 0 if α > 0 and 0α = +∞ if α < 0.

The range of parameter values under consideration will be d − 1 < β < 2d. Then,
according to (1), under assumption A(β) it is natural to consider the asymptotic behavior
of F near 0 for d− 1 < β < d and at infinity for d < β < 2d.

1.2. Random field. We consider random fields defined on a space of measures, in the
same spirit as the random functionals of [15] or the generalized random fields of [3]. Let
M denote the space of signed measures µ on Rd with finite total variation

(3) ‖µ‖ := |µ|(Rd) <∞,

where |µ| is the total variation measure of µ and ‖ · ‖ is a norm on M (see e.g. [21]
p.161). For any µ ∈M, µ(B(x, r)) is a measurable function on Rd × R+ for which

(4)
∫

Rd×R+

|µ(B(x, r))| dxF (dr) ≤ vd |µ|(Rd)
∫

R+

rdF (dr) < +∞ ,

in view of (1), where vd is the Lebesgue measure of the unit ball in Rd. In particular, (2)
applies with k(x, r) = µ(B(x, r)). We may hence introduce a generalized random field
X defined on M by

(5) X (µ) =
∫

Rd×R+

µ(B(x, r)) N(dx,dr), ∀µ ∈M.

The condition (4) is even sufficient and necessary for X(µ) to have finite expected value,
and in this case

EX(µ) =
∫

Rd×R+

µ(B(x, r))κdxF (dr) = κ vd µ(Rd)
∫

R+

rdF (dr).

Let us also note that the random field X is linear on each vectorial subspace of M in
the sense that for all µ1, . . . , µn ∈M and a1, . . . , an ∈ R, almost surely,

X (a1µ1 + . . .+ anµn) = a1X(µ1) + . . .+ anX(µn).
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Furthermore the characteristic function of X(µ) is given by (see [17] Lemma 10.2)

(6) E(eitX(µ)) = exp
(∫

Rd×R+

(eitµ(B(x,r)) − 1)κdxF (dr)
)
, t ∈ R.

Our first proposition adds to this a simple topological structure.

Proposition 1.1. The random field X : (M, ‖ · ‖) →
(
L2(Ω,A,P), ‖ · ‖2

)
is a continu-

ous random linear functional, where ‖ · ‖ is given by (3) and ‖ · ‖2 is the usual norm on
L2(Ω,A,P).

Proof. Let µ ∈ M. The random variable X(µ) is in L2(Ω,A,P) and so X can be
considered as a linear functional X : M → L2(Ω,A,P). Moreover, for any µ ∈ M, by
Fubini’s theorem,

Var (X(µ)) =
∫

Rd×R+

µ (B(x, r))2 κdxF (dr)

≤ κ ‖µ‖
∫

Rd×Rd

|µ (B(x, r))| dxF (dr)(7)

≤ κ vd

(∫
R+

rd F (dr)
)
‖µ‖2 <∞.

Similarly, |E (X(µ))| ≤ κ vd

(∫ +∞
0 rdF (dr)

)
‖µ‖. Therefore, according to (1), one can

find a positive constant cd > 0 such that

‖X(µ)‖2 =
√

Var (X(µ)) + E (X(µ))2 ≤ cd‖µ‖,
which shows the continuity of X.

�

The random linear functional X − E(X) is also a continuous linear functional from
(M, ‖ · ‖) to

(
L2(Ω,A,P), ‖ · ‖2

)
. The corresponding subordinated norm of X −E(X) is

given by

|||X − E(X)||| = sup
‖µ‖≤1

‖X(µ)− E(X(µ))‖2 = sup
‖µ‖≤1

√
Var(X(µ)).

For µ = δ0, the Dirac mass at the origin of Rd, we get Var (X(δ0)) = κ vd

(∫
R+ r

dF (dr)
)

and may conclude in view of (7) that

(8) |||X − E(X)||| =

√(
κ vd

∫
R+

rdF (dr)
)
.

2. Scaling limit

2.1. Scaled random fields. Let us introduce now the notion of “scaling”, by which we
indicate an action: a change of scale acts on the size of the grains. The scaling procedure
performed in [15] acts on grains of volume v changed by shrinking into grains of volume
ρ v with a small parameter ρ (“small scaling” behavior). The same is performed in [4]
in the context of a homogenization, but the scaling acts in the opposite way: the radii
r of grains are changed into r/ε (which is a “large scaling” behavior). To cover both
mechanisms we introduce the random field which is obtained by applying the rescaling
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of measures µ 7→ µρ, where µρ(B) = µ(ρB) for ρ > 0 and measurable subsets B of Rd.
Let us denote by Fρ(dr) the image measure of F (dr) by the change of scale r 7→ ρr and
remark that

X (µρ) =
∫

Rd×R+

µ(B(x, r)) N(dρ−1x,dρ−1r), ∀µ ∈M,

where the intensity measure of N(dρ−1x,dρ−1r) is κ ρ−ddxFρ(dr). It is natural from
this viewpoint to have µ representing an observation window and interpret limits ρ→ 0
as zoom-out and limits ρ→∞ as zoom-in of the random configurations of balls in space.

Let us multiply the intensity measure by λ/κ (λ > 0) and consider the associated
random field on M given by∫

Rd×R+

µ(B(x, r)) Nλ,ρ(dx,dr) ,

whereNλ,ρ(dx,dr) is the Poisson random measure with intensity measure λdxFρ(dr) and
µ ∈ M. Choosing λ = κρ−d, this random field has the same law as {X(µρ) ; µ ∈M}.
Results are expected concerning the asymptotic behavior of this scaled random balls
model under hypothesis A(β) when ρ→ 0 or ρ→ +∞. We choose ρ as the basic model
parameter, consider λ = λ(ρ) as a function of ρ, and define on M the random field

(9) Xρ(µ) =
∫

Rd×R+

µ(B(x, r)) Nλ(ρ),ρ(dx,dr) .

Then, we are looking for a normalization term n(ρ) such that the centered field converges
in distribution,

(10)
Xρ(.)− E(Xρ(.))

n(ρ)
fdd→ W (.)

and we are interested in the nature of the limit field W . The convergence (10) holds
whenever

E
(

exp
(
i
Xρ(µ)− E(Xρ(µ))

n(ρ)

))
→ E (exp (iW (µ))) ,

for all µ in a convenient subspace of M. A scaling analysis of power law tails reveals
that under A(β) we expect

Var(Xρ(µ)) ∼ λ(ρ) ρβ Var(X(µ)), ρ→ 0β−d,

which suggests the asymptotic relation n(ρ)2 ∼ λ(ρ) ρβ to obtain the convergence of
(10) in

(
L2(Ω,A,P), ‖ · ‖2

)
. However, in view of (8), the norm of (Xρ − E(Xρ))/n(ρ) as

a continuous linear functional from (M, ‖ · ‖) to
(
L2(Ω,A,P), ‖ · ‖2

)
is given by

(11)
∣∣∣∣∣∣∣∣∣∣∣∣Xρ − E(Xρ)

n(ρ)

∣∣∣∣∣∣∣∣∣∣∣∣ =
√(

vd

∫
R+

rdF (dr)
)√

λ(ρ)ρd

n(ρ)2
.

In particular, (11) is not bounded for n(ρ)2 = λ(ρ)ρβ as ρ→ 0β−d and the Banach Stein-
haus Theorem states that there exists a dense subset of M on which the rescaled process
(Xρ(µ) − E(Xρ(µ)))/

√
λ(ρ)ρβ can not converge in

(
L2(Ω,A,P), ‖ · ‖2

)
. Therefore, we

study in the sequel the convergence (10) on strict subspaces of M. This will allow us
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to get in the limit a continuous linear functional taking values in
(
L2(Ω,A,P), ‖ · ‖2

)
,

despite the fact that the convergence holds only for finite dimensional distributions.

2.2. Gaussian limit regime. For β 6= d let us define the space of measures

Mβ =
{
µ ∈M : ∃α s.t. α < β < d or d < β < α

and
∫

Rd×Rd

|z − z′|d−α|µ|(dz)|µ|(dz′) < +∞
}
,

where |z| denotes the euclidean norm of z ∈ Rd and |µ| is the total variation measure of
µ ∈M. We remark that the integral assumption is a finite Riesz energy assumption for
β > d and that Mβ = {0} when β ≥ 2d. In both cases d− 1 < β < d and d < β < 2d,
if µ ∈M satisfies ∫

Rd×Rd

|z − z′|d−α|µ|(dz)|µ|(dz′) < +∞

for some α (α < β < d and d < β < α respectively) then the same holds for any γ
between β and α. In particular, for any µ ∈Mβ,∫

Rd×Rd

|z − z′|d−β|µ|(dz)|µ|(dz′) < +∞.

We also introduce the subspace of finite signed measures of vanishing total mass,

M1 =
{
µ ∈M :

∫
Rd

µ(dz) = 0
}

and consider the subspaces

(12) M̃β =
{
Mβ for d < β < 2d
Mβ ∩M1 for d− 1 < β < d .

Theorem 2.1. Let d− 1 < β < 2d with β 6= d. Let F be a non-negative measure on R+

which satisfies A(β). For all positive functions λ such that λ(ρ)ρβ −→
ρ→0β−d

+∞, the limit

Xρ(µ)− E(Xρ(µ))√
λ(ρ)ρβ

fdd−→
ρ→0β−d

Wβ(µ)

holds for all µ ∈ M̃β, in the sense of finite dimensional distributions of the random
functionals. Here Wβ is the centered Gaussian random linear functional on M̃β with
covariance functional

(13) Cov (Wβ(µ),Wβ(ν)) = E (Wβ(µ)Wβ(ν)) = cβ

∫
Rd×Rd

|z − z′|d−βµ(dz)ν(dz′),

for a constant cβ only depending on β.

Remark 2.2. Equation (13) defines a covariance function, called generalized covariance
function in [18]. The value of the constant cβ is given by (19) below.

Proof. We begin with two lemmas. The first lemma describes the covariance function
and is based on some technical estimates for the intersection volume of two balls. The
second one, inspired by Lemma 1 of [15], stands for Lebesgue’s theorem with assumptions
that are well adapted to the present setting.
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Lemma 2.3. Let d− 1 < β < 2d with β 6= d. There exists a real constant cβ such that
for all µ ∈ M̃β,

0 <
∫

Rd×R+

µ(B(x, r))2r−β−1drdx = cβ

∫
Rd×Rd

|z − z′|d−βµ(dz)µ(dz′) < +∞.

Proof. Let us introduce the function γ defined on [0,∞) by

(14) γ(u) = Lebesgue measure of B(0, 1) ∩B(ue, 1),

for any unit vector e ∈ Rd. The function γ is decreasing, supported on [0, 2], bounded
by γ(0) = vd, continuous on [0, 2], and smooth on (0, 2). Define γβ as

γβ(u) =
{
γ(u)− γ(0), d− 1 < β < d
γ(u), d < β < 2d .

We notice that for d − 1 < β < d, |γβ(u)| ≤ γ(0) as well as |γβ(u)| ≤ supv>0 |γ′(v)|u.
Hence, for some constant C > 0, |γβ(u)| ≤ C ud−α for any 0 ≤ d − α ≤ 1, that is any
α in [d − 1, d]. For d < β < 2d, one can find C > 0 such that |γβ(u)| ≤ C ud−α for any
α ≥ β. In particular, we may take α such that d− 1 < α < β for the case d− 1 < β < d
and α such that β < α < 2d for d < β < 2d, and for both cases have a C > 0 with

(15) ∀u > 0, |γβ(u)| ≤ Cud−α.

1st Step. For µ ∈ M̃β , let us prove that
∫

Rd×R+ µ(B(x, r))2r−β−1drdx < +∞. We
introduce the function ϕ defined by

(16) ϕ(r) =
∫

Rd

µ(B(x, r))2dx , r > 0 .

Using successively Fubini’s theorem, homogeneity and (14) we get

ϕ(r) =
∫

Rd×Rd

(∫
Rd

1B(z,r)(x)1B(z′,r)(x)dx
)
µ(dz)µ(dz′) = rd

∫
Rd×Rd

γ(|z−z′|/r)µ(dz)µ(dz′).

Therefore ϕ(r) ≤ γ(0) |µ|(Rd)2 rd. Moreover, since µ ∈ M̃β,

(17) ϕ(r) = rd

∫
Rd×Rd

γβ(|z − z′|/r)µ(dz)µ(dz′).

and we can choose α such that
∫

Rd×Rd |z − z′|d−α|µ|(dz)|µ|(dz′) < +∞ and (15) holds.
Then

ϕ(r) ≤ Crα

∫
Rd×Rd

|z − z′|d−α|µ|(dz)|µ|(dz′).

Finally, one can find C > 0 such that

(18) ϕ(r) ≤ Cmin(rd, rα),

and ∫ +∞

0
ϕ(r)r−β−1dr =

∫
Rd×R+

µ(B(x, r))2r−β−1drdx < +∞.

2nd Step. We prove the equality stated in the Lemma, which is∫ +∞

0
ϕ(r)r−β−1dr = cβ

∫
Rd×Rd

|z − z′|d−βµ(dz)µ(dz′),
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using the previous notations. To this end we wish to replace ϕ by (17) in the left hand
side integral. Using the estimates (15) on |γβ|, one can show that the integral defined
by

Iβ(u) :=
∫

R+

γβ(u/r)rd−β−1dr ,

is well defined for all u ∈ R+. Furthermore, Iβ is homogeneous of order d− β so that

∀u > 0, Iβ(u) = Iβ(1)ud−β .

This proves that∫ +∞

0
ϕ(r)r−β−1dr = Iβ(1)

∫
Rd×Rd

|z − z′|d−βµ(dz)µ(dz′),

which completes the proof of the lemma with

(19) cβ = Iβ(1) =
∫

R+

γβ(1/r)rd−β−1dr .

�

Now let us state a second lemma which is the main tool to establish our scaling limit
results.

Lemma 2.4. Let F be a non-negative measure on R+ satisfying A(β) for β 6= d.
(i) Assume that g is a continuous function on R+ such that for some 0 < p < β < q,

there exists C > 0 such that
|g(r)| ≤ Cmin(rq, rp).

Then ∫
R+

g(r)Fρ(dr) ∼ ρβ

∫
R+

g(r)r−β−1dr as ρ→ 0β−d.

(ii) Let gρ be a family of continuous functions on R+. Assume that

lim
ρ→0β−d

ρβgρ(r) = 0, and ρβ|gρ(r)| ≤ Cmin(rp, rq),

for some 0 < p < β < q and C > 0. Then

lim
ρ→0β−d

∫
R+

gρ(r)Fρ(dr) = 0.

Proof. (i) Let us assume for instance that β < d (the proof of the case β > d is similar
and can be found in [15]). Let ε > 0. Since F satisfies A(β) there exists δ > 0 such that

(20) r < δ ⇒
∣∣∣f(r)− r−β−1

∣∣∣ ≤ εr−β−1.

Let us remark that the assumptions on g ensure that∫ +∞

0
|g(r)|r−β−1dr < +∞.

On the one hand, since
∫ δρ
0 g(r)Fρ(dr) =

∫ δρ
0 g(r)f

(
r
ρ

)
dr
ρ , we get by (20)∣∣∣∣∫ δρ

0
g(r)Fρ(dr)− ρβ

∫ δρ

0
g(r)r−β−1dr

∣∣∣∣ ≤ ερβ

∫
R+

|g(r)|r−β−1dr.
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On the other hand, for δρ > 1, since |g(r)| ≤ Crp,∣∣∣∣∫ ∞

δρ
g(r)Fρ(dr)− ρβ

∫ ∞

δρ
g(r)r−β−1dr

∣∣∣∣ ≤ CC1(δ)ρp +
C

β − p
δp−βρp,

where C1(δ) =
∫ +∞
δ rpF (dr) ≤ δp−d

∫
R+ r

dF (dr) <∞. Since p < β, we obtain (i).

(ii) We follow the same lines as for (i) and can assume similarly that β < d. Since F
satisfies A(β) there exists δ > 0 such that

(21) r < δ ⇒ |f(r)| ≤ 2 r−β−1.

The assumptions on gρ ensure that for all ρ > 0,∫ +∞

0
ρβ|gρ(r)|r−β−1dr < +∞ with lim

ρ→+∞

∫ ∞

0
ρβ |gρ(r)| r−β−1dr = 0,

by Lebesgue’s theorem. Since
∫ δρ
0 gρ(r)Fρ(dr) =

∫ δρ
0 gρ(r)f

(
r
ρ

)
dr
ρ , we get by (21)∣∣∣∣∫ δρ

0
gρ(r)Fρ(dr)

∣∣∣∣ ≤ 2
∫ ∞

0
ρβ |gρ(r)| r−β−1dr.

Therefore

(22) lim
ρ→+∞

∫ δρ

0
gρ(r)Fρ(dr) = 0.

Moreover, for δρ > 1, since C1(δ) =
∫ +∞
δ rpF (dr) < +∞ and |gρ(r)| ≤ Cρ−βrp,∣∣∣∣∫ ∞

δρ
gρ(r)Fρ(dr)

∣∣∣∣ ≤ Cρ−β

∫ ∞

δρ
rpFρ(dr)

≤ CC1(δ)ρ−(β−p).(23)

We conclude the proof using (22) and (23), since p < β. �

We start now with the proof of Theorem 2.1. Let us denote

n(ρ) :=
√
λ(ρ)ρβ

and define the function ϕρ on R+ by

ϕρ(r) =
∫

Rd

Ψ
(
µ(B(x, r))
n(ρ)

)
dx,

where

(24) Ψ(v) = eiv − 1− iv.

According to (6), the characteristic function of the normalized field (Xρ(.)− E(Xρ(.))) /n(ρ)
is given by

E
(

exp
(
i
Xρ(µ)− E(Xρ(µ))

n(ρ)

))
= exp

(∫
R+

λ(ρ)ϕρ(r)Fρ(dr)
)
.
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By assumption, n(ρ) tends to +∞ as ρ → 0β−d so that Ψ
(

µ(B(x,r))
n(ρ)

)
behaves like

−1
2

(
µ(B(x,r))

n(ρ)

)2
. Therefore, we write

(25)
∫

R+

λ(ρ)ϕρ(r)Fρ(dr) = −1
2

∫
R+

ϕ(r)λ(ρ)n(ρ)−2Fρ(dr) +
∫

R+

∆ρ(r)Fρ(dr)

where the function ϕ is introduced in (16) and

∆ρ(r) = λ(ρ)ϕρ(r) +
1
2
λ(ρ)n(ρ)−2ϕ(r)(26)

= λ(ρ)
∫

Rd

(
Ψ
(
µ(B(x, r))
n(ρ)

)
+

1
2

(
µ(B(x, r)
n(ρ)

)2
)

dx.

Since µ ∈ M̃β, the function ϕ is continuous on R+ and satisfies (18). Thus, by Lemma
2.4(i), the first term of the right hand side of (25) converges to −1

2

∫
R+ ϕ(r)r−β−1dr.

Moreover, by Lemma 2.3, we obtain

lim
ρ→0β−d

∫
R+

ϕ(r)λ(ρ)n(ρ)−2Fρ(dr) = cβ

∫
Rd×Rd

|z − z′|d−βµ(dz)µ(dz′) .

For the second term, let us verify that ∆ρ given by (26) satisfies the assumptions
of Lemma 2.4(ii). First let us remark that the function ∆ρ is continuous on R+ since

µ ∈M. Because
∣∣∣Ψ(v)−

(
−v2

2

)∣∣∣ ≤ |v|3
6 and∫

Rd

|µ (B(x, r))|3 dx ≤ ‖µ‖2

∫
Rd

|µ (B(x, r))|dx ≤ vd ‖µ‖3rd,

we also check that ∣∣λ(ρ)−1n(ρ)2∆ρ(r)
∣∣ ≤ 1

6
vd ‖µ‖3 n(ρ)−1rd.

Finally, since |Ψ(v)| ≤ |v|2
2 , by (18) there exists C > 0 such that∣∣λ(ρ)−1n(ρ)2∆ρ(r)

∣∣ ≤ Crα,

for some α with (α − β)(β − d) > 0. Therefore,
∫

R+ ∆ρ(r)Fρ(dr) tends to 0 according
to Lemma 2.4(ii), and so

lim
ρ→0β−d

E
(

exp
(
i
Xρ(µ)− E(Xρ(µ))

n(ρ)

))
= exp

(
−1

2
cβ

∫
Rd×Rd

|z − z′|d−βµ(dz)µ(dz′)
)
.

Hence (Xρ(µ)−E(Xρ(µ)))/n(ρ) converges in distribution to the centered Gaussian ran-
dom variable W (µ) whose variance is equal to

E
(
W (µ)2

)
= cβ

∫
Rd×Rd

|z − z′|d−βµ(dz)µ(dz′).

By linearity, the covariance of W satisfies (13). �

With similar arguments we can state a further scaling result leading to a non-Gaussian
limit.
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2.3. Poisson limit regime. In this section we keep the notations introduced in section
2.2 for the Gaussian limit regime.

Theorem 2.5. Let d−1 < β < 2d such that β 6= d. Let F be a non-negative measure on
R+ satisfying A(β). For all positive functions λ such that λ(ρ)ρβ −→

ρ→0β−d
ad−β, for some

a > 0, we have in the sense of finite-dimensional distributions of random functionals the
scaling limit

Xρ(µ)− E(Xρ(µ))
fdd→ Jβ(µa),

for all µ ∈ M̃β. Here Jβ is the centered random linear functional on M̃β defined as

Jβ(µ) =
∫

Rd×R+

µ (B(x, r)) Ñβ(dx,dr),

where Ñβ is a compensated Poisson random measure with intensity dx r−β−1dr, and µa

is defined by µa(A) = µ
(
a−1A

)
.

Proof. Let us recall that a compensated Poisson measure Ñ of intensity n is such
that Ñ + n is a Poisson measure of intensity n. Therefore, the stochastic integral∫
k(x, r) Ñ(dx,dr) of a measurable function k : Rd × R+ → R with respect to a com-

pensated Poisson measure Ñ of intensity n, exists P-a.s. if and only if

(27)
∫

Rd×R+

min(|k(x, r)|, k(x, r)2)n(dx,dr) <∞

(see [17] Theorem 10.15 for instance).
By Lemma 2.3, for all µ ∈ M̃β and using once again the function ϕ introduced in

(16), ∫
Rd

∫
R+

µ (B(x, r))2 r−β−1drdx =
∫

R+

ϕ(r)r−β−1dr < +∞.

Hence, in view of (27) with n(dx,dr) = dx r−β−1dr and k(x, r) = µ (B(x, r)), the
random field Jβ is well defined on M̃β, with characteristic function

(28) E (exp (iJβ(µ))) = exp
(∫

R+×Rd

Ψ(µ(B(x, r))) dx r−β−1dr
)
,

where Ψ is given by (24).
On the other hand, the characteristic function for the centered Poisson random balls

model equals

E (exp (i (Xρ(µ)− E(Xρ(µ)))) = exp
(∫

R+×Rd

Ψ(µ(B(x, r))) dx λ(ρ)Fρ(dr)
)
.

Define for r > 0,

ϕ̃(r) =
∫

Rd

Ψ(µ(B(x, r))) dx.

For µ ∈ M̃β, using |Ψ(v)| ≤ |v|2/2 and (18), there exists C > 0 such that

|ϕ̃(r)| ≤ C min(rd, rα),
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for some α with (α− β)(β − d) > 0. Thus, by Lemma 2.4 (i),∫
R+

λ(ρ)ϕ̃(r)Fρ(dr) ∼
ρ→0β−d

ad−β

∫ ∞

0
ϕ̃(r)r−β−1dr

and hence

lim
ρ→0β−d

E (exp (i (Xρ(µ)− E(Xρ(µ)))) = exp
(
ad−β

∫
R+

ϕ̃(r) r−β−1 dr
)
.

Finally, it is sufficient to remark that

ad−β

∫
R+

ϕ̃(r) r−β−1 dr = ad

∫
R+

ϕ̃(a−1r) r−β−1 dr,

with
ad ϕ̃(a−1r) = ad

∫
Rd

Ψ
(
µ(B(x, a−1r))

)
dx =

∫
Rd

Ψ(µa(B(x, r))) dx,

to obtain
lim

ρ→0β−d
E (exp (i (Xρ(µ)− E(Xρ(µ))))) = E (exp (iJβ(µa))) .

�

Lemma 2.3 and (13) yield the following remark.

Remark 2.6. The covariance function of Jβ is given for all µ, ν ∈ M̃β by

Cov (Jβ(µ), Jβ(ν)) =
∫

Rd×R+

µ (B(x, r)) ν (B(x, r)) dx r−β−1dr

= cβ

∫
Rd×Rd

|z − z′|d−βµ(dz)ν(dz′),

and so Jβ and Wβ have the same covariance function on M̃β.

3. Properties of the limiting random generalized fields

In this section we discuss some of the main properties of the fields we obtain as
scaling limits. The limits inherit from the random balls model a stationarity property
and acquire due to the nature of the performed scaling certain self-similarity properties.

3.1. Stationarity. Following the same ideas as in [9] or [18] we define a notion of
stationarity which characterizes the translation invariance of a random linear functional
over a subset of signed measures. We say as usual that a subspace S ⊂ M is closed for
translations if, for any µ ∈ S and any s ∈ Rd, we have τsµ ∈ S, where τsµ is defined
by τsµ(A) = µ(A − s), for any Borel set A. To provide a more general framework for
stationary random fields we introduce the following subspaces of measures with vanishing
moments. For any n ∈ N r {0}, denote by Mn the subspace of measures µ ∈ M, such
that

∫
Rd |z|n−1|µ|(dz) < +∞, which satisfy

(29)
∫

Rd

zjµ(dz) =
∫

Rd

zj1
1 . . . zjd

d µ(dz) = 0

for all j = (j1, . . . , jd) ∈ Nd with 0 ≤ j1 + . . . + jd < n (see [18] where similar spaces
of measures are introduced). Here, the class M1 was already used for the setting of
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Theorem 2.1. For convenience, we also put M0 = M. A simple but tedious computation
shows that when µ ∈Mn satisfies

∫
Rd |z|2n−2|µ|(dz) < +∞, for n ≥ 1, then∫

Rd×Rd

|z − z′|2kµ(dz)µ(dz′) = 0, ∀ 0 ≤ k < n.

In particular, the subspaces Mn, defined by (29), are closed under translations for any
n ∈ N.

Definition 3.1. Let n ∈ N. Let X be a random field defined on a subspace S ⊂ Mn

closed for translations. The field X is translation invariant if

(30) ∀µ ∈ S, ∀s ∈ Rd, X (τsµ)
fdd
= X (µ) .

More precisely, one says that X is stationary when n = 0 and has stationary nth incre-
ments when n > 0.

It follows that if X has stationary nth increments on a subspace S ⊂ Mn, then its
restriction on S ∩Mn+1 ⊂Mn+1 has stationary (n+1)th increments. This terminology
comes from [9], where S = S(Rd) is the Schwartz space. In this setting the generalized
fieldX has stationary nth increments if all its partial derivatives of order n are stationary.

By the translation invariance of the Lebesgue measure, for any ρ > 0 the random field
Xρ defined by (9) is stationary on M. The fields Wβ and Jβ obtained as limit fields on
M̃β in Theorem 2.1 and Theorem 2.5 are not defined on the full space M. But M̃β is
closed for translations. Therefore, when considering the limiting random fields on M̃β ,
one has the following property.

Proposition 3.2. Let d−1 < β < 2d with β 6= d. Then Wβ as well as Jβ are translation
invariant on M̃β.

In other words, from (12), Wβ and Jβ defined on M̃β are both stationary if d < β < 2d
and they have stationary first increments if d− 1 < β < d.

3.2. Self-similarity. Let a > 0 and denote by µa the dilated measure defined by
µa(A) = µ(a−1A) for any Borel set A. A subspace S ⊂ M is said to be closed for
dilations if, for any µ ∈ S and any a > 0, we have µa ∈ S. The following definition
extends the standard definition of self-similarity for pointwise defined random fields.

Definition 3.3. Let H ∈ R. A random field X, defined on a subspace S of M which is
closed for dilations, is said to be self-similar with index H if

∀µ ∈ S, ∀a > 0 , X (µa)
fdd
= aHX (µ) .

Once noticed that M̃β is closed for dilations, and by observing the consequence of
dilation on the covariance of Wβ , the following property is straightforward.

Proposition 3.4. The field Wβ, defined on M̃β, is self-similar with index H = d−β
2

that runs over (−d/2, 1/2) r {0}.
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In contrast to the Gaussian field Wβ , the Poisson limit field Jβ is not self-similar. A
similarity property which applies in great generality to long-range dependent processes
is discussed in [14]. The following is a version for spatial random fields.

Definition 3.5. A random field X with EX = 0, defined on a subspace S of M which
is closed for dilations, is said to be aggregate-similar if there exists a sequence of positive
real numbers (am)m≥1, such that

∀µ ∈ S, ∀m ≥ 1, X (µam)
fdd
=

m∑
i=1

Xi(µ),

where (Xi)i≥1 are i.i.d copies of X.

Thus, a random field is aggregate-similar if the path µam 7→ X(µam) as we trace

along the sequence of dilations given by am passes all aggregates
m∑

i=1

Xi of X, in the

distributional sense. We may write, equivalently,

∀µ ∈ S, ∀m ≥ 1, X (µ)
fdd
=

m∑
i=1

Xi(µa−1
m

),

which immediately shows that an aggregate-similar random field is infinitely divisible.
Any self-similar, zero mean Gaussian random field is aggregate-similar. Indeed, if XH

is Gaussian with EXH = 0 and self-similar with index H then letting am = m1/2H we
have

(31) XH(µam)
fdd
= m1/2XH(µ)

fdd
=

m∑
i=1

Xi
H(µ), m ≥ 1.

In particular, Wβ is aggregate-similar on M̃β with respect to the sequence am =
m1/(d−β). For d − 1 < β < d we have a−1

m → 0 and hence µam represents a zoom-
in of Wβ, as m → ∞. This is in contrast to the case d < β < 2d for which a−1

m → ∞.

Consequently, the succession of aggregates
m∑

i=1

W i
β(µ) of Wβ(µ) appear as the sequence

of measures µam performs a zoom-out, in the limit m→∞.
Turning next to the non-Gaussian field Jβ, by (28)

log E (exp (iJβ(µa))) = ad−β log E (exp (iJβ(µ))) .

Thus, Jβ is aggregate-similar with respect to am, given by ad−β
m = m. This property

provides an interpretation of the dilation parameter a in Theorem 2.5. If we assume in
the theorem that λ(ρ)ρβ → ad−β

m = m as ρβ−d → 0, for arbitrary m ≥ 1, then

Xρ(µ)− E(Xρ(µ))
fdd→ Jβ(µam)

fdd
=

m∑
i=1

J i
β(µ).

The guiding asymptotic quantity λρβ may be interpreted as the expected number of
very large (β > d) or very small (β < d) balls which cover a point asymptotically. Thus,
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the more of such extreme grains are allowed asymptotically, the larger number of i.i.d.
copies of the basic field Jβ appears in the limit.

We may continue this line of reasoning by providing a limit result for Jβ(µam) as
m→∞. In view of Theorems 2.5 and 2.1 this result is not at all surprising.

Proposition 3.6. As ad−β →∞, for all µ in M̃β

1
a(d−β)/2

Jβ(µa)
fdd→ Wβ(µ)

Proof. Consider the subsequence am = m1/(d−β). It follows immediately from aggregate-
similarity and the central limit theorem that

1

a
(d−β)/2
m

Jβ(µam)
fdd
=

1√
m

m∑
i=1

J i
β(µ)

fdd→ Wβ(µ), m→∞,

since Jβ(µ) and Wβ(µ) have the same variance. A standard argument completes the
proof of convergence in distribution along an arbitrary sequence. �

4. Self-similar random fields of arbitrary order

We consider in this section an extension of our methods in order to obtain random
fields with the self-similarity property for any indexH ∈ RrZ. To state our main results,
Theorems 4.7 and 4.8, a preliminary study of self-similar random fields of arbitrary order
is required.

4.1. Dobrushin’s characterization of self-similar random fields. Dobrushin [9]
gives a complete description of Gaussian translation invariant self-similar generalized
random fields on Rd. For this purpose he considers continuous random linear function-
als of S(Rd)′, where S(Rd)′ is the topological dual of the Schwartz space S(Rd) of all
infinitely differentiable rapidly decreasing functions on Rd with real values (see e.g. [10]).
As usual S(Rd) is equipped with the topology that corresponds to the following notion
of convergence: ϕn → ϕ if and only if for all N ∈ N and j ∈ Nd

sup
z∈Rd

(1 + |z|)N
∣∣Dj (ϕn − ϕ) (z)

∣∣→ 0,

where Djϕ(z) = ∂j1 ...∂jd

∂z
j1
1 ...∂z

jd
d

ϕ(z) denotes the partial derivative of order j = (j1, . . . , jd).

Then, a linear functional X : S(Rd) → L2(Ω,A,P) is continuous if and only if ϕn → 0
in S(Rd) implies that

E
(
X(ϕn)2

)
→ 0.

To each function ϕ ∈ S(Rd) ⊂ L1(Rd) one can uniquely associate a signed measure
ϕ̃ ∈M defined by ϕ̃(dz) = ϕ(z)dz. For the sake of notational simplicity we identify any
function ϕ ∈ L1(Rd) with its image ϕ̃ in M so that L1(Rd) ⊂M. Therefore any random
linear functional on M, when restricted to S(Rd), can be viewed as a linear functional
on S(Rd).

Proposition 4.1. Let ρ > 0. The random field Xρ induces a continuous random linear
functional on S(Rd).
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Proof. ¿From (11), the random field Xρ is a continuous random linear functional on
(M, ‖ ·‖). Then, to prove the continuity of Xρ on S(Rd) it is sufficient, using Lebesgue’s
theorem, to notice that the previous identification implies that if µn = ϕ̃n → 0 in S(Rd)
then ‖µn‖ =

∫
Rd |ϕn(z)|dz → 0. �

Now, put
Sn(Rd) = S(Rd) ∩Mn, n ≥ 0.

In particular, S0(Rd) = S(Rd). We obtain the continuity properties of Wβ and Jβ

by observing that S(Rd) ∩ M̃β = S(Rd) when d < β < 2d, while S(Rd) ∩ M̃β =
S(Rd) ∩M1 = S1(Rd) for d− 1 < β < d.

Proposition 4.2. Let d−1 < β < 2d with β 6= d. The random fields Wβ and Jβ induce
continuous random linear functionals on Sn(Rd) for any n ≥ 1 if d − 1 < β < d, and
any n ≥ 0 if d < β < 2d.

Proof. Note that by (13) and Remark 2.6, for any µ ∈ M̃β ,

(32) E
(
Wβ(µ)2

)
= E

(
Jβ(µ)2

)
≤ |cβ|

∫
Rd×Rd

|z − z′|d−β |µ|(dz)|µ|(dz′).

A straightforward use of Lebesgue’s theorem concludes the proof. �

Then, restricted to Sn(Rd) the Gaussian field Wβ is a translation invariant self-similar
generalized field. We refer to [19] for a synthesis using orthonormal basis of L2(Rd)
in the case d < β < 2d and to [6] for other examples of self-similar generalized fields
obtained by random wavelet expansions in the general case. In [9] Dobrushin focuses on
the spectral representation of such Gaussian fields. Since the law of a centered Gaussian
field is characterized by its covariance function, let us introduce a second order self-
similarity property. For H ∈ R we say that X, a random linear functional on Sn(Rd) is
a second order self-similar field of order H if, for all a > 0, ϕ,ψ ∈ Sn(Rd),

(33) Cov (X(ϕa), X(ψa)) = a2HCov (X(ϕ), X(ψ)) , where ϕa(x) = a−dϕ(a−1x).

We denote by ϕ̂(ξ) =
∫

Rd e
−iz·ξϕ(z)dz the Fourier transform of any ϕ ∈ S(Rd) and recall

that ϕ̂ is infinitely differentiable rapidly decreasing on Rd with complex values. Then
Theorem 3.2 of [9] can be reformulated as follows.

Theorem 4.3. Let n ≥ 0 and X be a continuous random linear functional on Sn(Rd).
Then X is translation invariant and second order self-similar field of order H ∈ R if
and only if for all ϕ,ψ ∈ Sn(Rd),
(34)

Cov (X(ϕ), X(ψ)) =
∫

Sd−1

∫
R+

ϕ̂(rθ)ψ̂(rθ)r−2H−1drdσ(θ) +
∑

|j|=|k|=n

Aj,kαj(ϕ)αk(ψ),

where σ is a finite positive measure on the unit sphere Sd−1, αj(ϕ) =
∫

Rd ϕ(x)xjdx =
i|j|Djϕ̂(0), for j = (j1, . . . , jd) ∈ Nd with |j| = j1 + . . .+ jd = n, and A = (Aj,k)|j|=|k|=n

is a symmetric positive definite real matrix. Moreover, if H < n then A = 0; if H = n
then σ = 0; and if H > n then A = 0 and σ = 0.



SELF-SIMILAR RANDOM FIELDS AND RESCALED RANDOM BALLS MODELS 17

We make the further comment that generalized random fields defined on Sn(Rd) for
some n > 0 roughly correspond to suitable derivatives of random fields defined on
S(Rd). More precisely, since the Schwartz class is closed under differentiation, if X is a
continuous random linear functional on S(Rd) one can define for any j ∈ Nd the partial
derivative of X of order j as the continuous random linear functional defined by

∀ϕ ∈ S(Rd), DjX(ϕ) = (−1)|j|X(Djϕ).

Moreover, [9] states the following property (see Lemma 1.2.1 p.23 of [3] for a proof).

Proposition 4.4. For any n ∈ N, Sn(Rd) = Span
{
Djϕ : ϕ ∈ S(Rd), j ∈ Nd, |j| = n

}
.

Therefore, the knowledge of a generalized random field X on Sn(Rd) is equivalent to
the knowledge of all its partial derivatives DjX of order j with |j| = n. Furthermore, X
has stationary nth increments if and only if its partial derivatives DjX of order j with
|j| = n are stationary.

Note that Wβ and Jβ share the same covariance function by Remark 2.6 so that they
are both second order self-similar fields of order d−β

2 . Moreover, due to the isotropy of
balls and the rotation invariance of Lebesgue measure it is straightforward to conclude
that Wβ and Jβ are isotropic random fields. We obtain the following result, which is of
Plancherel’s type and gives the covariance function of Wβ and Jβ in spectral form.

Proposition 4.5. Fix d − 1 < β < 2d with β 6= d. There exists kβ > 0 such that, if
d < β < 2d then for any ϕ,ψ ∈ S(Rd) and if d − 1 < β < d for any ϕ,ψ ∈ S1(Rd), we
have

Cov (Wβ(ϕ),Wβ(ψ)) = Cov (Jβ(ϕ), Jβ(ψ))

= cβ

∫
Rd×Rd

|z − z′|d−βϕ(z)ψ(z′) dzdz′ = kβ

∫
Rd

ϕ̂(ξ)ψ̂(ξ) |ξ|β−2d dξ.

Proof. By combining the propositions 3.2, 3.4 and 4.2 it follows that Wβ is a continuous
random linear functional on S(Rd) if d < β < 2d and on S1(Rd) if d− 1 < β < d, which
is translation invariant and second-order self-similar of order H = d−β

2 . By Theorem
4.2 its covariance function is given by (34). The measure σ is invariant under rotation
by isotropy of Wβ and hence, up to a constant, equals to Lebesgue measure on the
sphere. �

4.2. Arbitrary order self-similar random fields as scaling limits. To exploit Do-
brushin’s characterization theorem (Theorem 4.3) further, we consider next a general
class of Gaussian random fields which are self-similar with an arbitrary index H ∈ R\Z.
For such an index H, let us introduce the following parameter

(35) βH = d− 2(H − [H +
1
2
]) ∈ (d− 1, d+ 1] \ {d} ,

and write

dHe+ =
{

[H] + 1, H > 0
0, H < 0,
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where [H] is the integer part of H. Let BH denote a continuous random field defined
on SdHe+ , which is centered, Gaussian and isotropic, and whose covariance functional is
given by

Cov (BH(ϕ), BH(ψ)) = kβH

∫
Rd

ϕ̂(ξ)ψ̂(ξ) |ξ|−2H−d dξ, ϕ, ψ ∈ SdHe+(Rd) ,(36)

where the constant kβH
corresponds to the constant kβ introduced in Proposition 4.5

with β = βH as in (35).

In what follows we will see that for H such that [H + 1
2 ] < H or equivalently such

that βH < d, the field BH may be explicitly constructed as the scaling limit of a random
germ-grain model where the radius of grains accumulates at zero. In the opposite case,
[H + 1

2 ] > H or equivalently βH > d, the field BH may be explicitly constructed as
the scaling limit of a random germ-grain model where grains have a heavy-tailed radius
distribution at infinity. This is the purpose of Theorem 4.7 below.

In the case d = 1 and 0 < H < 1 with H 6= 1
2 , then either βH < 1 or βH > 1,

corresponding to 0 < H < 1
2 or 1

2 < H < 1, and the Gaussian field BH is obtained either
as a zoom-in or as a zoom-out procedure. These two different microscopic descriptions
lead to two different macroscopic dependence behaviors. It has to be compared with
the usual fractional Brownian motion which is negatively correlated for 0 < H < 1

2 and
positively correlated for 1

2 < H < 1. In [7, 8] similar ideas are developed using the
vocabulary of antipersistent and persistent fractional Brownian motion.

In order to link the Dobrushin fields BH and the limit fields Wβ we obtained in the
previous section, we will use fractional integration and differentiation. In [19] a similar
procedure is used to synthesize Gaussian self-similar random fields with H ∈ (−d/2, 0).
To introduce the method we consider for ϕ ∈ S(Rd) the usual Laplacian operator

∆ϕ =
d∑

j=1

∂2ϕ

∂z2
j

and recall that for any ξ ∈ Rd,

∆̂ϕ(ξ) = −|ξ|2ϕ̂(ξ).

Next, for any m ∈ Z, we may define formally the operator (−∆)−
m
2 by the relation

̂(−∆)−m/2ϕ(ξ) = |ξ|−mϕ̂(ξ), ξ ∈ Rd.

In order to give a precise meaning to this operator, let us denote by F the Fourier
transform on S(Rd) and recall that F is injective on S(Rd). We introduce the intersection
space

S∞(Rd) =
⋂
n≥0

Sn(Rd).

Thus, S∞(Rd) 6= ∅ since this space contains any function ϕ ∈ S(Rd) such that ϕ̂ van-
ishes in a neighborhood of 0. Then, let us consider F

(
S∞(Rd)

)
=
{
ϕ̂ ; ϕ ∈ S∞(Rd)

}
,

equipped with the usual topology of the Schwartz space of functions with complex val-
ues. Therefore, F is a linear homeomorphism from S∞(Rd) to F

(
S∞(Rd)

)
. We can
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define on F
(
S∞(Rd)

)
the operator Tm by

Tmψ(ξ) = |ξ|−mψ(ξ), ξ ∈ Rd, ψ ∈ F
(
S∞(Rd)

)
.

Proposition 4.6. For any m ∈ Z, the operator Tm is a linear homeomorphism on
F
(
S∞(Rd)

)
. Moreover, (−∆)−m/2 := F−1 ◦ Tm ◦ F is a linear homeomorphism on

S∞(Rd).

Proof. Let m ∈ Z. For any n ≥ 1,

Sn(Rd) =
{
ϕ ∈ S(Rd);Djϕ̂(0) = 0, |j| < n

}
.

Therefore, if ψ ∈ F
(
S∞(Rd)

)
, Tmψ is a smooth function, rapidly decreasing, with

partial derivatives of any order vanishing at 0. Moreover, ψ(ξ) = ψ(−ξ) such that
Tmψ(ξ) = Tmψ(−ξ), for any ξ ∈ Rd. Hence Tmψ ∈ F

(
S∞(Rd)

)
. It is then clear that

Tm is a linear homeomorphism on F
(
S∞(Rd)

)
. The proof is completed by using the

fact that F is a linear homeomorphism from S∞(Rd) onto F
(
S∞(Rd)

)
.

�

Theorem 4.7. Let H ∈ R with H /∈ 1
2Z for d = 1 and H /∈ Z for d ≥ 2. Set

m =
[
H + 1

2

]
and βH = d− 2(H −m). Then

BH(ϕ)
fdd
= WβH

((−∆)−m/2ϕ), ϕ ∈ S∞(Rd).

Moreover, let F be a σ-finite non-negative measure on R+ satisfying A(βH). For all
positive functions λ such that λ(ρ)ρβH −→

ρ→0m−H
+∞, the limit

Xρ((−∆)−
m
2 ϕ)− E(Xρ((−∆)−

m
2 ϕ))√

λ(ρ)ρβH

fdd−→
ρ→0m−H

BH(ϕ)

holds for all ϕ ∈ S∞(Rd), in the sense of finite dimensional distributions of the random
functionals.
For the case H > −d/2 the covariance functional of BH has the representation

Cov (BH(ϕ), BH(ψ)) = C(H)
∫

Rd×Rd

|z − z′|2Hϕ(z)ψ(z′) dzdz′, ϕ, ψ ∈ S∞(Rd)

with C(H) a constant prescribed by (39) below.

Proof. According to Proposition 4.5, since βH ∈ (d − 1, d + 1) ⊂ (d − 1, 2d) for d = 1
and βH ∈ (d − 1, d + 1] ⊂ (d − 1, 2d) for d ≥ 2 with βH 6= d, the random field WβH

is
well-defined on S∞(Rd). Moreover, for any ϕ,ψ ∈ S∞(Rd), we have

Cov
(
WβH

((−∆)−m/2ϕ)),WβH
((−∆)−m/2ψ)

)
= cβH

∫
Rd×Rd

|z − z′|d−βH (−∆)−m/2ϕ(z)(−∆)−m/2ψ(z′) dzdz′(37)

= kβH

∫
Rd

̂(−∆)−m/2ϕ(ξ) ̂(−∆)−m/2ψ(ξ) |ξ|βH−2d dξ.(38)
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By (38) and (36), we get

Cov
(
WβH

((−∆)−m/2ϕ)),WβH
((−∆)−m/2ψ)

)
= kβH

∫
Rd

ϕ̂(ξ)ψ̂(ξ) |ξ|βH−2d−2m dξ

= Cov (BH(ϕ), BH(ψ)) .

Since the two random fields WβH
and BH are Gaussian this is enough to conclude that

BH(ϕ)
fdd
= WβH

((−∆)−m/2ϕ).

Then, Theorem 2.1 provides the finite dimensional distributions limit.
Next, let us consider the covariance functional for H > −d/2. By rewriting (37),

Cov (BH(ϕ), BH(ψ)) = cβH

∫
Rd

|z|d−βH

(
(−∆)−m/2ϕ ∗ (−∆)−m/2ψ

)
(z) dz

with

(−∆)−m/2ϕ ∗ (−∆)−m/2ψ(z) =
∫

Rd

(−∆)−m/2ϕ(z − z′)(−∆)−m/2ψ(z′) dz′.

Using Fourier transforms,

(−∆)−m/2ϕ ∗ (−∆)−m/2ψ(z) = (−∆)−m (ϕ ∗ ψ(z))

so that

Cov (BH(ϕ), BH(ψ)) = cβH

∫
Rd

|z|d−βH (−∆)−m(ϕ ∗ ψ)(z) dz.

Here, since ∆|z|2H = 2H (2(H − 1) + d) |z|2H−2 for z 6= 0, one can find a constant cH,m

such that |z|d−βH = |z|2H−2m = cH,m∆m|z|2H , for any m ≥ 0 and z 6= 0. Then, since
H > −d/2, integrating by parts, we obtain∫

Rd

|z|d−βH (−∆)−m (ϕ ∗ ψ(z)) dz = cH,m

∫
Rd

|z|2H∆m
(
(−∆)−m (ϕ ∗ ψ(z))

)
dz.

Thus,

Cov (BH(ϕ), BH(ψ)) = C(H)
∫

Rd×Rd

|z − z′|2Hϕ(z)ψ(z′) dzdz′

with

(39) C(H) = (−1)m cH,m cβH
.

�

Under the same parameter assumptions as in the previous theorem we may define
analogously a continuous generalized random field PH on S∞(Rd) by

(40) PH(ϕ) = JβH
((−∆)−m/2ϕ), ϕ ∈ S∞(Rd).

The effect of a dilation by a > 0, is given by

JβH
(((−∆)−m/2ϕ)a) = JβH

(am(−∆)−m/2(ϕa)) = amPH(ϕa).

This allows us to extend Theorem 2.5 to the case of a general index H. By Proposition
4.5, the covariance functional of PH coincides with that of BH such that PH can be
extended to a continuous linear functional on SdHe+(Rd).
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Theorem 4.8. Take H a real number, H 6∈ 1
2Z for d = 1, H 6∈ Z for d ≥ 2. As above,

let m =
[
H + 1

2

]
and βH = d − 2(H − m). Let F be a non-negative measure on R+

which satisfies A(βH). For all positive functions λ such that λ(ρ)ρβH −→
ρ→0m−H

a2(H−m),

for some a > 0, we have in the sense of finite-dimensional distributions of random
functionals the scaling limit

Xρ((−∆)−
m
2 ϕ)− E(Xρ((−∆)−

m
2 ϕ))

fdd−→
ρ→0m−H

amPH(ϕa),

for all ϕ ∈ S∞(Rd).

5. Pointwise representation of the random fields BH and PH

In this section we will discuss the case of a positive self-similarity index, and assume
henceforth H > 0. For H /∈ N, note that dHe+ = dHe, where dHe = [H] + 1, and recall
that the Gaussian field BH is defined on SdHe(Rd). By Proposition 4.4,

SdHe(Rd) = Span
{
Djϕ : ϕ ∈ S(Rd), j ∈ Nd, |j| = dHe

}
.

A natural question that arises in this context is whether it is possible to find a continuous
random linear functional Y on S(Rd) such that

∀ϕ ∈ S(Rd), DjY (ϕ) = (−1)|j|BH(Djϕ), j ∈ Nd with |j| = dHe.

The same question applies to the Poisson field PH defined by (40). We will use the
representation of generalized random fields as defined by Matheron [18], to provide an
answer (see also the links between “generalized random fields” and “punctual random
fields” in [3]). This will allow us to extend BH and PH as continuous random linear
functionals on the whole space S(Rd).

5.1. Representation of generalized random fields. Let X be a continuous random
linear functional on a subset S of S(Rd). We say that a continuous function X̃ : Rd →
L2(Ω,A,P) is a representation of X if, for any ϕ ∈ S

X(ϕ)
L2(Ω,A,P)

=
∫

Rd

X̃(t)ϕ(t)dt.

In order to obtain representations B̃H(t) of BH and P̃H(t) of PH , for any t ∈ Rd, we will
consider an approximation in SdHe(Rd) of the Dirac mass δt at t.

Following the same ideas as [18], let θ ∈ S(Rd) be a positive even function such
that its Fourier transform θ̂ satisfies θ̂(0) =

∫
Rd θ(z)dz = 1. Let n ∈ N with n 6= 0

and set θn(z) = ndθ(nz). For t ∈ Rd, let τtθn = θn(z − t). Write l! = l1! . . . ld! for
l = (l1, . . . , ld) ∈ Nd. Then, the functions defined by

Θn
t = τtθn −

∑
|l|<dHe

(−1)|l|

l!
tlDlθn , t ∈ Rd,
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belongs to SdHe(Rd). Actually, for ξ ∈ Rd,

(41) Θ̂n
t (ξ) = θ̂n(ξ)

e−it·ξ −
∑

|l|<dHe

1
l!
tl(−iξ)l

 = θ̂

(
ξ

n

)e−it·ξ −
dHe−1∑
k=0

(−it · ξ)k

k!

 ,

using the fact ∑
|l|=k

1
l!
tl(−iξ)l =

(−it · ξ)k

k!
, k ∈ N,

which is a generalization of the binomial theorem. Therefore we can consider the se-
quences of random functions defined by (BH (Θn

· ))n≥1 and (PH (Θn
· ))n≥1, whereBH (Θn

· ) :
t 7→ BH (Θn

t ) for all n ≥ 1 and similarly for PH (Θn
· ).

Theorem 5.1. Let H > 0 with H /∈ 1
2N for d = 1 and H /∈ N for d ≥ 2. The finite

dimensional distributions of (BH (Θn
· ))n≥1 converge in L2(Ω,A,P) to a representation

B̃H of BH on SdHe(Rd) with a covariance function given by

ΓH(t, s) = kβH

∫
Rd

e−it·ξ −
∑

0≤k<dHe

(−it · ξ)k

k!

e−is·ξ −
∑

0≤k<dHe

(−is · ξ)k

k!

|ξ|−d−2Hdξ

= C(H)

|t− s|2H −
∑

|l|<dHe

(−1)|l|

l!

(
slDl|t|2H + tlDl|s|2H

)(42)

where the constants kβH
and C(H) have been introduced in Prop. 4.5 and Th. 4.7 re-

spectively.

Similarly, the finite dimensional distributions of (PH (Θn
· ))n≥1 converge in L2(Ω,A,P)

to a representation P̃H of PH on SdHe(Rd) with the same covariance function as B̃H .

Proof. Let n ∈ N r {0} and t ∈ Rd. By choice of θ we have Θn
t ∈ SdHe(Rd). Let

n,m ∈ N r {0} and define the covariance

Γn,m(t, s) := Cov (BH (Θn
t ) , BH (Θm

s )) = Cov (PH (Θn
t ) , PH (Θm

s )) , t, s ∈ Rd .

By (36) this covariance can be written as

Γn,m(t, s) = kβH

∫
Rd

Θ̂n
t (ξ)Θ̂m

s (ξ) |ξ|−2H−d dξ.

Then, according to (41), Lebesgue’s theorem implies that the limit in Γn,m(t, s) −→
n,m→+∞

ΓH(t, s), is given by

ΓH(t, s) := kβH

∫
Rd

e−it·ξ −
∑

k<dHe

(−it · ξ)k

k!

e−is·ξ −
∑

k<dHe

(−is · ξ)k

k!

|ξ|−2H−ddξ.
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Therefore, the finite dimensional distributions of (BH (Θn
· ))n≥1, converge in L2(Ω,A,P)

to a centered random field B̃H . The finite dimensional distributions of (PH (Θn
· ))n≥1

converge similarly to a limit P̃H . Both limit fields have the covariance function ΓH .
Let us prove that B̃H is a representation of BH on SdHe(Rd). The covariance function

ΓH of B̃H is continuous with respect to each variable and so B̃H : Rd → L2(Ω,A,P) is
continuous. Then, the random linear functional X : ϕ ∈ S(Rd) 7→

∫
Rd B̃H(t)ϕ(t)(dt) is

well defined since

Var(X(ϕ)) =
∫

Rd

∫
Rd

Cov
(
B̃H(t), B̃H(s)

)
ϕ(t)ϕ(s)dtds < +∞,

using the fact that Var(B̃H)(t) ≤ C|t|2H . Finally, for any ϕ ∈ SdHe(Rd) we have
Var(X(ϕ)) = Var(BH(ϕ)) by (36), since

∫
Rd t

lϕ(t)(dt) = 0 for |l| < dHe, which proves
that B̃H is a representation of BH on SdHe(Rd). The same arguments hold to prove that
P̃H is a representation of PH on SdHe(Rd).

It remains to establish (42). By Theorem 4.7, for all n,m ∈ N r {0},

Γn,m(t, s) = C(H)
∫

Rd×Rd

|z − z′|2HΘn
t (z)Θm

s (z′)dzdz′.

For any z′ ∈ Rd, the function fz′(z) = |z − z′|2H admits continuous derivatives of order
l on Rd for any |l| < dHe. Therefore, for any z′ ∈ Rd,∫

Rd

|z − z′|2HΘn
t (z)dz = fz′ ∗ θn(t)−

∑
|l|<dHe

(−1)|l|

l!
tlDlfz′ ∗ θn(0)

−→
n→+∞

|t− z′|2H −
∑

|l|<dHe

(−1)|l|

l!
tlDl|z′|2H .

By Lebesgue’s theorem, as n→ +∞,

lim
n→+∞

Γn,m(t, s) = C(H)
∫

Rd

|t− z′|2H −
∑

|l|<dHe

(−1)|l|

l!
tlDl|z′|2H

Θm
s (z′)dz′.

As previously we obtain∫
Rd

|t− z′|2HΘm
s (z′)dz′ −→

m→+∞
|t− s|2H −

∑
|l|<dHe

(−1)|l|

l!
slDl|t|2H ,

while ∫
Rd

Dl|z′|2HΘm
s (z′)dz′ −→

m→+∞
Dl|s|2H .

Therefore ΓH(t, s) = lim
n,m→+∞

Γn,m(t, s) is also equal to (42). �

Remark 5.2. In the case H < 0, one can not find any representation of neither BH

nor PH on S(Rd). This is due to the fact that the variance of a random field which is
second order self-similar of order H < 0 is not bounded around 0.
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Since BH is Gaussian, B̃H is also Gaussian as a limit in L2(Ω,A,P) of a Gaussian
functional. The spectral representation of B̃H is given by

(43) B̃H(t)
fdd
=
√
kβH

∫
Rd

e−it·ξ −
∑

k<dHe

(−it · ξ)k

k!

 |ξ|−H−d/2W (dξ),

where W is the complex Brownian measure. This field is called elliptic Gaussian self-
similar random field in [2].

Specializing to the case d = 1, the covariance function ΓH in (42) equals

C(H)

|t− s|2H −
∑

l<dHe

(−1)l

(
2H
l

)((s
t

)l
|t|2H +

(
t

s

)l

|s|2H

) ,

where
(
2H
l

)
= (2H) . . . (2H− (l−1))/l!. Therefore B̃H is up to a multiplicative constant

a dHeth-order fractional Brownian motion as defined in [20].

5.2. Properties of the pointwise representation. One can define the dHeth incre-
ments of B̃H with lag h ∈ Rd, which correspond to the discrete differentiation of order
dHe, by

∆dHe
h B̃H(t) =

dHe∑
p=0

(
dHe
p

)
(−1)dHe−p B̃H(t+ ph) .

Then

∆dHe
h B̃H(t) = lim

n→+∞
BH

dHe∑
p=0

(
dHe
p

)
(−1)dHe−p τt+phθn


and the stationarity of BH implies that B̃H has stationary dHeth increments in the wide
sense: for all t, s, h, h′ ∈ Rd, the covariances Cov

(
∆dHe

h B̃H(s),∆dHe
h′ B̃H(s+ t)

)
do not

depend on s (see [24] or [12] for instance).

Proposition 5.3. Let H > 0 with H /∈ N. Then the Gaussian random field B̃H has
stationary dHeth increments. Moreover, this field admits continuous partial derivatives
of order l ∈ Nd in mean square for any |l| < dHe, such that DlB̃H has stationary
(dHe − |l|) increments, is self-similar of order dHe − |l|, and satisfies DlB̃H(0) = 0
almost surely.

Proof. Recall that ΓH denotes the covariance function of B̃H . Since dHe ≥ 1, it is
straightforward to see that ΓH admits symmetric partial derivatives of order l ∈ Nd for
any |l| < dHe, with ∂2lΓH

∂sl∂tl
(s, t) given by

kH

∫
Rd

e−it·ξ −
∑

k<dHe−|l|

(it · ξ)k

k!

e−is·ξ −
∑

k<dHe−|l|

(is · ξ)k

k!

ξ2l|ξ|−d−2Hdξ.
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By Theorem 2.2.2 of [1], this means that B̃H admits a continuous partial derivative of
order l in mean square, DlB̃H , which is a Gaussian random field with covariance given
by Cov(DlB̃H(t), DlB̃H(s)) = ∂2lΓH

∂sl∂tl
(s, t). A straightforward change of variables yields

for all a > 0

Cov(DlB̃H(at), DlB̃H(as)) = a2(H−|l|)Cov(DlB̃H(t), DlB̃H(s)).

Since DlB̃H is Gaussian this implies that DlB̃H is self-similar of order H − |l|, that is{
DlB̃H(at), t ∈ Rd

}
fdd
= aH−|l|

{
DlB̃H(t), t ∈ Rd

}
for all a > 0.

Moreover, for all t, s, h, h′ ∈ Rd,

Cov
(
∆dHe−|l|

h DlB̃H(s),∆dHe−|l|
h′ DlB̃H(s+ t)

)
= kβH

∫
Rd

e−it·ξ(e−ih·ξ − 1)dHe−|l|(eih
′·ξ − 1)dHe−|l|ξ2l|ξ|−2H−ddξ,

and DlB̃H has stationary (dHe− |l|)th increments. Finally, Var
(
DlB̃H(0)

)
= 0 implies

that DlB̃H(0) = 0 almost surely. �

Remark 5.4.
a) One can prove that B̃H is the only Gaussian random field with stationary dHeth

increments, which is self-similar of order H and isotropic.
b) The representation P̃H of PH obtained in Theorem 5.1 is not Gaussian but shares

the same covariance function as B̃H . Therefore it satisfies the same second order prop-
erties: stationary dHeth increments, self-similarity of order H and isotropy.

5.3. Fractional Brownian field and fractional Poisson field. For 0 < H < 1, the
random field B̃H corresponds to the well known fractional Brownian field with Hurst
parameter equal to H and (43) is known as the harmonizable representation of the
fractional Brownian field (see [13] for a review).

We consider the special case 0 < H < 1/2 for which d − 1 < βH = d − 2H < d. For
this range of parameters, dHe = 1 and

M̃βH
= MβH ∩M1, M1 =

{
µ ∈M :

∫
Rd

µ(dz) = 0
}
.

It follows that all pointwise increment measures δx−δ0, x ∈ Rd, belong to M̃βH
, and are

hence admissible for evaluating the limit fields WβH
and JβH

. Using the representations

B̃H and P̃H in Theorem 5.1 it is verified that B̃H(x)
fdd
= WβH

(δx − δ0) and P̃H(x)
fdd
=

JβH
(δx − δ0).

To analyze the properties of P̃H we observe using (28),

(44) log E
(
exp

(
i P̃H(x)

))
=
∫

R+×Rd

Ψ(δx(B(y, r))− δ0(B(y, r))) dy r−βH−1dr,
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where Ψ is given by (24). Here,

δx(B(y, r))− δ0(B(y, r)) =

 1, |x− y| < r < |y|
−1, |y| < r < |x− y|
0 otherwise

,

and hence we may recast (44) into

log E
(
exp

(
i θP̃H(x)

))
= Ψ(θ)

∫
R+×Rd

1{|x−y|<r<|y|} dy r−βH−1dr

+Ψ(−θ))
∫

R+×Rd

1{|y|<r<|x−y|} dy r−βH−1dr

= (−cβH
) |x|2H (Ψ(θ) + Ψ(−θ)).

This is the logarithmic characteristic functional of the difference of two independent
random variables both having a Poisson distribution with intensity (−cβH

) |x|2H . Hence,
P̃H(x), x ∈ Rd, defines a mean zero integer-valued symmetrized Poisson distributed
random field, such that for any x, x′ ∈ Rd,

Cov(P̃H(x), P̃H(x′)) = (−cβH
)
(
|x|2H + |x′|2H − |x− x′|2H

)
.

By analogy with fractional Brownian field this makes it natural to view P̃H as a fractional
Poisson field.

By adding random weights to the model we obtain a relation between P̃H and so
called Chentsov random fields, in particular Takenaka fields, see [23], [22] Ch. 8. By
(44),

P̃H(x)
fdd
=
∫

Rd×R+

(
1B(x,r)(y)− 1B(0,r)(y)

)
ÑβH

(dy,dr),

where ÑβH
is a compensated Poisson random measure with intensity r−βH−1dr dy. Fix

a parameter 1 < α < 2 and consider a Poisson measure ÑβH
(dy, dr, dw) with intensity

measure |w|−(1+α)r−βH−1dr dy. The random field

Y (x) =
∫

Rd×R+×R

(
1B(x,r)(y)− 1B(0,r)(y)

)
wÑβH

(dy,dr, dw)

is a variation of P̃H where random weights w are applied symmetrically with intensity
|w|−(1+α) to the original Poisson points (y, r). Consequently,

Y (x)
fdd
=
∫

Rd×R+

(
1B(x,r)(y)− 1B(0,r)(y)

)
Mα(dy,dr)

whereMα is a symmetric α-stable random measure with associated measure proportional
to r−βH−1dr dy, [22] Thm. 3.12.2. By properties of stochastic integrals with respect to
symmetric α-stable measures we have, for some positive constant C,

log E (exp (i θY (x))) = −C
∫

R+×R+

|θ|α |1B(x,r)(y)− 1B(0,r)(y)|α dy r−βH−1dr

= −C |θ|α
∫

R+×R+

1B(x,r)∆B(0,r)(y) dy r−βH−1dr,
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where ∆ denotes the symmetric set difference. Hence

Y (x)
fdd
=
∫

Rd×R+

1B(x,r)∆B(0,r)(y)Mα(dy,dr),

which defines a symmetric α-stable random field which is self-similar with index H ′ =
(d − βH)/α ∈ (0, 1/α), known as a (α,H ′)-Takenaka field, [22] Definition 8.4.1 (the
parameter β of the reference corresponds to d − βH in our notation). It is noticed in
[22], moreover, that B̃H is a (2,H)-Takenaka field. Randomly weighted random balls
models also arise in applications such as teletraffic modeling. For the one-dimensional
case with parameter values d = 1 < βH < α < 2 and Mα as above the process

Z(t) =
∫

R×R+

|(0, t) ∩ (y, y + r)|Mα(dy,dr), t ≥ 0,

has been called a Telecom process. It arises as a scaling limit of a random intervals
model with one-sided weights, see Kaj and Taqqu [16].

The fractional Poisson field P̃H shares with B̃H and with (α,H)-Takenaka fields ([22]
Thm 8.6.3) a well known interesting invariance property under restriction to lower-
dimensional hyperplanes. For example, any cut along a line through a planar fractional
field in R2 generates a one-dimensional fractional process of the same kind. To see this,
let Hk be a k-dimensional hyperplane in Rd. We consider Rd = Hk ⊕ H⊥

k and write
x̄k for the restriction to Hk of x = x̄k + (x − x̄k) ∈ Rd. To emphasize the dimensional
dependence we write here B̃H,d(x) and P̃H,d(x) respectively, if the fractional fields are
defined on Rd.

Proposition 5.5. Given H ∈ (0, 1/2), let β′H = βH − d + k ∈ (k − 1, k). Then the
measure δx̄k

− δ0 belongs to M̃β′H
, and we have

B̃H,d(x̄k)
fdd
= B̃H′,k(x̄k)

and
P̃H,d(x̄k)

fdd
= P̃H′,k(x̄k)

for H ′ = k−β′H
2 = d−βH

2 = H.

Proof. It is enough to consider hyperplanes of the form x = (x1, . . . , xk, 0, . . . , 0). Then,
clearly, |x̄k|d−βH = |x̄k|k−β′H , which carries over to showing that the covariances of the
pair of relevant random fields coincide.

�
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rue des Saints-Pères, 75006 PARIS, France

E-mail address: hermine.bierme@mi.parisdescartes.fr

Anne ESTRADE, Laboratory MAP5, Université Paris Descartes, CNRS UMR 8145, 45
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