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1 Introduction

We investigate the genealogical structure of a neutral, haploid population with
stochastically fluctuating size. If such fluctuations, after suitable rescaling,
can be approximated by a nice continuous-time process (for example, a one-
dimensional diffusion), then we are led to genealogies given by Kingman’s co-
alescent run on a nonlinear, stochastic time scale. More explicitly, our main
result provides weak convergence in the Skorokhod topology of the scaled an-
cestral process to a stochastic time change of Kingman’s coalescent, the time
change being given by an additive functional of the limiting backward size pro-
cess.

To date, there have been a number of papers in the literature dealing with
coalescent theory in the presence of deterministically-varying population sizes.
Perhaps the most popular of these is the case in which the population size is
assumed to be large and growing (forward in time) exponentially fast. Math-
ematically, the deterministic size model is much easier to handle. If one has a
stochastic size model but conditions on knowing the sizes, the deterministic case
can be applied provided one has a neutral model. The case of stochastic sizes
presented here is fundamentally different. We do not condition on knowing the
size process and hence we keep the full stochasticity in the limiting coalescent.
Indeed, assuming the sequence of past population sizes is known removes an
important source of randomness from the coalescent.

The results in this paper can be thought of as another manifestation of
the robustness of the coalescent. The standard coalescent is the same for all
exchangeable models which have the same diffusion limit as that of the Wright–
Fisher model. Our results show that if one introduces stochastic fluctuations in
population size, all models whose (scaled) backwards size process converges to
the same process will have the same coalescent.

One can find a related result on coalescents with stochastically varying size
in the paper by Donnelly and Kurtz (1999). Their approach is quite different
from ours in several ways. First of all, their result is written in terms of the
forward-size process and involves quantities and assumptions that are perhaps
not the most natural to most people working in population genetics. Their
paper is remarkable in its generality, the coalescent result being but one of
many interesting theorems embedded in their “look-down” construction. The
cost is the heavy machinery that must be developed before-hand. We have taken
a more direct, and we hope more transparent, approach, our proof relying on
fairly standard machinery in the weak convergence arena.

1.1 The population size process

Assume we have a single neutral, haploid population whose size r generations in
the past is denoted by MN (r). Assume further that this backward population
size process is a Markov chain such that

MN (r) = NXN (r), (1)
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where N is a parameter that we will take to be large. Thus, as is typical in
coalescent theory, population sizes in the unscaled process MN are of order
N , for large N . Finally, we assume that the process {MN (r) : r = 0, 1, . . .},
after a suitable rescaling, converges weakly to a continuous-time Markov process
{X(t) : t ∈ [0,∞)} with state space S, an interval contained in (0,∞):

N−1MN ([N · ]) = XN ([N · ]) ⇒ X(·), N →∞. (2)

Here, ⇒ denotes weak convergence in the Skorokhod space DS [0,∞) of right-
continuous functions with left limits and values in S. The state spaces for the
above processes are thus given by

X(t) ∈ S, (3)

XN (r) ∈ SN ≡ S ∩ ZN , where ZN ≡ 1
N

Z, (4)

MN (r) ∈ NSN . (5)

To simplify notation, let

X̃N (t) ≡ XN ([Nt]) = N−1MN ([Nt])

be the right-continuous piecewise-flat extension of the backward population size
process, properly renormalized. The functions X̃N (·) are elements in the path
space D = DS [0,∞). We equip D with the Skorokhod topology of weak conver-
gence. Denote by Cb(S) the space of bounded continuous functions f : S → R.

The transition semigroups of the relevant backward size processes are defined
on f ∈ Cb(S) by

TN
t f(x) = E[f(XN ([Nt]))|XN (0) = x] = E[f(X̃N (t))|X̃N (0) = x], x ∈ SN ,

and
Ttf(x) = E[f(X(t))|X(0) = x], x ∈ S.

We assume that the latter semigroup satisfies the Feller property.

Our main assumption regarding convergence of the backward-size processes
is:

(A1) For all f ∈ Cb(S),

sup
x∈SN

|Exf(X̃N (t))− Exf(X(t))| → 0, as N →∞.

Because of the Feller property of the limit semigroup, this is equivalent to

TN
t f(xN ) → Ttf(x), as N →∞, xN → x,

uniformly in x, for all f ∈ Cb(S). Letting L denote the generator of X and LN ≡
N(TN − I) the corresponding discrete generator, the above is also equivalent to

3



LNf(xN ) → Lf(x) uniformly in x, as N → ∞ and xN → x. Here, TNf(x) ≡∑
y∈SN

p(x, y)f(y), with p(x, y) denoting the one-step transition probability for
the process XN . The above equivalent conditions are slightly stronger than
just weak convergence, but are typically satisfied by approximations arising in
applications; cf. Ethier and Kurtz (1986), page 415, for an example.

1.2 The ancestral process

In coalescent theory, one follows the number of ancestors (i.e., ancestral lineages)
back in time starting from a sample in the current generation. Let AN (·) be the
ancestral process defined by AN (0) = n and, for r ≥ 1,

AN (r) = number of distinct ancestors r generations in the past,

where n is the original sample size, and the index N indicates the dependence
on the underlying population size MN . We will be interested in the limiting
behavior of the continuous-time, scaled ancestral process AN ([Nt]), t ≥ 0.

The dynamics of AN are determined by the coalescence probabilities as we
move back in time one generation at a time. A key role will be played by a
function HN , essentially describing pairwise coalescence rates, according to the
following assumption:

(A2) If MN (r − 1) = k and MN (r) = m, then the coalescence probability for a
randomly chosen pair of ancestral lineages at time r is of the form

cN (k,m) =
1
N

HN

(
k

N
,
m

N

)
.

It is further assumed that there is a nonnegative, bounded, jointly conti-
nuous function H(x, y) on S × S such that

HN

(
k

N
,
m

N

)
→ H(x, y),

uniformly in S × S, as N → ∞, k/N → x and m/N → y. Finally, we
assume that, for any finite number, i, of lineages, the event that more
than two are involved in a coalescence event in a single generation has
probability O(1/N2), and the probability of exactly one pair coalescing is(

i
2

)
cN (k, m) +O(1/N2).

For models in which parents are “chosen” independently (e.g., Wright–
Fisher), the last condition follows from the first. We remark that the O(1/N2)
terms can be replaced throughout the paper by terms of order o(1/N). In ad-
dition to making it more clear where these terms are coming from, the reason
for our choice is that, in the most common examples, the o(1/N) terms are of
the form O(1/N2).
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To see that these conditions are natural, consider first the Wright–Fisher
model with fluctuating population size. If we consider a sample of two randomly
chosen lineages r− 1 generations in the past, the probability that they coalesce
(i.e., have the same parent) in generation r is given by

cN (MN (r − 1),MN (r)) ≡ 1
MN (r)

=
1

NXN (r)
. (6)

Thus we can write

cN (k, m) =
1
m

=
1
N

HN

(
k

N
,
m

N

)
where HN (x, y) = 1/y = H(x, y). Multiple coalescence events have probabil-
ity O(1/N2). Note that H will be bounded and jointly continuous, and the
convergence of HN to H will be uniform when, for example, S ⊆ [a,∞), with
a > 0.

The above development can be generalized to a large class of reproduction
models that includes the Wright–Fisher model as a special case. Let ν

(r)
i denote

the random number of offspring produced by the ith individual in generation r
(in the past). Thus

MN (r)∑
i=1

ν
(r)
i = MN (r − 1).

Assume that the offspring vectors (ν(r)
1 , . . . , ν

(r)
MN (r)) are independent from gen-

eration to generation, and conditioned on the offspring numbers, all assignments
of offspring to parents which honor these numbers are equally likely. Such mod-
els have been studied, in the setting of deterministic population size processes,
by Möhle (2000, 2002), Donnelly (1986), Griffiths and Tavaré (1994), and oth-
ers. It can be shown that the pairwise coalescence probability in generation r
is given by

cN (MN (r − 1),MN (r)) =
1

(MN (r − 1))2

MN (r)∑
i=1

E
[
(ν(r)

i )2
]
, (7)

where (k)2 ≡ k(k − 1). (This expression reduces to (6) in the special case
of Wright–Fisher dynamics.) If the distributions of offspring numbers do not
change with time, we have the following expression, independent of r:

cN (k,m) =
1

k(k − 1)

m∑
i=1

E[νi(νi − 1)]

=
(

N2 k

N
(

k

N
− 1

N
)
)−1

·
N ·m/N∑

i=1

d(i),
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where d(i) ≡ E[νi(νi − 1)]. So we can write the coalescence probability in the
form of (A2) by setting

HN

(
k

N
,
m

N

)
=

(
k

N
(

k

N
− 1

N
)
)−1

· 1
N

N ·m/N∑
i=1

d(i).

Under mild conditions, this will converge, as k/N → x and m/N → y, to a
function of the form

H(x, y) = dy/x2.

(Note that the special case of exchangeable reproduction would yield d(i) = d
for all i, and hence

HN

(
k

N
,
m

N

)
=

(
k

N
(

k

N
− 1

N
)
)−1

· md

N
→ yd/x2.)

Again, we can arrange for H to be bounded and jointly continuous, and the
convergence of HN to H to be uniform if, for example, the interval S is of
the form [a, b], with 0 < a < b < ∞. This would give the first part of (A2).
To prevent multiple coalescences in the limiting coalescent, one needs a further
condition; i.e., this does not follow from (7) alone. Such a condition can be
found in Möhle (2000).

Remark. We note that in the general setting of (7) the pairwise coalescence
probabilities can depend on the time r through more than just the depen-
dence on MN (r − 1) and MN (r). In such a situation, we have functions of
the form cN,r(k,m) and HN,r and we would need convergence of the form
HN,[Nt](k/N, m/N) → Ht(x, y) for some limiting coalescence rate that depends
on time explicitly and not just the population sizes. We will not treat this case
in the present paper.

One final comment about (A2) is that, as we will see below, we really only
need the conditions to hold near the diagonal H(x, x). The key is that we get
the convergence discussed next.

1.3 Coalescence intensity

To see what the limiting coalescent should look like, we argue heuristically as
follows. Intuitively, the rate of coalescence for a pair of lineages is obtained by
adding pairwise coalescence probabilities over [Nt] generations and taking the
limit as N →∞. Thus, if we define the cumulative coalescence intensity over k
generations by

YN (k) ≡
k∑

r=1

cN (MN (r − 1),MN (r)),
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the limiting cumulative coalescence intensity over the continuous time interval
[0, t] grows like

YN ([Nt]) ⇒
∫ t

0

H(X(s−), X(s)) ds =
∫ t

0

H(X(s), X(s)) ds, (8)

where ⇒ denotes weak convergence in DS [0,∞) and the last equality follows
from the fact that a D-valued process has at most a countable set of disconti-
nuities. To demonstrate the weak convergence in (8), write

[Nt]∑
r=1

cN (MN (r − 1),MN (r)) =
∫ [Nt]/N

0

HN (X̃N (s− 1/N), X̃N (s)) ds. (9)

Now X̃N ⇒ X in DS [0,∞), and so the desired result follows from the continuity
of H and the fact that HN → H uniformly (cf. Billingsley, 1968). Hence

YN (([N ·]) ⇒
∫ ·

0

H(X(s−), X(s)) ds. (10)

Because of the limit in (8), it seems reasonable that, if A(t) denotes the stan-
dard Kingman (1982) coalescent, then the coalescent for the above stochastically
varying population size model should be given by A(Yt), where

Yt =
∫ t

0

H(X(s), X(s)) ds

i.e., the Kingman coalescent run according to the clock t 7→ Yt.
We assume that the limit process X is satisfies∫ ∞

0

H(X(s), X(s)) ds = ∞, (11)

so that all ancestral lineages are guaranteed to coalesce in finite time. For
simplicity, we also assume that∫ t

0

H(X(s), X(s)) ds < ∞ (12)

for each t ∈ (0,∞). If this were not the case, we would just run the process up
to the stopping time τ ≡ inf{t : Yt = ∞}; all coalescences will have occurred by
then. Note that the two conditions above are trivially satisfied in the Wright–
Fisher example when the interval S is of the form [a, b], with 0 < a < b < ∞.

In the case where X is a regular one-dimensional diffusion (cf. Rogers and
Williams, 1987), the last integral in (8) can be expressed as:∫ t

0

H(X(s), X(s)) ds =
∫

S

H(x, x)Lx
t m(dx), (13)

where m is the speed measure for X and {Lx
t : x ∈ S, t ≥ 0} is its local time.

This comes from the fact that Lx
t m(dx) serves as an occupation measure for

the diffusion. Thus, the expression
∫

S
H(x, x)Lx

t m(dx) is essentially a sum of
coalescence intensities weighted by the amount of time in [0, t] that this intensity
was in force.
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2 Convergence theorem

The main result of the paper follows. In addition to giving the advertised
convergence of scaled ancestral processes to a time-changed version of Kingman’s
coalescent, we have joint convergence of the backward size process and ancestral
process. Recall that A(t) is the standard Kingman coalescent and L is the
generator of the limiting backward size process. Denote the usual decreasing
and increasing factorials by

(i)` = i(i− 1) · · · (i− ` + 1), i(`) = i(i + 1) · · · (i + `− 1).

Theorem 1 Suppose (A1) and (A2) hold and set

Yt =
∫ t

0

H(X(s), X(s)) ds.

Then, as N →∞,

(XN ([Nt]), AN ([Nt])) ⇒ (X(t), A(Yt))

holds in the sense of weak convergence in the space DS×{1,...,n}[0,∞), whenever
XN (0) ⇒ X(0) in S. The transition semigroup (Tt) for the limit process, defined
by Ttf(x, i) = E(x,i)

[
f(X(t), A(Yt))

]
, can be decomposed as

Ttf(x, i) =
i∑

j=1

i∑
`=j

C`(i, j)E(x,i)
[
f(X(t), j) e−(`

2)Yt
]

where, for j ≤ ` ≤ i,

C`(i, j) ≡
∏

j+1≤s≤i

(
s
2

) ∏
j≤r≤i,r 6=`

1(
r
2

)
−

(
`
2

) (14)

=
(2`− 1)(−1)`−jj(`−1)(i)`

j!(`− j)!i(`)
, j ≤ ` ≤ i. (15)

In (14), empty products are defined to have value 1. The generator of the limit
process is given by

Lf(x, i) =
d

dt
Ttf(x, i)

∣∣
t=0

= Lf(x, i) +
(

i

2

)
H(x, x)

(
f(x, i− 1)− f(x, i)

)
.

To explain the strategy of the proof, for 1 ≤ i ≤ n, x ∈ ZN and r ≥ 0, let

T N
r f(x, i) = E(x,i)

[
f(XN (r), AN (r))

]
, f ∈ Cb(ZN × {1, . . . , n}) (16)
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be the transition operator for the vector-valued process (XN , AN ). (Note that
our notation is set up so that the symbol T is used for operators corresponding
to the joint process and the symbol T is for operators corresponding to the
backward size process alone.) We are going to show that Tt is a Feller semigroup
on Cb(ZN × {1, . . . , n}) such that for each f ∈ Cb(ZN × {1, . . . , n]}) and t ≥ 0,

sup
x,i
|T N

[Nt]f(x, i)− Ttf(x, i)| → 0, N →∞, (17)

where the supremum is over x ∈ SN and i ≥ j. Then the weak convergence
(XN ([N · ]), AN ([N · ])) ⇒ (X(·), A(Y·)) follows by applying Theorem 4.2.12 in
Ethier and Kurtz (1986). The remaining statements in Theorem 1 will appear
in the process of proving (17).

3 Proof of the theorem

The approach we take here in proving the convergence result for the ancestral
process is in many ways similar to that in Kaj, Krone and Lascoux (2001). In
both cases we use semigroup convergence, as in (17), and we derive explicit
representations for the r-step transition probabilities of the underlying Markov
chain; cf. Lemma 1 below.

3.1 Properties of the discrete-time process

To prepare for the proof of (17) we first study the Markov chain (MN , AN ), for
fixed N . Let

P (k, m) = P(MN (r) = m |MN (r − 1) = k)

be the transition probabilities and P = (P (k, m)) the transition probability
matrix for the discrete-time Markov chain MN . The one-step transition proba-
bilities for the process (MN (r), AN (r))r≥0 are given by

P(k,i)
(
(MN (1), AN (1)) = (m, i− 1)

)
= P (k,m)

(
i

2

)
cN (k,m) +O

(
1

N2

)
and

P(k,i)
(
(MN (1), AN (1)) = (m, i)

)
= P (k, m)

(
1−

(
i

2

)
cN (k,m) +O

(
1

N2

))
,

with cN (k,m) from Assumption (A2), and all other transitions involving mul-
tiple coalescences having probabilities of order O(1/N2). In addition we let
P̂ = (P̂ (k, m)) be the matrix with elements

P̂ (k, m) = P (k,m) · cN (k,m).

We have suppressed the dependence on N in the matrices P and P̂ to simplify
the presentation of the next lemma and its proof. These matrices are of size
K ×K where K = |SN | < ∞.
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The transition probability matrix for (MN (·), AN (·)) is conveniently repre-
sented as a block matrix in the form Π +O(1/N2), where

Π = ΠN =



P 0 0 . . . 0 0(
2
2

)
P̂ P −

(
2
2

)
P̂ 0 . . . 0 0

...
...

...
. . .

...
...

0 . . . 0
(
n−1

2

)
P̂ P −

(
n−1

2

)
P̂ 0

0 0 . . . 0
(
n
2

)
P̂ P −

(
n
2

)
P̂


.

Here, the blocks Πi,j are zero except for the diagonal and subdiagonal blocks,
and when i ≥ 2,

Πi,i = P −
(

i

2

)
P̂ , Πi,i−1 =

(
i

2

)
P̂ .

Lemma 1 For any t ≥ 0 fixed and 1 ≤ j ≤ i ≤ n, as N →∞,

P(k,i)
(
(MN ([Nt]), AN ([Nt])) = (m, j)

)
=

i∑
`=j

C`(i, j)
(

P −
(

`

2

)
P̂ +O

(
1

N2

))[Nt]

(k,m) (18)

=
i∑

`=j

C`(i, j)
(

P −
(

`

2

)
P̂

)[Nt]

(k, m) +O
(

1
N

)
, (19)

where C`(i, j) is given by (14) and (15) in Theorem 1.

Remark. Note that the matrices P −
(

`
2

)
P̂ appearing in the sum are the same

for each i, j. In the Wright–Fisher model with constant size MN (r) ≡ N , the
above matrices are actually the scalars P = 1 and P̂ = 1/N . In this special
case, summing over m, and letting N →∞ in the lemma leads to the classical
result

Pi(AN ([Nt]) = j) =
i∑

`=j

C`(i, j)
(

1−
(

`

2

)
1
N

+O
(

1
N2

))[Nt]

→
i∑

`=j

C`(i, j) exp
{
−

(
`

2

)
t

}
,

where the last term is the transition probability Pi(A(t) = j) for Kingman’s
coalescent (cf. Tavaré (1984)).

Proof. The asymptotic equivalence of the last two displayed quantities in
the lemma follows from a simple argument using the binomial theorem. Write
(Πr)i,j for the (i, j) block in the matrix Πr and Πr

i,j for the matrix Πi,j raised
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to the power r. These block matrices are all finite and of the same size as P .
The matrix powers Πr are lower triangular block matrices given recursively by

(Πr)i,i = Πr
i,i = (P −

(
i
2

)
P̂ )

r
, (20)

(Πr)i,j = Πi,i−1(Πr−1)i−1,j + Πi,i(Πr−1)i,j

=
(

i
2

)
P̂ (Πr−1)i−1,j + (P −

(
i
2

)
P̂ )(Πr−1)i,j , 1 ≤ j ≤ i− 1, (21)

and, of course, (Πr)i,j = 0 when j > i. In view of the fact that

P(k,i)
(
(MN ([Nt]), AN ([Nt])) = (m, j)

)
=

((
Π +O(1/N2)

)[Nt])
i,j

(k,m) (22)

= (Π[Nt])i,j(k, m) +O(1/N),

the displayed equations in the statement of the lemma will be proved if we can
show, for each r ≥ 1 and j ≤ i,

(Πr)i,j =
i∑

`=j

C`(i, j)
(
P −

(
`
2

)
P̂

)r
. (23)

We begin with the case j = i, in which case the index sets in both products
defining C`(i, j) in (14) are empty. Hence (23) takes the form (Πr)i,i = (P −(

i
2

)
P̂ )r, in accordance with (20).
The proof of (23) for the case j < i is by induction on r, starting with r = 1.

For r = 1 and j = i− 1 the right-hand side of (23) becomes(
i
2

)(
i
2

)
−

(
i−1
2

) (P −
(
i−1
2

)
P̂ ) +

(
i
2

)(
i−1
2

)
−

(
i
2

) (P −
(

i
2

)
P̂ ) =

(
i
2

)
P̂ = (Π)i,i−1,

as desired. Moreover, (Π)i,j = 0 for 1 ≤ j ≤ i − 2. To see that the right-hand
side of (23) is zero in this case, use the fact that for 1 ≤ j ≤ i− 2 we have

i∑
`=j

( ∏
j≤r≤i,r 6=`

1(
r
2

)
−

(
`
2

))
= 0,

i∑
`=j

(
`
2

)( ∏
j≤r≤i,r 6=`

1(
r
2

)
−

(
`
2

))
= 0.

These relations follow from general combinatorial properties of positive numbers.
Indeed, for any distinct positive xr, r ∈ {j, . . . , i}, by putting all terms in the
sum over a common denominator,

i∑
`=j

( ∏
j≤r≤i;r 6=`

1
xr − x`

)
=

( ∏
j≤s<r≤i

1
xr − xs

) i∑
`=j

(−1)`−j
∏

j≤s<r≤i;r,s 6=`

(xr−xs).

The rightmost sum above vanishes since each term that results from expanding
the product appears twice, with opposite signs. Also, by a similar argument,

i∑
`=j

x` (−1)`−j
∏

j≤s<r≤i;r,s 6=`

(xr − xs) = 0.

11



Now fix r ≥ 2 and suppose (23) is true for all indices up to and including
r − 1. Then, for any j ≤ i− 1,

(
i
2

)
P̂ (Πr−1)i−1,j =

i−1∑
`=j

(
i
2

)
C`(i− 1, j)P̂ (P −

(
`
2

)
P̂ )r−1

and

(P −
(

i
2

)
P̂ )(Πr−1)i,j =

i∑
`=j

C`(i, j)(P −
(

i
2

)
P̂ )(P −

(
`
2

)
P̂ )r−1.

Therefore by (21) we have

(Πr)i,j =
(

i
2

)
P̂ (Πr−1)i−1,j + (P −

(
i
2

)
P̂ )(Πr−1)i,j

=
i−1∑
`=j

C`(i, j)
{
(
(

i
2

)
−

(
`
2

)
)P̂ + P −

(
i
2

)
P̂

}
(P −

(
`
2

)
P̂ )r−1

+Ci(i, j)(P −
(

i
2

)
P̂ )r

=
i∑

`=j

C`(i, j)(P −
(

`
2

)
P̂ )r.

This shows that (23) holds for index r, hence by induction for any index.
It remains to prove the alternative representation of the coefficients given in

(15). To this end we use(
r

2

)
−

(
`

2

)
= (r − `)(r + `− 1)/2

to rewrite (14) as

C`(i, j) =

∏
j+1≤r≤i r(r − 1)∏

j≤r≤i;r 6=`(r − `)(r + `− 1)
.

Here we have ∏
j+1≤r≤i

r(r − 1) =
i!
j!

j · · · (i− 1),

∏
j≤r≤i;r 6=`

(r − `) = (j − `) · · · 1 · (i− `)! = (−1)`−j(`− j)! (i− `)!

and ∏
j≤r≤i;r 6=`

(r + `− 1) =
(j + `− 1) · · · (i + `− 1)

2`− 1
.

Thus

C`(i, j) =
(2`− 1)(−1)`−j

j!(`− j)!
· i!
(i− `)!

· j · · · (i− 1)
(j + `− 1) · · · (i + `− 1)

=
(2`− 1)(−1)`−j(i)` j(`−1)

j!(`− j)!i(`)
,

12



which is (15). This completes the proof of Lemma 1.

3.2 Limit distribution

It was pointed out earlier that to prove the weak convergence in Theorem 1 it
suffices to establish (17), a criterion that we now reformulate slightly as follows.
Let

(FXN
r )r≥0, FXN

r = σ{XN (k) : k ≤ r}
be the discrete-time filtration generated by the Markov chain XN . Then for any
r ≥ 0,

T N
r f(x, i) =

i∑
j=1

T N,j
r f(x, i) (24)

where
T N,j

r f(x, i) = E(x,i)
[
f(XN (r), j) P(x,i)(AN (r) = j|FXN

r )
]
. (25)

Similarly, the transition semigroup for the limit process in Theorem 1, has the
representation

Ttf(x, i) =
i∑

j=1

T j
t f(x, i) (26)

where
T j

t f(x, i) = E(x,i)[f(X(t), j) Pi(A(Yt) = j|FX
t )] (27)

and
(FX

t )t≥0, FX
t = σ{X(s) : s ≤ t}

denotes the continuous-time filtration generated by X. It follows from (24) and
(26) that to prove (17) it is enough to show, for fixed t and each j,

sup
x,i
|T N,j

[Nt]f(x, i)− T j
t f(x, i)| → 0, N →∞, (28)

where the supremum is over x ∈ SN and i ≥ j.
To compute the conditional probability appearing in (25), we begin by writ-

ing

P(x,i)(AN (r) = i|FXN
r ) =

r∏
s=1

(
1−

(
i

2

)
cN (MN (s− 1),MN (s)) +O

(
1

N2

) )
.

The next step is to apply the time scale r = [Nt] and rewrite the above in terms
of X̃N . Then, as N →∞, by obvious approximations that can be taken uniform
in x and i,

P(x,i)(AN ([Nt]) = i|FXN

[Nt]) ∼ exp
{
−

(
i

2

)
1
N

[Nt]∑
r=1

HN (XN (r − 1), XN (r))
}

= exp
{
−

(
i

2

) ∫ t

0

HN (X̃N (s− 1/N), X̃N (s)) ds
}

.

13



It is convenient to have in the remaining proofs a separate notation for the
multiplicative functionals of X defined by

M`(t) = e−(`
2)Yt = exp

{
−

(
`

2

) ∫ t

0

H(X(s), X(s)) ds
}

and, similarly,

M`,N (t) = exp
{
−

(
`

2

) ∫ t

0

HN (X̃N (s− 1/N), X̃N (s)) ds
}

.

Since Yt ∈ FX
t , we can use the classical expression for transition probabilities

involving Kingman’s coalescent (cf. Remark after Lemma 1) to get

P(x,i)(A(Yt) = j|FX
t ) =

i∑
`=j

C`(i, j) M`(t), j ≤ i.

In view of Lemma 1 and the above asymptotics, we can also write

P(x,i)(AN ([Nt]) = j|FXN

[Nt]) ∼
i∑

`=j

C`(i, j) M`,N (t), N →∞.

This gives

T N,j
[Nt]f(x, i) = E(x,i)

[
f(X̃N (t), j) P(x,i)(AN ([Nt]) = j|FXN

[Nt])
]

∼
i∑

`=j

C`(i, j) E(x,i)
[
f(X̃N (t), j)M`,N (t)

]
(29)

and

T j
t f(x, i) = E(x,i)

[
f(X(t), j) P(x,i)(A(Yt) = j|FX

t )
]

=
i∑

`=j

C`(i, j) E(x,i)
[
f(X(t), j)M`(t)

]
. (30)

We remark that, for each i, j, the semigroup E(x,i)[f(X(t), j)M`(t)] inherits the
Feller property in x from that of the diffusion X.

By (29) and (30),

sup
x,i

∣∣T N,j
[Nt]f(x, i)− T j

t f(x, i)
∣∣

≤
i∑

`=j

C`(i, j) sup
x,i

∣∣E(x,i)
[
f(X̃N (t), j)M`,N (t)

]
− E(x,i)

[
f(X(t), j)M`(t)

]∣∣.
Since i is restricted to the finite set {2, . . . , n}, we may fix an initial condition
A(0) = n and limit our attention in the sequel to a supremum over x. Fur-
thermore, for fixed j the function fj(x) = f(x, j) is just a particular choice of

14



a bounded continuous function acting on x. To prove the criterion (28) it is
therefore enough to prove the following uniform convergence of Feynman–Kac
semigroups:

Lemma 2 For t fixed, and for all choices of f ∈ Cb(S),

sup
x∈SN

∣∣Ex
[
f(X̃N (t))M`,N (t)

]
− Ex

[
f(X(t))M`(t)

]∣∣ → 0, as N →∞.

Proof. For given δ > 0, consider the equidistant sequence ti = δi, i ≥ 0, and
denote

∆M`(ti) = M`(ti)−M`(ti−1)

= M`(ti−1)
(

exp
{
−

(
`

2

) ∫ ti

ti−1

H(X(s), X(s)) ds
}
− 1

)
.

Since H is assumed to be bounded,

∆M`(ti) = −M`(ti−1)
(

`

2

) ∫ ti

ti−1

H(X(s), X(s)) ds +O(δ2), δ → 0,

almost surely, where the remainder term is uniform in i and the initial state x.
Hence, for any k ≥ 1,

Ex
[
f(X(tk))M`(tk)

]
− f(x)

=
k∑

i=1

Ex
[
f(X(ti))∆M`(ti) + (f(X(ti))− f(X(ti−1)))M`(ti−1)

]
= S1

k + S2
k +O(tkδ), (31)

where

S1
k = −

(
`

2

) k∑
i=1

Ex
[
M`(ti−1)f(X(ti))

∫ ti

ti−1

H(X(s), X(s)) ds
]

and

S2
k =

k∑
i=1

Ex
[
M`(ti−1)(f(X(ti))− f(X(ti−1)))

]
,

and the remainder term O(tkδ) = O(kδ2), is again uniform in X(0) = x. Next,
using the Markov property, we observe that

S1
k = −

(
`

2

) k∑
i=1

Ex
[
M`(ti−1)

∫ ti

ti−1

H(X(s), X(s))Tti−sf(X(s)) ds
]

= −
(

`

2

) k∑
i=1

Ex
[
M`(ti−1)

∫ ti

ti−1

Ts−ti−1(HTti−sf)(X(ti−1)) ds
]

= −
(

`

2

) k∑
i=1

∫ ti

ti−1

Ex
[
M`(ti−1)Rsf(X(ti−1))

]
ds,
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where, for each s, Rsf(x) ≡ R
ti−1,ti
s f(x) ≡ Ts−ti−1(HTti−sf)(x) is a bounded,

continuous function. Similarly,

S2
k =

k∑
i=1

Ex
[
M`(ti−1) Qt1f(X(ti−1))

]
,

where Qtf(x) = Ttf(x)− f(x) is a bounded, continuous function.
In summary,

Ex
[
f(X(tk))M`(tk)

]
− f(x)

= −
(

`

2

) k∑
i=1

∫ ti

ti−1

Ex
[
M`(ti−1)Rsf(X(ti−1))

]
ds

+
k∑

i=1

Ex
[
M`(ti−1)Qt1f(X(ti−1))

]
+O(tkδ). (32)

The same derivation in modified form applies to the process X̃N (t). Namely,
take QN

t f(x) = TN
t f(x)−f(x) and RN

s f(x) = TN
s−ti−1

(HTN
ti−sf)(x) and observe

that these functions are all uniformly bounded in N . This gives, for any N ,

Ex
[
f(X̃N (tk))M`,N (tk)

]
− f(x)

= −
(

`

2

) k∑
i=1

∫ ti

ti−1

Ex
[
M`,N (ti−1)RN

s f(X̃N (ti−1))
]
ds

+
k∑

i=1

Ex
[
M`,N (ti−1)QN

t1f(X̃N (ti−1))
]

+O(tkδ), (33)

where the remainder term is independent of f and uniform in both x and N as
δ → 0.

Now fix ε > 0. For the given time t, choose δ to be a number of the form
δ = t/m where m is an integer which is so large that the remainder terms in
both (32) and (33), which are of the form O(tkδ) = O(kδt/m), are bounded
by ε for k = 1, . . . ,m. With this δ we now apply (32) and (33) to obtain for
arbitrary N , 1 ≤ k ≤ m, and f ∈ Cb(S)

sup
x∈SN

∣∣∣Ex
[
f(X(tk))M`(tk)

]
− Ex

[
f(X̃N (tk))M`,N (tk)

]∣∣∣ ≤ (34)(
`

2

) k−1∑
i=0

∫ ti+1

ti

sup
x∈SN

∣∣∣Ex
[
M`(ti)Rsf(X(ti))

]
− Ex

[
M`,N (ti)RN

s f(X̃N (ti))
]∣∣∣ ds

+
k−1∑
i=0

sup
x∈SN

∣∣∣Ex
[
M`(ti)Qt1f(X(ti))

]
− Ex

[
M`,N (ti)QN

t1f(X̃N (ti))
]∣∣∣ + 2ε.

To prove the lemma it remains to show that the expression in (34) for k = m
(recall tm = t) goes to zero as N → ∞. To this end we prove the following
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discretized version of the lemma. Namely, for the above partition t1, . . . , tm we
claim that

sup
x∈SN

∣∣∣Ex
[
g(X(tk))M`(tk)

]
− Ex

[
g(X̃N (tk))M`,N (tk)

]∣∣∣ → 0, N →∞ (35)

for all choices of g ∈ Cb(S) and k = 1, . . . ,m. We prove the claim by induction
on k. First, take k = 1 in (34) to get

sup
x∈SN

∣∣∣Ex
[
M`(t1)g(X(t1))

]
− Ex

[
M`,N (t1)g(X̃N (t1))

]∣∣∣ (36)

≤
(

`

2

) ∫ t1

0

sup
x∈SN

|Rsg(x)−RN
s g(x)| ds + sup

x∈SN

|Qt1g(x)−QN
t1g(x)|+ 2ε.

Based on the contraction property of the semigroups, the uniform convergence
in Assumption (A1), and the uniform convergence of HN in Assumption (A2),
the suprema in each term on the right side converge to zero as N →∞. By the
dominated convergence theorem the integral also vanishes as N →∞. Hence

sup
x∈SN

∣∣∣Ex
[
M`(t1)g(X(t1))

]
− Ex

[
M`,N (t1)g(X̃N (t1))

]∣∣∣ ≤ 3ε, N ≥ N0(1),

(37)
providing the first induction step. Now suppose as induction hypothesis that
the claim (35) is true for each index 1, . . . , k−1 less than k. Then, by (34) using
the same arguments that led to (36) we can find N0(k) so large and each term
on the right side of (34) so small that

sup
x∈SN

∣∣∣Ex
[
M`(tk)g(X(tk))

]
− Ex

[
M`,N (tk)g(X̃N (tk))

]∣∣∣ ≤ 3ε, N ≥ N0(k),

(38)
which verifies the induction step for the proof of the claim (35). This concludes
the proof of the lemma and hence the proof of Theorem 1.
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