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Abstract. In this work we present and discuss a modelling framework
for the basic discharge process which occurs in simple electrochemical
battery cells. The main purpose is to provide a setting for analyzing
delivered capacity, battery life expectancy and other measures of perfor-
mance. This includes a number of deterministic and stochastic variations
of kinetic battery models. The primary tool is a novel phase plane anal-
ysis of the balance of nominal and theoretical capacity. In particular,
we study spatial versions of such models which lead to a linear diffusion
equation with Robin type boundary conditions under scaling. Explicit
solutions are obtained by considering reflected Brownian motion.

1 Introduction

This work concerns mathematical modeling of the state of charge and the voltage
level dynamics in simple battery cells under discharge. The purpose is to provide
an efficient framework for predicting battery life, delivered capacity and other
measures of performance, which takes into account that batteries are commonly
subject to considerable variation in performance. Such variations occur not only
because of variable usage patterns or variable disload mechanisms of the elec-
trochemically stored energy, but also as a result of recovery mechanisms in the
electrolyte. The type of battery we have in mind primarily is a non-rechargeable
and non-costly unit expected to last several years, such as a 3 Volts lithium-
ion coin battery to be deployed in large numbers for low-energy applications in
communication networks, sensor networks, etc.

A battery is made of one or several electrochemical cells. The modeling dis-
cussed here relies on the simplified view that a cell essentially consists of an
anode-cathode pair of electrodes connected by electrolyte, which may be liquid
as in lead-acid batteries or solid as in Li-ion batteries. In the cell, stored chemical
energy is converted into electrical energy through an oxidation reaction at the
anode. By Faraday’s first law the mass of active material altered at an electrode
is directly proportional to the quantity of electrical charge which is transfered at
the electrode in the battery reaction. The Nernst equation in electrochemistry
then states that the logarithm of electric charge determines the terminal voltage
that exists between the pair of electrode terminals. It is the terminal voltage
that measures the ability of the battery to drive electric current.



The terminal voltage for a battery in a state of rest is typically larger in
magnitude than the terminal voltage under discharging due to effects of internal
resistance. Batteries for digital applications would often be expected to deliver
power spikes, either periodically in time or at random time points. Such pulsed
discharge patterns may have a different effect on terminal voltage to continuous
discharge loads of constant current.

The theoretical capacity of the battery is a measure of the maximal charge
which in principle could be obtained were the battery discharged arbitrarily
slowly, allowing the chemical reaction to equilibriate over time restricted only
by the total amount of active material contained in the cell. The nominal capacity
of a battery is typically a manufacturers specification of the amount of electric
charge which is delivered if the cell is put under constant load and drained of
its energy over a certain time interval. Normally the discharge process occurs on
some intermediate time scale that allows for recovery mechanisms to take place.
This may slow down the decrease of the state of charge or even cause the state
of charge to increase. A further mechanism known to affect the performance of
a battery and which we will take into account is the balance between migration
and solid state diffusion. The battery stops functioning if the terminal voltage
passes below a minimal acceptable level or if the battery runs out of theoretical
capacity.

In addition to introducing new modeling variations our study provides a
survey of a number of battery models discussed in the literature. While the
simplest kinetic battery model introduced by Manwell and McGowan, [6, 7],
is essential for our approach as a reference and background, we also consider
the spatial extension of this model, [10]. We do not discuss, however, another
modeling approach based on discrete Markov chains, see e.g. [1].

We summarize the novel contributions in this work as follows. Based on an
approach focusing on the interplay between remaining nominal capacity and
remaining theoretical capacity during discharge evolution we perform what ap-
pears to be a novel phase plane analysis of battery capacities. This allows us to
obtain battery life, gained capacity and delivered capacity as functions of the
basic model parameters and in some cases to optimize performance over such
parameters. The setting begins with the two-well kinetic battery ODE model
of constant current discharge but includes general situations such as regular
pulsed discharge or stochastic pointwise discharge. The unified approach to gen-
eral workload patterns and comparison of these appears to be new. We also
propose a new kinetic-diffusive battery model designed to describe the balance
between migration and drift diffusion. Finally, we extend the modeling approach
and generality of the models to a version where the bound charge is supposed
to be distributed over a spatial reservoir.

2 Some principles of battery cell dynamics

To introduce the main ideas of our approach, we consider a battery which is
initially fully loaded with nominal capacity N and which has the theoretical



capacity T at time t = 0. Realistically, N ≤ T . For t ≥ 0 let x(t) denote
the level of available charge and v(t) the level of remaining theoretical capacity
of the battery at time t, so (v(0), x(0)) = (T,N). Charge is drawn from the
battery either continuously, or such that the charge level drops instantly from
one discrete level to a lower level. The discharge process acts randomly or in a
deterministic fashion and it acts continuously in time or at discrete time epochs.

The normalized and dimensionless quantity x̃(t) = x(t)/N ∈ [0, 1] represents
the state of charge of the battery at time t. A fully charged battery has x̃(t) =
1 and an empty one x̃(t) = 0. In practice a battery stops functioning before
it runs out of charge entirely at some level x0 which corresponds to voltage
reaching a cut-off level Ec. According to the Nernst equation the concentration
C of active material at an electrode determines the potential E according to
E = E0 − Ke lnC, where E0 is the equilibrium potential and Ke = RTa/nF
with R the ideal gas constant, Ta absolute temperature, n the valency of the
battery reaction (n = 1 for Lithium), and F Faraday’s constant. Faraday’s law
identifies the capacity Q of the cell as a multiple of C, with a proportionality
constant which is F times volume. Since x̃(t) is a measure of capacity we obtain
the terminal voltage Et of the cell at time t, as

Et = E0 +Ke ln x̃(t), 0 ≤ t ≤ t0,

where t0 is the battery life given by the first instance at which Et reaches the
cut-off voltage Ec < E0. For example, a Li-ion battery may have E0 = 3 and
Ec = 2 Volt.
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Fig. 1. Phase-plane trace of nominal and theoretical capacities

It is natural to consider the trajectory of the system (v(t), x(t)), t ≥ 0, as
a path in the (v, x) phase plane starting in (T,N) at t = 0. Initially, the path
moves downwards and to the left in the (v, x) plane as the nominal and hence
the remaining theoretical capacity decreases. While the remaining theoretical



capacity continues its descent with the same average rate as the discharge pro-
cess, it is reasonable that the battery recovers some nominal charge capacity.
This is because chemical transport in the electrolytes enables previously stored
material to become available, at least if λ is not too large. This effect is likely
to be less effective at lower levels of nominal charge.

If there exists a solution v0 > 0 of x(v) = x0 then v0 is the remaining capacity
at the battery charge expiration time. For this case we note that D = T − v0 is
the delivered capacity of the battery. We expect, based on the brief discussion
above, that D tends to T if λ → 0. Also, we normalize the nominal capacity
such that D tends to N if λ → ∞, c.f. [9], Figure 6. A closely related quantity
is the gain of the battery, G = T −N − v0. This is the capacity which is gained
during the life of the battery and measures the amount of bound charge that
the battery was able to convert into available charge and deplete during its time
of operation. Figure 1 indicates a typical trace in the phase-plane starting from
(T,N) and ending in (v0, 0).

3 The Kinetic battery model

The Kinetic Battery Model, [10], is a deterministic modeling approach which as-
sumes that charge is drawn continuously over time according to a given discharge
current i(t) ≥ 0, t ≥ 0. The average discharge rate is λ̄ = limt→∞

1
t

∫ t

0
i(s) ds, if

this limit exists. The most basic case is a battery subject to constant discharge
over time, i(t) = λ. The total theoretical capacity of the battery is split in two
components called available charge and bound charge. As above, for t ≥ 0 let
v(t) denote the total capacity and x(t) the available capacity of the battery. Call
y(t) = v(t)− x(t) the bound charge. Suppose x(0) = N , v(0) = T > N .

The kinetic battery model involves a parameter c ∈ (0, 1) which allows the
ratios x(t)/c and y(t)/(1 − c) to be interpreted as the current heights of an
available charge well and a bound charge well, respectively. During operation
of the battery, bound charge is supposed to be made available according to a
rate which is proportional to the height difference y(t)/(1− c)− x(t)/c between
the bound and available charge wells. The matching with initial conditions then
dictates one should take c = N/T ∈ (0, 1) to be the fraction of total theoretical
capacity which is initially made available. Then at time t = 0, the wells have
equal height T and the charge flow gradient which builds up between the two
wells represents recovery of the battery, in the sense of its positive growth effect
on the nominal charge level x. As a result we obtain for (x(t), y(t)) the linear
system of differential equations





x′(t) = −i(t) + k
(

y(t)
1−c −

x(t)
c

)
, x(0) = N

y′(t) = −k
(

y(t)
1−c −

x(t)
c

)
, y(0) = T −N,



where k is a conductance parameter. Hence the total discharge process is inde-
pendent of the charge flow gradient and we have

v(t) = x(t) + y(t) = T −

∫ t

0

i(s) ds, t ≥ 0.

The linear system is readily solved in terms of the parameters k, T and c = N/T ,
as {

x(t) = cv(t)− (1− c)
∫ t

0
e−k(t−s)/c(1−c) i(s) ds

y(t) = (1− c)v(t) +
∫ t

0
e−k(t−s)/c(1−c) i(s) ds.

Since cv(t)− x(t) ≥ 0 the system life equals

t0 = inf{t > 0 : x(t) = x0 or v(t) = 0} = inf{t > 0 : x(t) = x0}.

The model in this form is discussed in e.g. [5].

Phase plane analysis and general workload discharge. It is straightfor-
ward to extend the kinetic battery model and incorporate general discharge pat-
terns by replacing i(t) dt with some measure Λ(dt), and consider the differential
system 




dx(t) = −Λ(dt) + k
(

y(t)
1−c −

x(t)
c

)
dt, x(0) = N

dy(t) = −k
(

y(t)
1−c −

x(t)
c

)
dt, y(0) = T −N.

Then v(t) = x(t) + y(t) = T − Λ(t) and

{
x(t) = cv(t)− (1− c)

∫ t

0
e−k(t−s)/c(1−c) Λ(ds)

y(t) = (1− c)v(t) +
∫ t

0
e−k(t−s)/c(1−c) Λ(ds).

For example, if a cell is subject to successive periods of low, medium and high
loads then Λ(dt) would be a continuous measure with discharge rates varying
accordingly from one time interval to the next.

Next we analyze in some detail and compare three types of discharge patterns
for the kinetic battery model in its extended form. First of all, for the constant
discharge case Λ(t) = λt we obtain the solution (vλ(t), xλ(t)), where vλ(t) =
T − λt and

xλ(t) = cvλ(t)− λc(1− c)2k−1(1− e−kt/c(1−c)). (1)

In line with the phase plane view point in Figure 1, the corresponding trajectory
of the bivariate dynamical system (vλ(t), xλ(t)) in the (v, x)-plane with terminal
condition x(T ) = N is

x(v) = cv − Cλ(1− e−k(T−v)/λc(1−c)), v ≤ T, Cλ = λc(1− c)2/k. (2)

This system starts in (v, x) = (T,N) at time t = 0 and traces out a path below
the diagonal x = cv but above the line x = −(T−N)+v which exits at time t0 in



(v0, x0), where 0 ≤ v0 ≤ T−N . The phase plane path depends on the parameters
λ and k only through the ratio λ/k. Figure 2 shows the drop of voltage according
to Et = 3+0.2 ln(x(t)/N) as a function of normalized capacity 1−v(t)/T (upper
panel) and phase plane curves (lower panel) until the cut-off voltage of 2 Volts
is reached, which occurs close to the time of complete discharge where x(t) ≈ 0.
Three discharge rates, λ/k = 500, 1000, 2500 are indicated and compared to
the ideal case x = cv for a very small discharge current, which corresponds to
100% utilization, and the worst case of highest loads where 40% of the available
capacity is utilized.
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Fig. 2. Upper panel: Voltage versus (normalized) capacity; Lower panel: Discharge
profiles for the kinetic battery model; Parameters: constant current load, N = 400,
T = 1000, λ/k = 500, 1000, 2500

Another case of interest is regularly spaced pulsed discharge. This is a relevant
model for batteries in sensor nodes programmed to carry out a fixed task once
per day, say. Here we let r > 0 be the time between any two consecutive pulses
each releasing the charge λr. The corresponding discharge measure is Λ(t) =

λr
∑⌊t/r⌋

j=1 δjr, for which the average discharge rate is kept at (approximately)

λt. The solution (x(r)(t), v(r)(t)) for this case is

v(r)(t) = T − Λ(t) ≈ T − λt

x(r)(t) = cv(r)(t)− (1− c)λr

⌊t/r⌋∑

j=1

e−k(t−jr)/c(1−c),



where evaluation of the geometric sum
∑⌊t/r⌋

j=1 (ekr/c(1−c))j yields

x(r) ≈ cv(r) − C
(r)
λ (1− e−k(T−v(r))/λc(1−c)), C

(r)
λ =

λr(1− c)

1− e−kr/c(1−c)
. (3)

The previous case Λ(t) = λt is recovered by taking an informal limit r → 0.
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Fig. 3. Discharge of pulsed kinetic battery model, r = 50, N = 400, T = 1000, λ/k =
1000

Strictly speaking, the curves with constants C
(r)
λ indicate the lower jump points

of the discharge profile. This is appropriate as the battery is considered empty
at the first instance when the voltage drops below Ec. Figure 3 shows phase
plane and the change of state with time for the kinetic battery model under
pulsed discharge with r = 50 and additional parameters N = 400, T = 1000,
λ̄/k = 1000. Two curves are shown for the case when the first pulse occurs at
t = 0 (blue) or t = r (black) and compared with the constant discharge case of
same average (red).

As a third example we let (Λ(t))t≥0 be a Poisson process with intensity
measure λ dt. This is a battery released of charge pulsewise at random times
uniformly scattered over the time interval of operation with an average of λ
per time unit. The result is a system of random processes (V (t), X(t)) with
V (t) = T − Λ(t) and

X(t) = cV (t)− (1− c)Z(t), Z(t) =

∫ t

0

e−k(t−s)/c(1−c) dΛ(s),



and Z(t) is known as a so called Poisson shot-noise process. Clearly, the expected
value EX(t) = xλ(t) is given by (1). Moreover, the shot-noise process has a
steady-state Z∞, such that asymptotically

Z(t) ⇒ Z∞, EZ∞ = λc(1− c)/k, VarZ∞ = λc(1− c)/2k. (4)

Kinetic-diffusive battery model The kinetic battery model was primarily
framed for lead-acid batteries. Shortcomings of the model have been discussed
in e.g. [3], and attempts have been made to incorporate other designs. In the
context of Ni-MH batteries, [9] proposed a modified, non-linear, factor in the
flow charge between the two wells.

For Li-ion cells a shortcoming of the kinetic battery model appears to be that
solid state diffusion is not taken into account. In solid phase the application of
an external driving force makes the diffusing particles experience a drift motion
in addition to random diffusion. This effect of diffusion drift of charge carriers
is discussed in detail in the specialized electrochemical litterature on all-solid
batteries and is known to hamper performance of the units, see e.g. [2]. We
propose the following modification of the dynamics of the two-well kinetic battery
model as a means of introducing in a simplistic but meaningful way a negative
drift in the flux of charge:




dx(t) = −Λ(dt) + k
(
(1− p)

(
y(t)
1−c −

x(t)
c

)
− p 1

c

(
N
c − y(t)

1−c

))
dt, x(0) = N

dy(t) = −k
(
(1− p)

(
y(t)
1−c −

x(t)
c

)
− p 1

c

(
N
c − y(t)

1−c

))
dt, y(0) = T −N.

Here, p, 0 ≤ p ≤ 1, signifies a fraction of the current flow of charge which is
removed and sent back to the bound well. The solution in this case is given by




x(t) = (c+ (1− c)p)v(t)− (1− c)pT − (1− p)(1− c)
∫ t

0
e−k(t−s)/c(1−c) Λ(ds)

= (1− p)
(
cv(t)− (1− c)

∫ t

0
e−k(t−s)/c(1−c) Λ(ds)

)
+ p(v(t)− (T −N))

v(t) = x(t) + y(t) = T − Λ(t)

Now choose a discharge measure Λ(dt). It is then straightforward to derive results
such as (2, 3) for the more general model that involves the drift parameter p.

Performance of the kinetic battery model Here we compare briefly de-
livered capacity and battery life for the kinetic battery model. For simplicity
we consider the standard model p = 0. All formulas listed in this section may
also be derived for the case 0 < p < 1 of the kinetic-diffusive modification dis-
cussed above. Indeed, we conclude this section with some comments on delivered
capacity for the general model.

We begin with the non-random models. The unused capacity that remains
after depletion of all available charge is the unique solution v0 > 0 of x(v) = x0.
The delivered capacity is D = T − v0 and the gained capacity G = D −N . By
(3) and (2), which we include as the case r = 0,

x0 = cv0 − C
(r)
λ (1− e−k(T−v0)/λc(1−c)), C

(0)
λ = Cλ. (5)



Equation (5) may be solved explicitly in terms of the so called Lambert W
function, the principal branch of which we denote by W0. Then

v0 =
x0 + C

(r)
λ

c
−

λc(1− c)

k
W0

( kC
(r)
λ

λc2(1− c)
exp

{
−

k(T − x0/c− C
(r)
λ )

λc(1− c)

})

However, for typical parameters the exponential term in (5) may be ignored for

v close to v0, and hence v0 ≈ (x0+C
(r)
λ )/c. In conclusion, the delivered capacity

D
(r)
λ for the deterministic version of the kinetic battery model is approximately

D
(r)
λ ≈ T − x0/c− C

(r)
λ /c.

The lifelength t0 of the battery is directly proportional to the delivered capacity.
Indeed, since (v(t0), x(t0)) = (v0, x0) and v(t) = T − λt we have λt0 = D. As an
example, the lifelength for the continuous model (2) is obtained as the solution
t0 ∈ [T/λ− 1/k, T/λ] of

t0 =
T

λ
−

x0

cλ
−

1

k
(1− c)2(1− e−kt0/c(1−c)).

Again this equation may be solved in terms of W0, as

t0 =
T

λ
−

x0

cλ
−

1− c

k
+

c(1− c)

k
W0

(1
c
exp

{
−

k(T − x0/c)

λc(1− c)
+

1

c

})
.

Turning to the random model driven by Poisson discharge events, if we stop
at the random time t0 = min{t : X(t) = x0}, then by (4),

cV (t0) ≈ x0 + (1− c)Z∞ ≈ x0 + (1− c)EZ∞ = x0 + Cλ.

Hence

Λ(t0) ≈ T −
x0 + Cλ

c
= T (1−

x0 + Cλ

N
)

and so the distribution of the lifelength t0 is comparable to a Gamma distribution
Γ (m,λ) where m is an integer approximation of T (1− (x0 + Cλ)/N). Also, the
average delivered capacity for the Poisson model is given by Dλ = T (1− (x0 +
Cλ)/N).

As mentioned above it is straightforward to include the kinetic-diffusive ver-
sion. The delivered capacity will decrease with increasing p as illustrated in
Figure 4, with p = 0, p = 0.2 and p = 0.4. For the basic model p = 0, the
delivered capacity Dλ descends from its maximal value T , or T (1 − x0/N) in
case x0 > 0, to the asymptotic value N as λ → ∞. For p > 0 however there is a
maximal Tp ≈ (N−x0)/((1−p)c+p) which is attained for vanishing load, λ → 0.
The interpretation is that solid phase diffusion puts a principal restriction on
the amount of chemical energy which can be drawn from the cell.
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Fig. 4. Delivered capacity D as function of current load λ/k for p = 0 (upper), p = 0.2
(mid) and p = 0.4 (lower); T = 1000, N = 400,
.

4 Spatial diffusion models

This approach extends the mechanism of the kinetic battery model to act pair-
wise on adjacent fluid compartments spread out on a one-dimensional spatial
range. We begin with a discretized version and split the charges in m compo-
nents u(t) = (u1(t), . . . , um(t)). Here u1 is the available charge, u2 is a bound
well charge for u1 and so on until um, which is a bound well charge for um−1. As
charge is drawn from u1 electrochemical material continuously flows downwards
from each bound well to help recover the charge level at the next lower well.
By considering a limit of many small wells we obtain a limiting PDE for the
charge concentration profile, which may be solved explicitly and analyzed by
phase plane methods just as for the two-well case.

Spatial version of the kinetic battery model By treating each pair of
adjacent components as available and bound wells, we obtain the coupled system
of linear equations





du1(t) = −Λ(dt) + kc(cu2(t)− (1− c)u1(t)) dt
du2(t) = −kc(cu2(t)− (1− c)u1(t)) dt+ kc(cu3(t)− (1− c)u2(t)) dt

...
dum−1(t) = −kc(cum−1(t)− (1− c)um−2(t)) dt

+kc(cum(t)− (1− c)um−1(t)) dt
dum(t) = −kc(cum(t)− (1− c)um−1(t)) dt,

where we have put kc = k/c(1− c) as a temporary notation. Rewriting,




du1(t) = −Λ(dt) + kc

2 (u2(t)− u1(t)) dt+ kc(c− 1/2)(u1(t) + u2(t)) dt

du2(t) =
kc

2 (u1(t)− 2u2(t) + u3(t)) dt+ kc(c− 1/2)(u3(t)− u1(t)) dt
...

dum−1(t) =
kc

2 (um−2(t)− 2um−1(t) + um(t)) dt
+kc(c− 1/2)(um(t)− um−2(t)) dt

dum(t) = −kc

2 (um(t)− um−1(t))− kc(c− 1/2)(um−1(t) + um(t)) dt



To prepare for studying the limit as m → ∞ we introduce a new parameter ℓ,
that will be tuned to the initial condition u(0) and N and T later, and think
of each well as occupying intervals of length ℓ/m positioned uniformly on the
strip 0 ≤ x ≤ ℓ. To this end, put ε = ℓ/m, and for x = jε, j = 1, . . . ,m, let
uε(t, x) = uj(t). We also adapt conductivity by introducing the scaled parameter
κ = k/m2. Moreover, put κc = κ/c(1− c). Then, for x ∈ {2/m, . . . , (ℓ− 1)/m},

duε(t, x) =
κcℓ

2

2

uε(t, x− ε)− 2uε(t, x) + uε(t, x+ ε)

ε2
dt

+κcℓm(2c− 1)
u(t, x+ ε)− u(t, x− ε)

2ε
dt.

The boundary equations attain the form

duε(t, ε)

m
= −

Λ(dt)

m

+
κc

2

{
ℓ
uε(t, 2ε)− uε(t, ε)

ε
+m(2c− 1)(uε(t, ε) + uε(t, 2ε))

}
dt

and

duε(t, ℓ)

m
= −

κc

2

{
ℓ
uε(t, ℓ)− uε(t, ℓ− ε)

ε
+m(2c− 1)(uε(t, ℓ− ε) + uε(t, ℓ))

}
dt

We now consider the case of scaling the height parameter c = cm with the
number of spatial compartments by putting cm = (1+µ/m)/2. With µ 6= 0 and
large m, this will keep the system close to the symmetric situation cm ∼ 1/2
but with a flux of charge at each adjacent pair of wells with magnitude of order
µ/m. This gives the approximative system

duε(t, x) = −Λ(dt)δε(dx) + 2κℓ2
uε(t, x− ε)− 2xε(t, x) + uε(t, x+ ε)

ε2
dt

+4κℓµ
u(t, x+ ε)− u(t, x− ε)

2ε
dt

with Robin type boundary conditions

ℓ
uε(t, 2ε)− uε(t, ε)

ε
= −2µuε(t, ε), ℓ

uε(t, ℓ− ε)− uε(t, ℓ)

ε
= 2µuε(t, ℓ− ε).

Taking an informal limit as m → ∞, we conclude that the relevant limiting
equation is

du(t, x) = −Λ(dt)δ0(dx) + 2κℓ2
∂2u

∂x∂x
(t, x) dt+ 4κℓµ

∂u

∂x
(t, x) dt, 0 ≤ x ≤ ℓ

ℓ
∂u

∂x
(t, 0+) = −2µu(t, 0), ℓ

∂u

∂x
(t, ℓ−) = 2µu(t, ℓ), u(0, x) = u0(x).

Our interpretation is that u(t, 0)t≥0 represents the available charge of the battery
and {u(t, x), 0 < x < ℓ}t≥0 represents the fluid level of a reservoir of bound



charge such that
∫
(0,ℓ)

u(t, x) dx is what remains in the reservoir at time t. For

simplicity we will consider the case u0(y) = u0, y ∈ [0, ℓ], for which initial charge
is uniformly located on the strip [0, ℓ]. Hence

v(t) = u(t, 0) +

∫ ℓ

0

u(t, x) dx, t ≥ 0, v(0) = u0 + u0ℓ,

defines the remaining capacity in the system as function of time.
Now we are in position to relate the model parameters u0 and ℓ to the battery

parameters N and T . For this we take the initial level of available charge to be
u0 = N and the initial content of the reservoir to be u0ℓ = T − N . Then the
total potentially available charge is v(0) = T and we have ℓ = T/N − 1.

Consider the parameters σ2 = 4κℓ2 and β = −4κℓµ. Let (ξt)t≥0 denote a
Brownian motion with variance parameter σ2 and constant drift β. The initial
condition is ξ0 = x ∈ (0, ℓ) and the paths are subject to reflecting bound-
aries at both end points 0 and ℓ with no loss of probability mass. Denote by
pℓ(t, y, x) the corresponding transition probability density function, such that
P (ξt ∈ dx|ξ0 = y) = pℓ(t, y, x) dx. Then the solution u(t, x) of the above PDE
has the representation

u(t, x) =

∫ ℓ

0

u0(y)pℓ(t, y, x) dy −

∫ t

0

pℓ(t− s, 0, x)Λ(ds). (6)

The reflected Brownian motion (ξt) arises also as a model in economics and other
fields, see e.g. [11] and references in there. The transition density is given by

pℓ(t, y, x) =
2µ

ℓ

e−2µx/ℓ

1− e−2µ
+

2e−µ(x−y)/ℓ

ℓ
×

∞∑

n=1

(cos(
nπx

ℓ
)−

µ

nπ
sin(

nπx

ℓ
))(cos(

nπy

ℓ
)−

µ

nπ
sin(

nπy

ℓ
))
e−2κ(µ2+n2π2)t

1 + (µ/nπ)2
.

In particular, for the symmetric case, taking µ → 0,

pℓ(t, y, x) =
1

ℓ
+

2

ℓ

∞∑

n=1

cos(nπx/ℓ) cos(nπy/ℓ) e−2κn2π2t.

By (6),

u(t, x) = (T −N − λt)
2µ

ℓ

e−2µx/ℓ

1− e−2µ

+4Nµe−µx/ℓ
∞∑

n=1

(cos(
nπx

ℓ
)−

µ

nπ
sin(

nπx

ℓ
))
(−1)neµ − 1

µ2 + n2π2

e−2κ(µ2+n2π2)t

1 + (µ/nπ)2

−
λe−µx/ℓ

κℓ

∞∑

n=1

(cos(
nπx

ℓ
)−

µ

nπ
sin(

nπx

ℓ
))
n2π2(1− e−2κ(µ2+n2π2)t)

(µ2 + n2π2)2
.



The remaining capacity is

v(t) = u(t, 0) +

∫ ℓ

0

u(t, x) dx = u(t, 0) + T −N − λt.

Furthermore,

u(t, 0) = (T −N − λt)
1

ℓ

2µ

1− e−2µ
−

λ

κℓ

∞∑

n=1

n2π2(1− e−2κ(µ2+n2π2)t)

(µ2 + n2π2)2

+4Nµ

∞∑

n=1

((−1)neµ − 1)
n2π2 e−2κ(µ2+n2π2)t

(µ2 + n2π2)2
.

This shows that the quantities (v, u) = (v(t), u(t, 0)) form an autonomous system
such that the relation between v and u = u(v) is given by

u = (v − u)
1

ℓ

2µ

1− e−2µ
−

λ

κℓ

∞∑

n=1

n2π2(1− e−2κ(µ2+n2π2)(T−N−v+u)/λ)

(µ2 + n2π2)2

+4Nµ

∞∑

n=1

((−1)neµ − 1)
n2π2 e−2κ(µ2+n2π2)(T−N−v+u)/λ

(µ2 + n2π2)2
.

As µ → 0,

u =
1

ℓ
(v − u)−

λ

κℓ

∞∑

n=1

1

n2π2
(1− e−2κn2π2(T−N−v+u)/λ).

The important conclusion now is that we have obtained closed phase plane
representations of nominal and theoretical capacity also for the spatial model, at
least for constant load. Thus, performance can be studied just as for the two-well
model. Figure 5 displays typical discharge profiles of the driftless spatial version
of the kinetic battery model. The graphs are very similar to those for the basic
model in Figure 2. Figure 6 shows the effect of adding drift µ to the model.
With the same N and T as previously and for λ/κ = 2000, three discharge
profile curves are plotted with µ = −0.5, µ = 0 and µ = 0.5. Clearly, negative
drift lowers the delivered capacity whereas positive drift µ > 0 improves the
utilization of bound charge.

Spatial version of the kinetic-diffusive battery model Finally we con-
sider a spatial extension of the proposed kinetic-diffusive model with symmetric
kinetic dynamics c = 1/2 but diffusive effect governed by p ≥ 0. Here, the total
conductivity has been partitioned into two mechanisms, see [8]. First the basic
flow of charge caused by the height difference between wells, secondly a drift
under the action of the discharge load which affects the bound charge. The pa-
rameter p controls the balance of these two contributions to the overall flux.
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Fig. 5. Discharge profiles of the spatial kinetic battery model, N = 400, T = 1000,
from left to right: λ/κ = 1000, 2000, 3000
.
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Fig. 6. Discharge profiles of the spatial kinetic battery model with drift, N = 400,
T = 1000, κ = 1, λ = 2000, µ = −0.5, 0, 0.5
.

Putting q = 1− p,




du1(t) = −Λ(dt) + 2kq(u2(t)− u1(t)) dt− 4kp(N − u2(t)) dt
du2(t) = 2kq(u1(t)− 2u2(t) + u3(t)) dt+ 4kp(u3(t)− u2(t)) dt

...
dum−1(t) = 2kq(um−2(t)− 2um−1(t) + um(t)) dt+ 4kp(um(t)− um−1(t)) dt
dum(t) = −2kq(um(t)− um−1(t)) + 4kp(N − um(t))

Again, we place m wells of width ℓ/m on the interval 0 ≤ x ≤ ℓ. With ε = ℓ/m
and uε(t, x) = uj(t) for x = jε, j = 1, . . . ,m, and with scaled parameters
κ = k/m2 > 0 and ρ = mp > 0, we find for for x ∈ {2/m, . . . , (ℓ− 1)/m},

duε(t, x) = 2κℓ2(1− ρ/m)
uε(t, x− ε)− 2uε(t, x) + uε(t, x+ ε)

ε2
dt

+4κℓρ
u(t, x+ ε)− u(t, x)

ε
dt.



The boundary equations attain the form

duε(t, ε)

m
= −

Λ(dt)

m
+2κ

{
ℓ(1− ρ/m)

uε(t, 2ε)− uε(t, ε)

ε
− 2ρ(N − uε(t, 2ε))

}
dt

and

duε(t, ℓ)

m
= −2κ

{
ℓ(1− ρ/m)

uε(t, ℓ)− uε(t, ℓ− ε)

ε
− 2ρ(N − uε(t, ℓ− ε))

}
dt.

Considering a limit for large m, this yields

du(t, x) = −Λ(dt)δ0(dx) + 2κℓ2
∂2u

∂x∂x
(t, x) dt+ 4κℓρ

∂u

∂x
(t, x) dt, 0 ≤ x ≤ ℓ

ℓ
∂u

∂x
(t, 0+) = 2ρ(N − u(t, 0)), ℓ

∂u

∂x
(t, ℓ−) = −2ρ(N − u(t, ℓ)),

with initial condition u(0, x) = u0(x). In comparison to the previous case where
a drift µ was created by keeping the height parameter c asymptotically of the
order c = 1/2+µ/2m, in this case we obtain the same equation with ρ replacing
µ but other boundary conditions still of the generalized Robin type.
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